
Stochastic calculus, midterm exam

Lecture notes are not be allowed. Exercises with a (∗) are probably more difficult
than the others.

Exercise 1. Define what a submartingales in discrete time is.

Exercise 2. Let (Xn)n≥1 be a martingale in discrete time and S ≤ T be two
stopping times. Give an example in which E(XT | FS) = XS does not hold (no
need for a proof).

Exercise 3. Let X be a nonnegative martingale in discrete time. Does it converge
almost sureley? If yes, thanks to which theorem? If no, give a counterexample (no
need for a proof).

Exercise 4. Given a filtration in discrete time, define a stopping time. Give an ex-
ample. Give an example of a time which is not a stopping time (no need for a proof).

Exercise 5. Let X be a Gaussian random variable with mean µ and variance σ2.
For any real t, what is E(etX)?

Exercise 6. Let X be a standard Gaussian random variable, and ε an independent
Bernoulli random variable (P(ε = 1) = P(ε = −1) = 1/2). Is (X, εX) a Gaussian
vector? Justify your answer.

Exercise 7. Define a standard Brownian motion.

Exercise 8. Let B be a standard Brownian motion and λ > 0. Is (
√
λBλt)t≥0 a

standard Brownian motion? Justify your answer.

Exercise 9. Let B be a standard Brownian motion. For which α > 0 does
limt→0+

Bt
tα exist almost surely? Then, what is the limit? You don’t need to prove

anything, just answer.

Exercise 10. Let B be a standard Brownian motion. Are the following assertions
right or wrong? If right, give the theorem it relies on. If wrong, give a counterex-
ample (no proof needed, just a counterexample).

(i) If T is an almost surely finite stopping time, then (BT+t−BT )t≥0 is a standard
Brownian motion.

(ii) If T is an almost surely finite random time, then (BT+t−BT )t≥0 is a standard
Brownian motion.

Exercise 11. Let (Xk)k≥0 be i.i.d. standard Gaussian random variables, Fn =

σ(Xk, k ≤ n), and S
(µ)
n =

∑n
k=0Xk + µn. For which values of the real parameter
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µ is (S
(µ)
n )n≥0 a (Fn)n≥0-supermartingale? Prove it.

Exercise 12. With the same notations as in exercise 11, find c > 0 such that

((S
(0)
n )2 − cn)n≥0 is a (Fn)n≥0-martingale. Prove it.

Exercise 13. With the same notations as in exercise 11, find c > 0 such that

(eS
(0)
n −cn)n≥0 is a (Fn)n≥0-martingale. Prove it. What does this martingale con-

verge to, almost surely? Prove it.

Exercise 14 (*). State Donsker’s theorem. With the same notations as in exer-

cise 11, find α > 0 such that n−α
∑
k≤n S

(0)
k converges as n → ∞, to a non-trivial

distribution. What is the density of this limit?

Exercise 15. Let B be a standard Brownian motion. Calculate E
(

(
∫ 1

0
Bsds)

2
)

.

Exercise 16 (*). Let B be a standard Brownian motion, µ ∈ R. Calculate
E
(
sup0≤s≤1 e

µBs
)
.

Exercise 17. Let B be a standard Brownian motion. What is limt→∞
Bt
t , almost

surely? Prove it.

Exercise 18. Let X be a F -measurable integrable random variable, and F1 ⊂
F2 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F be a filtration. Prove that (E(X | Fn))n≥1 is a
(Fn)n≥1-martingale.

Exercise 19 (*). Let B be a standard Brownian motion and T ∗1 = inf{t ≥ 0 |
|Bt| = 1}. Prove that sup0≤t≤1 |Bt| and 1√

T∗
1

have the same distribution.

Exercise 20 (*). Let B(1) and B(2) be independent standard Brownian motions.

Define the complex-valued process Bt = B
(1)
t + iB

(2)
t . Let D be a straight line in

the complex plane. What is the distribution of T = inf{t ≥ 0 : Bt ∈ D}?


