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EXTREME GAPS BETWEEN EIGENVALUES OF
RANDOM MATRICES
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New York University and Harvard University

This paper studies the extreme gaps between eigenvalues of random ma-
trices. We give the joint limiting law of the smallest gaps for Haar-distributed
unitary matrices and matrices from the Gaussian unitary ensemble. In par-
ticular, the kth smallest gap, normalized by a factor n−4/3, has a limiting

density proportional to x3k−1e−x3
. Concerning the largest gaps, normalized

by n/
√

logn, they converge in Lp to a constant for all p > 0. These results are
compared with the extreme gaps between zeros of the Riemann zeta function.

1. Introduction. We address here the following question: what is the asymp-
totic size and the limit laws of the smallest and largest gaps or spacings in the
spectra of random matrices? Typical spacings between eigenvalues of random ma-
trices have been well understood for invariant ensembles for quite some time. More
recently, the behavior of these typical spacings has even been proved to be univer-
sal for much larger classes of random matrices [2, 14, 33]. Much less is known
for atypically large or small spacings. This question was first considered for the
smallest spacings in the unpublished Ph.D. thesis of Vinson [34] and raised by
Diaconis in [11] for the largest ones. It was also discussed in an interesting de-
bate during a conference at the Courant Institute in 2006, in honor of Percy Deift.
We solve here completely the question of the smallest spacings for the simplest
invariant ensembles, that is, the CUE and the GUE. We give the scaling and the
limit laws for the joint distribution of the smallest spacings. The answer is simple
to state: it is given by the trivial Poissonian ansatz where the spacings would be
treated as i.i.d. random variables. The answer we find for the largest spacings is
less complete, since we can only obtain at this point a first-order approximation
which gives the asymptotic size of the largest spacings and not their limit laws. We
believe that the same Poissonian ansatz should work as well for the largest gaps,
but this question is left open. The question of the universality of the behavior of
the extremal spacings is also left open.

Dyson [12] showed that the repulsion between eigenvalues of the Gaussian uni-
tary ensemble (the GUE) could be described asymptotically in terms of the deter-
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minantal point process associated with the sine kernel

K(x,y) = 1

π

sin(x − y)

x − y
.

For this limiting determinantal point process, the probability of having no eigen-
value in an interval of size s is known to be the Fredholm determinant det(Id −
K(0,s)), where K(0,s) is the convolution operator acting on L2(0, s) with ker-
nel K . The density of the spacing between two successive points is then given
by (see [25])

p2(s) = ∂ss det
(
Id − K(0,s)

)
.

This spacing distribution was shown to appear in a number-theoretic context: some
statistics produced by Odlyzko [27] presented a correspondence between the his-
togram of normalized gaps between zeros of the Riemann zeta function and p2(s).
This gave further evidence for the analogy discovered by Dyson and Montgomery:
they realized that the local dependence of the zeros of ζ , previously calculated by
Montgomery, involved the sine kernel; see [21, 22] for an historical account and
other steps of this fruitful analogy. At the same mean or typical gap scale, a precise
analysis of the joint distribution of the gaps between eigenvalues was performed
by Katz and Sarnak [21] and Soshnikov [29] for the Circular Unitary Ensemble
(the CUE).

Less attention was paid to eigenvalues statistics at smaller and larger scales.
This paper concerns the extreme gaps. This study was initiated by Vinson [34]: he
showed that the smallest gap between elements of the CUE, multiplied by n4/3,
converges in law to a random variable with distribution function e−x3

, as the size
n of the unitary matrix increases. In his thesis, similar results for the smallest gap
between eigenvalues of a generalization of the GUE were obtained. Vinson also
gives interesting heuristics suggesting that the largest gap between CUE eigenval-
ues should be of order

√
logn/n, with Poissonian fluctuations around this limit.

Using a different technique, Soshnikov [31] investigated the smallest gaps for de-
terminantal point processes on the real line, with a translation invariant kernel:
amongst points included in [0,L], this extreme spacing multiplied by L1/3 con-
verges weakly to the distribution with distribution function e−x3

, as L → ∞.
Heuristically, the above extreme gaps asymptotics can be obtained using the

known asymptotics [12, 25] of the spacing distribution

p2(s) ∼
s→0

π2

3
s2, logp2(s) ∼

s→∞−s2

8
,

and treating the gaps as independent random variables. The difficulty in obtain-
ing rigorous results lies in showing that this Poissonian ansatz is asymptotically
correct for the extreme gaps, and in making the above estimates uniform in the
dimension n.
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We first consider the joint law of the smallest gaps (Theorem 1.1, Corollary 1.2)
between eigenvalues of unitary matrices. This relies both on Soshnikov’s method
and a convergence of the process of small gaps to a Poisson point process. The
same reasoning equally applies to the small gaps between eigenvalues from the
Gaussian unitary ensemble (Theorem 1.4, Corollary 1.5). The proofs of the small
spacings asymptotics are in Section 2.

The first-order asymptotics of the largest gaps is then proved. Concerning uni-
tary random matrices (Theorem 1.3), this makes use of two important tools. A key
ingredient, by Deift et al. [7], is the uniform asymptotics about the probability
for a given arc of the circle to be free of eigenvalues. The proof also requires the
negative correlation property for the event that two disjoint arcs are free of eige-
nangles. On account of the GUE (Theorem 1.7), we also make a essential use of
the negative correlation, and the large gap probability is evaluated by comparing
the GUE Fredholm determinant with the unitary one. These large gaps asymptotics
are proved in Section 3.

The extreme spacings between random eigenvalues are important quantities for
statistical physics, computational mathematics and number theory. For this reason,
Diaconis [11] mentions the open question of maximal spacings, answered in The-
orem 1.3. After making our results explicit, successively for unitary matrices and
the GUE ensemble, we give applications of our extremal spacings statistics at the
end of this Introduction.

1.1. The unitary group. Let un, a Haar-distributed (measure μU(n)) unitary
matrix over C

n. Suppose un has eigenvalues eiθk ’s, with ordered eigenangles 0 <

θ1 < · · · < θn < 2π . Consider the point process on R
2,

χ(n) =
n∑

i=1

δ(n4/3(θi+1−θi),θi )
.

Our first result is about the convergence of χ(n) to a Poisson point process, thanks
to this normalization by n−4/3.

THEOREM 1.1. Suppose un ∼ μU(n). As n → ∞, the process χ(n) converges
to a Poisson point process χ with intensity

Eχ(A × I ) =
(

1

24π

∫
A

u2 du

)(∫
I

du

2π

)

for any bounded Borel sets A ⊂ R
+ and I ⊂ (0,2π).

The intensity is proportional to
∫
I du because of the rotational invariance of

the Haar measure. The corresponding factor will be less trivial in the case of the
GUE ensemble. Our method to prove Theorem 1.1 relies on the s-modified ran-
dom point field technique initiated by Soshnikov [29, 31]: one can calculate the



EXTREME GAPS BETWEEN EIGENVALUES OF RANDOM MATRICES 2651

correlation functions of the process obtained by keeping only the θk’s, for which
θk + An−4/3 contains exactly one other eigenvalue. Contrary to [29, 31], we do
not use the notion of cluster functions, because we characterize the convergence
to Poisson random variables, thanks to the convergence of the factorial moments;
this allows us also to consider easily nontranslation invariant kernels, like in the
GUE case. Moreover, Theorem 1.1 gives information about the joint distribution
of the number of gaps taking values in disjoint intervals (convergence in terms of
point processes). In particular we can compute the limiting joint law of the smallest
gaps.

Let t
(n)
1 < · · · < t

(n)
k be the k smallest eigenangles gaps [i.e., of the form |θi+1 −

θi |, where the indexes are modulo n and |θi+1 − θi | ∈ (−π,π)]. For the sake of
brevity, write

τ
(n)
k = (72π)−1/3t

(n)
k .

The limiting joint law of the τk’s is a corollary of Theorem 1.1.

COROLLARY 1.2. For any 0 ≤ x1 < y1 < · · · < xk < yk , under the Haar mea-
sure on U(n),

P
(
x	 < n4/3τ

(n)
	 < y	,1 ≤ 	 ≤ k

) −→
n→∞(e−x3

k − e−y3
k )

k−1∏
	=1

(y3
	 − x3

	 ).(1.1)

In particular, the kth smallest normalized space n4/3τ
(n)
k converges in law to τk ,

with density

P(τk ∈ dx) = 3

(k − 1)!x
3k−1e−x3

dx.

Note that this result, for k = 1, is proved in Vinson’s thesis [34] by a different
method: he characterizes the number of small gaps as a symmetric function of
the eigenvalues, and computes its moments. It is not clear how his method can be
extended to provide the joint law of the k smallest gaps.

We now turn to our next question about extreme gaps, that is, the asymptotic
behavior of the largest gaps, which were guessed by Vinson, based on the sup-
posed asymptotic independence of distant gaps. We obtain, thanks to the precise
asymptotics of one gap probability, obtained by the steepest descent method for
Riemann Hilbert problems in [7], and the negative association property of deter-
minantal point processes; see, for example, [4]. Note that both results are posterior
to Vinson’s thesis.

Consider T (n)
1 > T (n)

2 > · · · the largest gaps between successive eigenangles of
u ∼ μU(n), that is, of the form |θi+1 − θi |, where the indexes are modulo n and
|θi+1 − θi | ∈ (−π,π). Then, as n goes to infinity, the largest gap converges in Lp

to a constant, for any p > 0,
n√

32 logn
T (n)

1
Lp−→ 1.
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Actually the above limit holds for all the 	n largest gaps if 	n is subpolynomial.

THEOREM 1.3. Let 	n = no(1) be positive integers. Then for any p > 0,
n√

32 logn
T (n)

	n

Lp−→ 1

as n → ∞.2

Note that, for independent uniform eigenangles on the unit circle, the largest
gap is of order (logn)/n, more than in the above theorem, as expected from the
repulsion of the eigenvalues in the determinantal case.

1.2. The Gaussian unitary ensemble. Similar results hold for the GUE. For
this ensemble, the distribution of the eigenvalues has density

1

Zn

e−n
∑n

i=1 λ2
i /2

∏
1≤i<j≤n

|λi − λj |2(1.2)

with respect to the Lebesgue product measure, on the simplex λ1 < · · · < λn. The
empirical spectral distribution 1

n

∑
δλi

converges in probability to the semicircle
law (see, e.g., [1])

ρsc(x) = 1

2π

√
(4 − x2)+.

Like for the unitary group, we first consider the smallest gaps, studying the point
process

χ̃ (n) =
n−1∑
i=1

δ(n4/3(λi+1−λi),λi)
1|λi |<2−ε0

for any arbitrarily small fixed ε0 > 0 (this is a technical restriction allowing the use
of the Plancherel–Rotach asymptotics of the Hermite polynomials).

THEOREM 1.4. As n → ∞, the process χ̃ (n) converges to a Poisson point χ̃

process with intensity

Eχ̃ (A × I ) =
(

1

48π2

∫
A

u2 du

)(∫
I
(4 − x2)2 dx

)

for any bounded Borel sets A ⊂ R+ and I ⊂ (−2 + ε0,2 − ε0).

2A detailed analysis of the proof gives a speed of convergence: for example, one can show that for
any sequence an = o(1),

(logn)an

(
n√

32 logn
T (n)

1 − 1
)

Lp−→ 0.

The problem of the exact fluctuations will be addressed in a future work.
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The following corollary about the smallest gaps is an easy consequence of the
previous theorem. As for the unitary group, introduce t̃

(n)
1 < · · · < t̃

(n)
k the k nearest

spacings in I , that is, of the form λi+1 − λi , 1 ≤ i ≤ n − 1, with λi ∈ I , I = [a, b],
−2 < a < b < 2. Let

τ̃
(n)
k =

(∫
I
(4 − x2)2 dx

/
(144π2)

)1/3

t̃
(n)
k .

COROLLARY 1.5. For any 0 ≤ x1 < y1 < · · · < xk < yk , with the above nota-
tions and for the GUE ensemble measure (1.2),

P
(
x	 < n4/3τ̃

(n)
	 < y	,1 ≤ 	 ≤ k

) −→
n→∞(e−x3

k − e−y3
k )

k−1∏
	=1

(y3
	 − x3

	 ).

In particular, the kth smallest normalized space n4/3τ̃
(n)
k converges in law to τk ,

with density

P(τk ∈ dx) = 3

(k − 1)!x
3k−1e−x3

dx.

COROLLARY 1.6. Let inf be the index of the smallest gap between eigenvalues
of the GUE in a compact subset I ⊂ (−2,2) with nonempty interior

λ
(n)
inf+1 − λ

(n)
inf = inf

{
λ

(n)
i+1 − λ

(n)
i |λ(n)

i ∈ I
}
.

As n → ∞, λ
(n)
inf converges weakly to the probability measure with density propor-

tional to

(4 − x2)21x∈I .

We now turn to the largest gaps for the GUE ensemble. The result is completely
different inside the bulk and on the edge. Indeed, for eigenvalues strictly inside the
support of the limiting measure, the maximal spacings have order

√
logn/n (see

the following Theorem 1.7), while the eigenvalues on the border have an average
distance of higher order, n−2/3: for any k,

n2/3(λn − 2, . . . , λn−k − 2)

converges weakly as n → ∞ to a multivariate Tracy–Widom distribution; see, for
example, [1]. Strictly inside the bulk, the result is analogous to the circular case, the
only difference being the normalization, due to the average density of eigenvalues.
Let T̃ (n)

1 > T̃ (n)
2 > · · · be the largest gaps of type λi+1 − λi with λi ∈ I , a compact

subset of (−2,2) with nonempty interior.

THEOREM 1.7. Let 	n = no(1) be positive integers. Then for any p > 0,(
inf
x∈I

√
4 − x2

) n√
32 logn

T̃ (n)
	n

Lp−→ 1.
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1.3. The ζ zeros. When seen in a window of size proportional to the average
gap, the spacings between the zeros of Dirichlet L-functions are distributed like
particles of a determinantal point process with sine kernel; this is the Montgomery–
Odlyzko law [26]. Here we want to discuss the accuracy of this analogy when
looking at rare events, the extreme gaps between the zeta zeros, relying on Theo-
rems 1.1 and 1.3.

Due to the availability of many numerical data, we focus on the Riemann zeta
function ζ(s) = ∑∞

n=1 1/ns (Re(s) > 1), which admits an analytic continuation
to C − {1}. Let 1/2 ± itk be the nontrivial zeta zeros, γi = Re(ti), with 0 < γ1 ≤
γ2 ≤ · · · . Then

γ̃i = γi+1 − γi

2π
log

(
γi

2π

)

has an average value 1. The quantity

λ = lim sup
i→∞

γ̃i

has been widely studied. Conditionally to the generalized Riemann hypothesis, the
best known result is λ > 3.0155 [5]. From the GUE hypothesis for the zeta zeros,
it is expected that λ = ∞. However, to the best of our knowledge, more precise
conjectures about the growth speed of large gaps between zeta zeros were not
proposed. From Theorem 1.3, amongst n successive gaps with fermionic repulsion,
the maximal gap has size about

√
32 logn/(2π) times the average gap, suggesting

sup
m≤k≤m+n

γ̃i ∼
n→∞

√
32 logn

2π
,

in particular

lim sup
i→∞

√
logγi

32
(γi+1 − γi) = 1.

Odlyzko’s numerical data [27] give 3.303 for the maximal value of γ̃i , 1 ≤ i ≤ n =
106, while

√
32 logn

2π
= 3.346, giving a difference of 1% with the observed gaps.

Further tests can be performed at distinct heights along the critical axis, thanks to
numerical data of Gourdon [17]: he computed n = 2× 109 successive zeta zeros at
height 10k along the critical axis for each k ∈ [[13,24]]. The extreme normalized
gaps are given on the joint Figure 1, where the expectation from our random ma-

trices result is the straight line
√

32 logn
2π

= 4.166. For example, amongst the 2×109

gaps following the height 1024, sup γ̃i = 4.158, that is, a difference of 0.2% with
the expected value.

Concerning the smallest gaps, does the Poisson intensity 1
24π

u2 du from Theo-
rem 1.1 appear in the context of the zeta zeros? Note θ̃i = n(θi+1 − θi)/(2π) the
normalized gaps. We know that, as n → ∞, the set of gaps {2πn1/3θ̃i ,1 ≤ i ≤ n}
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FIG. 1. Large gaps between the zeta zeros.

converges weakly to a Poisson point process with intensity 1
24π

u2 du. We therefore
expect that, as n → ∞,

2πn1/3{γ̃i ,1 ≤ i ≤ n}
converges to a Poisson point process with the same intensity. The joint Figure 2
gives the histogram of the 3000 smallest gaps, normalized as previously, amongst
the n = 1013 first zeta zeros, based again on numerical data from [17]. More pre-
cisely, the histogram gives the 3000 smallest values of 2π1013/3{γ̃i ,1 ≤ i ≤ 1013}.
The straight line is the function 5 × 1

24π
u2 (the step of the histogram is 5). This

presents a good relevance of the GUE hypothesis for the Riemann zeta function,
even at the scale of rare events, here the extreme spacings.

1.4. Diagonalization speed with the Toda flow. The most classical method to
diagonalize a matrix is the well-known QR algorithm. In the case of Hermitian
matrices, an alternative approach was proposed by Deift et al. [9],3 based on the
isospectral property of the Toda flow. More precisely, given a n × n Hermitian

FIG. 2. Small gaps between the zeta zeros.

3Their approach is enounced for symmetric matrices, and naturally extends to the Hermitian case.
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matrix M , the first step is to reduce it in a tridiagonal form T (which is a robust
and fast operation), conjugating with successive Householder reflections,

T =

⎡
⎢⎢⎢⎣

a1 b1

b1 a2
. . .

. . .
. . . bn−1

bn−1 an

⎤
⎥⎥⎥⎦ ,

keeping the same spectrum as M . After such a tridiagonalization, the ai and bi ’s
are real. The above matrix is important in the analysis of the Toda lattice: Flaschka,
Hénon and Manakov proved independently in the 1970s that the following evolu-
tion of n particles on a line (x0 = −∞, xn+1 = +∞, 1 ≤ k ≤ n),

ẍk = exk−1−xk − exk−xk+1

is an integrable system. More precisely, after the change of variables{
ai = −ẋi/2,

bi = 1
2e(xi−xi+1)/2,

the differential equation takes the Lax pair form

dT

dt
= ST − T S,

where

S =

⎡
⎢⎢⎢⎣

0 b1

−b1 0
. . .

. . .
. . . bn−1

−bn−1 0

⎤
⎥⎥⎥⎦ .

In particular and importantly, the spectrum of T (t) does not depend on time.
Moser proved that ẋk(t) = λk + o(1), xk(t) = λkt + μk + o(1) as t → ∞, with
λ1 < · · · < λn. This implies that bk(t) converges to 0, hence T converges to a di-
agonal matrix, whose entries give the eigenvalues of M = T (0). Deift [6] asked
about the speed of convergence of the Toda flow till its equilibrium. More pre-
cisely, for a given ε > 0, what is the necessary time t such that bk(t) < ε for all
1 ≤ k ≤ n − 1? As

bk(t) = e(1/2)(λk−λk+1)t+(1/2)(μk−μk+1)+o(1),

the speed of convergence to the spectrum is governed by the minimal gap between
eigenvalues. A good choice for a typical Hermitian matrix is a matrix from the
GUE, with independent (up to symmetry) complex Gaussian entries (of variance 2
on the diagonal, 1 elsewhere). From Corollary 1.5, the minimal gap for such ma-
trices is of order

√
nn−4/3 = n−5/6.
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For a given required precision ε, the Toda flow time necessary to evaluate the
eigenvalues is expected to grow as n5/6 with the dimension.4

2. Small gaps.

2.1. Convergence to Poisson point processes. We first review some results
about convergence of processes, here with values in R

2 and a finite number of
atoms. A point process χ(n) = ∑kn

i=1 δXi,n
is said to converge in distribution to

χ = ∑
i δXi

is, for any bounded continuous function f ,

χ(n)(f ) =
kn∑

i=1

f (Xi,n)
law−→ ∑

i

f (Xi).

To show the convergence of χ(n) to a Poisson point process χ , we only need to
show the convergence in law of χ(n)(A, I ) to χ(A, I) for all bounded intervals A

and I , the independence for disjoint A× I ’s being an automatic consequence: this
is a very practical property of Poisson point processes, detailed in Proposition 2.1
below. Moreover, the convergence of χ(n)(A, I ) will be shown, thanks to the con-
vergence of the factorial moments to those of a Poisson random variable. This is
particularly adapted to our situation because, as we will see, the correlation func-
tions of point processes are defined through factorial moments and are explicit in
the case of determinantal point processes.

Note that this is the same technique employed in [3], where the following result
is given, in the case of point processes with values in R.

PROPOSITION 2.1. Let χ(n) = ∑kn

i=1 δXi,n
be a sequence of point processes

on R
2, and χ a Poisson point process on R

2 with intensity μ having no atoms (and
σ -finite). Assume that for any bounded intervals A and I and all positive integers
k ≥ 1,

lim
n→∞ E

(
χ(n)(A × I )!

(χ(n)(A × I ) − k)!
)

= μ(A × I )k.(2.1)

Then the sequence of point processes χ(n) converges in distribution to χ .

PROOF. We need to check the three conditions of the following Theorem 2.2
by Kallenberg, which is written here in the specific case S = R

2, U and J the
set of compact rectangles A × I (A and I intervals), with the notation from [20].
Conditions (1), (2) and (3) will be verified if

χ(n)(A × I )
law−→ χ(A × I ).(2.2)

4Note that more precise estimates would need the asymptotics of μk − μk+1 as a function of n.
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Indeed, if (2.2) holds, for any t ,

lim
n→∞ P

(
χ(n)(A × I ) > t

) = P
(
χ(A × I ) > t

)
,

and as χ(A×I ) is almost surely finite, this goes to 0 as t → ∞ (is is a consequence
of the dominated convergence theorem); this proves part (1). Equations (2) and (3)
are also consequences of the above convergence in law.

To prove (2.2), as χ(A × I ) is a Poisson random variable, the convergence of
all the moments is sufficient. A moment is a finite linear combination of factorial
moments, which concludes the proof. �

THEOREM 2.2 (Kallenberg [20]). Let χ be a point process on R
2, and as-

sume χ is almost surely simple (i.e., the atoms of the measure χ all have weight 1
almost surely). Then χ(n) converges weakly to χ if and only if the three following
conditions are satisfied for any compact intervals A and I in R:

(1) limt→∞ limn→∞ P(χ(n)(A × I ) > t) = 0;
(2) limn→∞ P(χ(n)(A × I ) = 0) = P(χ(A × I ) = 0);
(3) lim supn→∞ P(χ(n)(A × I ) > 1) ≤ P(χ(A × I ) > 1).

2.2. Correlation functions. References for the main properties of correlation
functions of determinantal point processes are [19] and [30]. We follow this last
survey to present the notions used in the following. If χ = ∑

i δXi
is a simple point

process on a complete separate metric space �, consider the point process

�(k) = ∑
Xi1 ,...,Xik

all distinct

δ(Xi1 ,...,Xik
)(2.3)

on �k . One can define this way a measure Mk on �k by

M(k)(A) = E
(
�(k)(A)

)
for any Borel set A in �k . Most of the time, there is a natural measure λ on �, in
our cases � = R or (0,2π), and λ is the Lebesgue measure. If M(k) is absolutely
continuous with respect to λk , there exists a function ρk on �k such that for any
Borel sets B1, . . . ,Bk in �

M(k)(B1 × · · · × Bk) =
∫
B1×···×Bk

ρk(x1, . . . , xk)dλ(x1) · · ·dλ(xk).

Hence one can think about ρk(x1, . . . , xk) as the asymptotic (normalized) probabil-
ity of having exactly one particle in neighborhoods of the xk’s. More precisely, un-
der suitable smoothness assumptions, and for distinct points x1, . . . , xk in � = R,

ρk(x1, . . . , xk) = lim
ε→0

1∏k
j=1 λ(xj , xj + ε)

P
(
χ(xi, xi + ε) = 1,1 ≤ i ≤ k

)
.
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Note that ρk is not a probability density. Moreover, specifically, if B1, . . . ,B	 are
disjoint in � and n1 + · · · + n	 = k,

M(k)(B
n1
1 × · · · × B

n	

	 ) = E

(
	∏

i=1

(χ(Bi))!
(χ(Bi) − ni)!

)
;

see [19] for a proof. In particular,

M(k)(Bk) = E

(
(χ(B))!

(χ(B) − k)!
)

=
∫
Bk

ρk(x1, . . . , xk)dλ(x1) · · ·dλ(xk).(2.4)

Note the analogy with formula (2.1) we want to prove. For unitary matrices or
the GUE ensemble, our method to prove convergence of small spacings counting
measures is the same:

• For given compact intervals A and I , consider the modified process obtained
from ξ (n) = ∑

δXi,n
by keeping only the points Xi,n in I such that χ(n)(Xi,n +

An−4/3) = 1.
• Show that the correlation function ρ̃

(n)
k (x1, . . . , xn) of this new process uni-

formly converges to μ(A × I )k . This is possible, thanks to the determinantal
aspect of ξ (n) and the Hadamard–Fischer inequality, Lemma 2.3.

• Conclude that the factorial moments converge to those of the expected Poisson
random variables, thanks to (2.1) and (2.4).

For the smallest gaps asymptotics, the following inequality will be repeatedly
used. A concise proof can be found in [18].

LEMMA 2.3. Let M be a positive-definite n × n (Hermitian) matrix. For any
ω ⊂ [[1, n]], let Mω (resp., Mω) be the submatrix of M using rows and columns
numbered in ω (resp., [[1, n]]/ω). Then

det(M) ≤ det(Mω)det(Mω).

2.3. The unitary group. We begin with the proof of Theorem 1.1. We know
that for a unitary matrix un ∼ μU(n), the density of the eigenangles 0 ≤ θ1 < · · · <
θn < 2π , with respect to the Lebesgue measure on the corresponding simplex is

1

(2π)n

∏
j<k

|eiθj − eiθk |2.

Moreover, a remarkable fact about the point process
∑

δeiθk is that it is determi-

nantal: all its correlation functions ρ
U(n)
k , 1 ≤ k ≤ n, are determinants based on the

same kernel,

ρ
U(n)
k (θ1, . . . , θn) = det

k×k

(
KU(n)(θi − θj )

)
, KU(n)(θ) = 1

2π

sin(nθ/2)

sin(θ/2)
.



2660 G. BEN AROUS AND PAUL BOURGADE

This classical property relies on Gaudin’s lemma; see [25]. In the following, for
any bounded interval A ⊂ R

+, we write An = n−4/3A. We want to show that for
an interval I ⊂ (0,2π),

χ(n)(A × I )
law−→ Po(λ)

with λ = ( 1
48π2

∫
A u2 du)(

∫
I du). We consider the point process

ξ (n) =
n∑

i=1

δθi

and its thinning ξ̃ (n) obtained from ξ (n) by only keeping the eigenangles θk for
which ξ (n)(θk +An) = 1. The following lemma means that χ(n)(A×I ) is properly
estimated by ξ̃ (n)(I ). It is analogous to Lemma 3 in [31].

LEMMA 2.4 (No successive small neighbors). For any interval I ⊂ (0,2π),

as n → ∞, χ(n)(A × I ) − ξ̃ (n)(I )
law−→ 0.

PROOF. Let c be such that A ⊂ (0, c), and cn = cn−4/3. If 1θi+1−θi∈An 
=
1ξ (n)(θi+An)=1, then ξ (n)(θi + (0, cn)) ≥ 2. Hence

∣∣χ(n)(A × I ) − ξ̃ (n)(I )
∣∣ ≤ n∑

i=1

1ξ (n)(θi+(0,cn))≥2 ≤ �(3)(A),

where the last inequality comes from the definition (2.3), where A is the set of
points (θ, x1, x2) with θ ∈ (0,2π) and (x1, x2) ∈ (θ, θ + cn)

2. To prove that this
positive random variable converges in law to 0, we consider its expectation∫ 2π

0
dθ

∫
(θ,θ+cn)2

ρ
U(n)
3 (θ, x1, x2)dx1 dx2 = 2π

∫
(0,cn)2

ρ
U(n)
3 (0, x1, x2)dx1 dx2

and show it goes to 0. Thanks to the multilinearity of the determinant,

ρ
U(n)
3 (0, x1, x2)

=
∣∣∣∣∣∣
KU(n)(0) KU(n)(x1) − KU(n)(0) KU(n)(x2) − KU(n)(0)

KU(n)(x1) KU(n)(0) − KU(n)(x1) KU(n)(x1 − x2) − KU(n)(x1)

KU(n)(x2) KU(n)(x1 − x2) − KU(n)(x2) KU(n)(0) − KU(n)(x2)

∣∣∣∣∣∣.
As |KU(n)|∞ = O(n) and |K ′U(n)|∞ = O(n2), the first column of this determinant
is O(n), and the two others are O(n2cn). Thus

ρ
U(n)
3 (0, x1, x2) = O(n7/3).

The integration domain is c2
n = O(n−8/3), concluding the proof. �
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Let ρ̃
U(n)
k (θ1, . . . , θk), k ≥ 0, be the correlation functions of the point pro-

cess ξ̃ (n). If, for any k ≥ 1, the convergence of the factorial moment

E

(
(ξ̃ (n)(I ))!

(ξ̃ (n)(I ) − k)!
)

=
∫
I k

ρ̃
U(n)
k (θ1, . . . , θk)dθ1 · · ·dθk

(2.5)

−→
n→∞

(
1

24π

∫
A

u2 du

)k(∫
I

du

2π

)k

can be shown, then Theorem 1.1 will be proved, thanks to the above Lemma 2.4.
The way to show (2.5) relies on three steps, to apply a simple dominated conver-
gence argument:

• if all θk’s are distinct, ρ̃U(n)
k (θ1, . . . , θk) converges to ( 1

48π2

∫
A u2 du)k as n → ∞

(Lemma 2.5);
• in the set

�U(n) = {(θ1, . . . , θk) ∈ I k : θi /∈ θj + An,1 ≤ i, j ≤ k},(2.6)

ρ̃
U(n)
k (θ1, . . . , θk) is uniformly bounded (Lemma 2.6);

• even if ρ̃
U(n)
k (θ1, . . . , θk) is not uniformly bounded in the complement of �U(n)

in I k (�U(n)), the contribution to the integral is negligible because the volume
of �U(n) decreases sufficiently fast (Lemma 2.7).

LEMMA 2.5 (Simple convergence). Let θ1, . . . , θk be distinct elements in I k .
Then

ρ̃
U(n)
k (θ1, . . . , θk) −→

n→∞

(
1

48π2

∫
A

u2 du

)k

.

PROOF. First note that, as all the θk’s are distinct, for sufficiently large n, the
point (θ1, . . . , θk) is in �U(n); see (2.6). This means that if θ1, . . . , θk are points
of ξ̃ (n), the point in each of the θi + An is not another one of the θj ’s. This makes
the combinatorics easy: the correlation functions of ξ̃ (n) can be explicitly given in
terms of those of ξ (n), as noted in [30], by an inclusion–exclusion argument: for
sufficiently large n,

ρ̃
U(n)
k (θ1, . . . , θk)

=
∞∑

m=0

(−1)m

m!
∫
θ1+An

dx1 · · ·
∫
θk+An

dxk

(2.7)
×

∫
((θ1+An)�···�(θk+An))m

ρ
U(n)
2k+m(θ1, x1, . . . , θk, xk,

y1, . . . , ym)dy1 · · ·dym.
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Note that there is no convergence issue here as ρ
U(n)
2k+m ≡ 0 if 2k + m > n. We

first show that the term corresponding to m = 0 in the above sum gives the ex-
pected asymptotics. The determinantal aspect of the process makes things easy.
ρ

U(n)
2k (θ1, x1, . . . , θk, xk) is a 2k × 2k determinant, and only the terms in the 2 × 2

diagonal blocks make a significant contribution (which leads to the idea of asymp-
totic independence). More precisely, we write formally

ρ
U(n)
2k (θ1, x1, . . . , θk, xk) = det

1≤i,j≤k

(
KU(n)(θi − θj ) KU(n)(θi − xj )

KU(n)(xi − θj ) KU(n)(xi − xj )

)
.

As |xi − θi | = O(n−4/3) and KU(n)(x) = sin(nx/2)/ sin(x/2) if i 
= j all terms of
the corresponding 2 × 2 above matrix are O(1). Moreover, the above determinant
is unchanged by subtracting an odd column to the following even column, and
then by subtracting an odd line to the following even line. In this way, the diagonal
2 × 2 matrices becomes(

KU(n)(0) KU(n)(θi − xi) − KU(n)(0)

KU(n)(xi − θi) − KU(n)(0) 2KU(n)(0) − KU(n)(xi − θi) − KU(n)(θi − xi)

)

=
(

O(n) O(n2/3)

O(n2/3) O(n1/3)

)
,

where the last equality relies on |KU(n)|∞ = O(n), |K ′U(n)|∞ = O(n2) and
|K ′′U(n)|∞ = O(n3). As a consequence, in the expansion of the determinant over
all permutations of S2k , the terms corresponding to entries only in the diagonal
2 × 2 block matrices have order at most n(4/3)k , while all other terms have a
strictly lower order (at most n(4/3)k−(2/3)). As the integration domain of ρ

U(n)
2k is

O(n−(4/3)k), the only permutations hopefully giving a nonzero limit need to come
from the block diagonal 2 × 2 matrices. Indeed they give a nontrivial limit: their
contribution is exactly

k∏
i=1

∫
θi+An

ρ
U(n)
2 (θi, x)dx =

(
1

(2π)2

∫
An

n2
(

1 −
(

sin(nx/2)

n sin(x/2)

)2)
dx

)k

.

A simple change of variable x = n4/3u allows us to conclude, thanks to the easy
limit, uniform on compacts,

1

(2π)2 n2/3
(

1 −
(

sin(n−1/3u/2)

n sin(n−4/3u/2)

)2)
−→
n→∞

1

48π2 u2.

Our last task is to show that in the limit (2.7) is equivalent to its m = 0 term. By
iterations of the Hadamard–Fisher inequality, Lemma 2.3,

ρ
U(n)
2k+m(θ1, x1, . . . , θk, xk, y1, . . . , ym) ≤ ρ

U(n)
2k (θ1, x1, . . . , θk, xk)

m∏
i=1

ρ
U(n)
1 (yi).
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The contribution of all terms with m ≥ 1 in (2.7) is therefore bounded by(∫
θ1+An

dx1 · · ·
∫
θk+An

dxk ρ
U(n)
2k (θ1, x1, . . . , θk, xk)

) ∑
m≥1

1

m!
(∫

an

ρ
U(n)
1 (y)

)m

,

where the integration domain an = (θ1 + An) � · · · � (θk + An) has size O(n−4/3)

and ρ
U(n)
1 (y) = n. The first term of the above product converges, as previously

proved (it corresponds to m = 0), so the whole term goes to 0 as n → ∞, conclud-
ing the proof. �

LEMMA 2.6 (Uniform boundness). There is a constant c depending only on
A such that, for any n ≥ 1 and (θ1, . . . , θk) ∈ �U(n) [see (2.6)],

ρ̃
U(n)
k (θ1, . . . , θk) < c.

PROOF. As previously mentioned, formula (2.7) is true whenever, for all dis-
tinct i and j , θj /∈ θi + An, that is, (θ1, . . . , θn) is in �U(n). Using the Hadamard–

Fisher inequality as in the proof of the previous lemma, ρ̃
U(n)
k (θ1, . . . , θk) is there-

fore bounded by(∫
θ1+An

dx1 · · ·
∫
θk+An

dxk ρ
U(n)
2k (θ1, x1, . . . , θk, xk)

) ∑
m≥0

1

m!
(∫

an

ρ
U(n)
1 (y)

)m

with an = (θ1 +An)�· · ·�(θk +An). Once again, the Hadamard–Fisher inequality
gives

ρ
U(n)
2k (θ1, x1, . . . , θk, xk) ≤

k∏
i=1

ρ
U(n)
2 (θi, xi).

This gives the upper bound, uniform in (θ1, . . . , θn) ∈ �U(n),(∫
An

ρ
U(n)
2 (0, x)dx

)k ∑
m≥0

1

m!
(∫

an

ρ
U(n)
1 (y)

)m

converging to (
1

48π2

∫
A

u2 du

)k

as previously seen. �

REMARK. A better upper bound in the previous proof can be obtained as fol-
lows. By a direct ensembles argument, ρ̃

U(n)
k (θ1, . . . , θk) is bounded by∫

θ1+An

dx1 · · ·
∫
θk+An

dxk ρ
U(n)
2k (θ1, x1, . . . , θk, xk).
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FIG. 3. Maximal clusters.

This also comes from the fact that the inclusion–exclusion series (2.7) is al-
ternate. We know by Fisher–Hadamard that this upper bound is lower than
(
∫
An

ρ
U(n)
2 (0, x)dx)k , which is interpreted as follows: ρ̃

U(n)
k converges to its limit

from below, which is a sign of repulsion before the asymptotic independence.

LEMMA 2.7 (Negligible set). Let �U(n) be the complement of �U(n) in I k ;
see (2.6). Then ∫

�U(n)
ρ̃

U(n)
k (θ1, . . . , θk)dθ1 · · ·dθk −→

n→∞ 0.

PROOF. Let (θ1, . . . , θk) ∈ �U(n), and note � = {θ1, . . . , θk} the set of these
points. For notational convenience, one can suppose θ1 < · · · < θk . A set of points
θs < · · · < θt is said to be a cluster of � if, for all s ≤ k ≤ t , θk+1 ∈ θk + An. Let
Ext(�) be the set of points which cannot be included in a maximal cluster (see
Figure 3)

Ext(�) = {θi : 1 ≤ i ≤ k, (θi + An) ∩ � = ∅}.
This way we get a partition

� = Ext(�)

	⊔
i=1

Cli ,

where there are 	 maximal clusters Cl1, . . . ,Cl	. Suppose that Ext(�) = {θi1 <

· · · < θip} where p = |Ext(�)|. Then the following obvious bound holds:

ρ̃
U(n)
k (θ1, . . . , θk) ≤

∫
θi1+An

dx1 · · ·
∫
θip+An

dxp ρ
U(n)
k+p (θ, . . . , θk, x1, . . . , xp)

≤
	∏

j=1

ρ
U(n)
|Cli | (Cli )

p∏
j=1

∫
θij

+An

ρ
U(n)
2 (θij , xj )dxj ,

where we used the Hadamard–Fisher inequality. This last product of p elements is
bounded, uniformly in (θ1, . . . , θk), as it is equal to the pth power of∫

An

ρ
U(n)
2 (0, x)dx,
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which converges. Concerning the first product, we analyze each term in the fol-
lowing way. For any 1 ≤ t ≤ k − 1, the correlation ρ

U(n)
t is a t × t determi-

nant of KU(n). Suppose that all arguments of ρ
U(n)
t are included in an interval

of size cn. By subtracting the first row from the t − 1 others, one obtains that the
first row is O(n), and the others are O(n2cn) because |K ′U(n)|∞ = O(n2). Hence
ρ

U(n)
t = O(n2t−1ct−1

n ). As a consequence, as all points of a cluster Cli are within
distance O(n−4/3),

ρ
U(n)
|Cli | (Cli ) = O

(
n(2/3)|Cli |+1/3).

This leads to the upper bound

ρ̃
U(n)
k (θ1, . . . , θk) = O

(
n(2/3)(k−p)+	/3).

But the size of the set of points (θ1, . . . , θk) ∈ �U(n) with such a clusters configu-
ration is O(n−(4/3)(k−p)), because there needs to be k − p small gaps [i.e., of size
O(n−4/3)] between successive θk’s. Hence the total contribution of such clusters
to the integral over �U(n) is

O
(
n	/3−(2/3)(k−p)),

which goes top 0 because 	 ≤ k − p (with equality if all clusters have only
one point) and k − p < 2(k − p) [k = p is not possible: this would mean that
(θ1, . . . , θk) /∈ �U(n)]. �

As previously explained, the three above lemmas complete the proof of Theo-
rem 1.1.

PROOF OF COROLLARY 1.2. Note that the events {x	 < n4/3τ
(n)
	 < y	,1 ≤

	 ≤ k} and {
χ(n)((72π)1/3(xk, yk), (0,2π)) ≥ 1,

χ(n)((72π)1/3(x	, y	), (0,2π)) = 1,1 ≤ 	 ≤ k − 1,

χ(n)((72π)1/3(y	−1, x	), (0,2π)) = 0,1 ≤ 	 ≤ k
}

are almost surely the same (y0 = 0). The independence property of the limit Pois-
son point process χ in disjoint subsets therefore yields

P
(
x	 < n4/3τ

(n)
	 < y	,1 ≤ 	 ≤ k

)

−→
n→∞

(
1 − e−(y3

k −x3
k )) k−1∏

	=1

(y3
	 − x3

	 )e−(y3
	−x3

	 )
k∏

	=1

e−(x3
	−y3

	−1),

where we noted that, for any interval (a, b), χ(n)((72π)1/3(a, b), (0,2π)) is a
Poisson random variable with parameter (b3 − a3). A straightforward simplifi-
cation of the above products gives the expected result. Concerning the limiting
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density of n4/3τ
(n)
k , we proceed in two steps. First, from formula (1.1), the joint

density of n4/3(τ
(n)
1 , . . . , τ

(n)
k ) is, in the limit and on the simplex 0 < u1 < · · · < uk ,

proportional to

u2
1u

2
2 · · ·u2

ke
−u3

k .

Consequently,

P(τk < x) = ck

∫ x

0
u2

ke
−u3

k

∫
0<u1<···<uk−1<uk

u2
1u

2
2 · · ·u2

k−1 du1 · · ·duk−1

= ck

∫ x

0
u

2+3(k−1)
k e−u3

k

∫
0<v1<···<vk−1<1

v2
1v2

2 · · ·v2
k−1 dv1 · · ·dvk−1,

so the density of τk is proportional to x3k−1e−x3
. �

2.4. The Gaussian unitary ensemble. The small gaps asymptotics for the GUE
are obtained exactly in the same way as for the unitary group. The only difference
is that the determinantal kernel is not translation invariant anymore, leading to
some complications. More precisely, let (hn) be the Hermite polynomials, more
precisely the successive monic orthogonal polynomials with respect to the Gaus-
sian weight e−x2/2 dx. Following [1], where the following results on the determi-
nantal aspect of the GUE can be found, we introduce the functions

ψk(x) = e−x2/4√√
2πk!

hk(x).

Then the set of points {λ1, . . . , λn} with law (1.2) is a determinantal point process
with kernel (with respect to the Lebesgue measure on R) given by

KGUE(n)(x, y) = n
ψn(x

√
n)ψn−1(y

√
n) − ψn−1(x

√
n)ψn(y

√
n)

x − y

= n3/2
(
ψn−1

(
y
√

n
) ∫ 1

0
ψ ′

n

(
tx

√
n + (1 − t)y

√
n
)

dt(2.8)

− ψn

(
y
√

n
) ∫ 1

0
ψ ′

n−1
(
tx

√
n + (1 − t)y

√
n
)

dt

)
.

We will now discuss why Lemma 2.4 through Lemma 2.7 still hold in the case
of the GUE ensemble, restricted to (−2 + ε0,2 − ε0) for a given ε0 > 0. Note
that the Hadamard–Fischer inequality, an important tool for the proof of all the
following lemmas, still holds for the Gaussian unitary ensemble because the set of
its eigenvalues is a determinantal process.

• We now note

ξ (n) =
n∑

i=1

δλi
1|λi |<2−ε0
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and its thinning ξ̃ (n) obtained from ξ (n) by only keeping the eigenvalues λk

for which ξ (n)(λk + n−4/3A = 1). The absence of successive small gaps,
Lemma 2.4, only requires in its proof that |KGUE(n)|∞ = O(n), |∂xK

GUE(n)|∞ =
O(n2). This is proved in Lemma 2.8.

• The analog of the simple convergence of the correlation function associated to
the thinned point process, Lemma 2.5, is now, for any distinct points λ1, . . . , λk

in (−2 + ε0,2 − ε0),

ρ̃
GUE(n)
k (λ1, . . . , λk) −→

n→∞

(
1

48π2

∫
A

u2 du

)k k∏
i=1

(4 − λ2
i )

2.

The proof, in the same way as the unitary case, requires uniform bounds on the
partial derivatives of the kernel, given in Lemma 2.8, and the asymptotics∫

λi+An

ρ
GUE(n)
2 (λi, x)dx −→

n→∞

(
1

48π2

∫
A

u2 du

)
(4 − λ2

i )
2,

which is a direct consequence of Lemma 2.9.
• The uniform boundness result, Lemma 2.6, only requires the Hadamard–Fischer

inequality, Lemma 2.3, which applies to any determinantal point process.
• Finally, we give the analog of Lemma 2.7 in the following way. Let

�GUE(n) = {(λ1, . . . , λk) ∈ I k :λi /∈ λj + An,1 ≤ i, j ≤ k},
and �GUE(n) be its complement in I k , where I is any Borel set in (−2 + ε0,
2 − ε0). ∫

�GUE(n)
ρ̃

GUE(n)
k (λ1, . . . , λk)dλ1 · · ·dλk −→

n→∞ 0.

The only estimate necessary for this result is that the first-order partial derivative
of the kernel is uniformly O(n), which is one of the estimates of the following
Lemma 2.8.

LEMMA 2.8. Let ε0 > 0. Uniformly for x, y ∈ (−2 + ε0,2 − ε0), KGUE(n)(x,
y) is O(n), the first-order partial derivatives of KGUE(n) are O(n2) and the second-
order ones are O(n3).

Moreover, under the additional condition |x − y| > δ > 0, KGUE(n)(x, y) is
uniformly bounded, by a constant depending only on ε0 and δ.

PROOF. From the Plancherel–Rotach asymptotics for the Hermite polyno-
mials (Theorem 8.22.9 in [32]), for any nonnegative integer k, ψn−k(

√
nx) is

O(1/
√

n), uniformly in x ∈ (−2 + ε0,2 − ε0). Consequently, if |x − y| > δ, from
the first line of (2.8), KGUE(n) is uniformly O(1).

To prove the first assertion of the lemma, we use the stability property of the
functions (ψk) by derivation (see [1], Lemma 3.2.7),

ψ ′
n(x) = −x

2
ψn(x) + √

nψn−1(x).(2.9)
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Injecting this expression of ψ ′
n in the last two lines of (2.8) and using ψn =

O(1/
√

n) yields KGUE(n)(x, y) = O(n) uniformly for x, y ∈ (−2 + ε0,2 − ε0). It-
erating this procedure, any partial derivative of KGUE(n) of order k are nk+2 times
a linear combination of factors of type ψn−i

∫ 1
0 ψn−j , which shows that any partial

derivative of order k is O(nk+1). �

The Plancherel–Rotach asymptotics for Hermite polynomials also yield a pre-
cise evaluation of the correlation functions evaluated at close points, in particular
the following result.

LEMMA 2.9. Let ε0 > 0, c > 0. Then as n → ∞, uniformly in x ∈ (−2 + ε0,
2 − ε0), |u| < cn−4/3,

ρ
GUE(n)
2 (x, x + u) = 1

48π2 n4(4 − x2)2u2 + O(n).

PROOF. The intuition for this result is as follows. From the well-known con-
vergence to the sine kernel,

1

nρsc(x)
KGUE(n)

(
x, x + v

nρsc(x)

)
−→
n→∞

sin (πv)

πv
.

If this convergence is sufficiently uniform, one expects for small u a Taylor expan-
sion

KGUE(n)(x, x + u) ≈ sin (πnρsc(x)u)

πu
≈ nρsc(x) − π2

6
ρsc(x)3n3u2.

Injecting this expansion in

ρ
GUE(n)
2 (x, x + u) = KGUE(n)(x, x)KGUE(n)(x + u,x + u) − KGUE(n)(x, x + u)2

gives the expected result. To justify the accuracy of the sine kernel approximation
for u close to 0, we rely on Corollary 1 in [10] (more general asymptotics in the full
complex plane for, in particular, Hermite polynomials were obtained in [8]): using
the Plancherel–Rotach asymptotics of Hermite polynomials the authors show that5

KGUE(n)(x, y) = 1

2π
√

sinω sin θ

sin(n(aθ − aω))

sin(ω − θ)
+ O(1)

uniformly for x, y in (−2 + ε0,2 − ε0) where x = 2 cosω, y = 2 cos θ , 0 ≤ θ ,
ω ≤ π , aω = sin(2ω) − 2ω, aθ = sin(2θ) − 2θ . As aθ − aω = 2(ω − θ) sin2 θ +

5Note that the normalization in [10] is different, as their semicircle law is supported on
(−√

n,
√

n).



EXTREME GAPS BETWEEN EIGENVALUES OF RANDOM MATRICES 2669

O((ω − θ)2) and ω − θ = (y − x)/
√

4 − x2 + O((x − y)2), a simple expansion
yields

1

ρsc(x)
KGUE(n)(x, y)

= 1

2π2ρsc(x)
√

ρsc(x)ρsc(y)
(2.10)

× sin(2n(ω − θ) sin2 θ + O(n(ω − θ)2))

sin((x − y)/
√

4 − y2 + O((x − y)2))
+ O(1)

= sin(nπ(x − y)ρsc(x) + O(n(x − y)2))

π(x − y)ρsc(x) + O((x − y)2)
+ O(1).

For x − y = O(n−4/3), this implies

1

ρsc(x)
KGUE(n)(x, y) = n − 1

6
n3π2(x − y)2ρsc(x)3 + O(1)

and the expected result for ρ
GUE(n)
2 (x, x + u). �

The above discussion completes the proof of Theorem 1.4. Its Corollary 1.5
follows exactly in the same way as Corollary 1.2 from Theorem 1.1.

Corollary 1.6 is a straightforward consequence of the scission of the limiting
Lévy measure: if χ̃ = {(aj , bj )} is a Poisson point process with measure Eχ̃(A ×
B) = μ1(A)μ2(B), conditionally to the bk’s the ak’s are distributed independently
of each other, independently of the bk’s, as a Poisson point process with intensity
proportional to μ1. In particular, in our situation, the abscissa associated to the
minimal ordinate is distributed with density proportional to

(4 − x2)2.

3. Large gaps.

3.1. The unitary group: Asymptotics of Toeplitz determinants. To evaluate the
extreme gaps, we first investigate the queuing distribution of one given spacing.
A large part of the literature concerns the probability of having no eigenvalues in
a given interval (e.g., [12, 35]). A rigorous derivation of the queuing distribution
for the large gaps was only given recently, thanks to the steepest descent method
for Riemann–Hilbert problems [7, 23] or by operator theory tools for Toeplitz
determinants [13].

The link with the nearest neighbor distribution is given by the following lemma,
explained in [25], Appendix A.8.
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LEMMA 3.1. Let u ∼ μU(n), with eigenangles 0 ≤ θ1 < · · · < θn < 2π , and
ξ (n) = ∑n

i=1 δθi
. Then

nP(θ2 − θ1 > x) = − d

dx
P
(
ξ (n)(0, x) = 0

)
.

Moreover, the probability of having no eigenvalues in an arc of size 2α is equal
to the Toeplitz determinant (this is a consequence of Heine’s formula)

Dn(α) = det
1≤j,k≤n

(
1

2π

∫ 2π−α

α
ei(j−k)θ dθ

)
.

All the asymptotics we need in the following are direct consequences of the
precise analysis of Dn(α) given by Deift et al. [7] and Krasovsky [23]. More pre-
cisely they prove that for some sufficiently large s0 and any ε > 0, uniformly in
s0/n < α < π − ε,

logDn(α) = n2 log cos
α

2
− 1

4
log

(
n sin

α

2

)
+ c0 + O

(
1

n sin(α/2)

)
,(3.1)

d

dα
logDn(α) = −n2

2
tan

α

2
− 1

8
cot

α

2
+ O

(
1

n sin2(α/2)

)
(3.2)

for an explicit constant c0, which remained conjectural for 20 years. From this, we
can give upper bounds on nP(θ2 − θ1 > u), the expectation of the number of gaps
greater than u.

LEMMA 3.2. Given any a > 0 and ε > 0, uniformly in u ∈ (a
√

logn/n, 2π −
ε), as n → ∞

nP(θ2 − θ1 > u) ≤ un2+o(1)e−n2u2/32.

PROOF. From Lemma 3.1,

nP(θ2 − θ1 > u) = −1

2

d

dα
Dn(α) = −1

2

(
d

dα
logDn(α)

)
Dn(α)

evaluated for u = 2α. The first term is evaluated thanks to (3.2): it is O(un2+o(1))

uniformly in (a
√

logn/n,π − ε). Concerning the second term, (3.1) and the in-
equality log cosx ≤ −x2/2 on [0, π/2) imply that it is e−n2α2/8no(1), completing
the proof. �

Note that substituting u = 2α =
√

λ logn
n

in the asymptotics (3.1) and (3.2) yields

nP(θ2 − θ1 > u) = n1−λ/32+o(1),(3.3)

where the o(1) terms are uniform in λ ∈ [a, b], for any given positive a and b.

Hence, if λ > 32, the expected number of gaps greater than
√

λ logn
n

goes to 0. If
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λ < 32, this goes to ∞. The transition in the number of large gaps at λ = 32 is a
strong clue for Theorem 1.3, but it is not sufficient: concluding the proof requires
additional knowledge about the correlations between gaps, Lemma 3.8, assumed
for the moment. Take p > 0. We denote

Xn = n√
32 logn

T (n)
	n

,

where 	n = no(1). To prove that Xn − 1 converges to 0 in Lp , we pick some arbi-
trarily small ε > 0, bound E(|Xn − 1|p11−ε<Xn<1+ε) by εp , and we need to prove
that both of the following terms converge to 0:

E(|Xn − 1|p1Xn<1−ε) ≤ P(Xn < 1 − ε),

E(|Xn − 1|p1Xn>1+ε) ≤ E
(|Xn − 1|p1

Xn>1+ε,T (n)
1 <π/2

)
(3.4)

+
(

2πn√
32 logn

)p

P
(

T (n)
1 > π/2

)
(here the value π/2 is arbitrary, any angle strictly smaller than π would be ap-
propriate for this proof). First, decompose the unit circle into 8 fixed angles of
size π/4. If T (n)

1 > π/2, one of these arcs is free of eigenvalues. From (3.1), the
probability of this event decreases exponentially, so (3.4) converges to 0.

Moreover, integrating by parts,

E
(|Xn − 1|p1

Xn>1+ε,T (n)
1 <π/2

)

=
∫ ∞

1+ε
p(u − 1)p−1

P
(
Xn > u, T (n)

1 < π/2
)

du

+ pεp−1
P
(
Xn > 1 + ε, T (n)

1 < π/2
)

≤
∫ (n/

√
32 logn)(π/2)

1+ε
p(u − 1)p−1

P(Xn > u)du + pεp−1
P(Xn > 1 + ε),

because Xn needs to be shorter than n√
32 logn

T (n)
1 . The probability that Xn is

greater than u is obviously shorter than nP(θ2 − θ1 > u
√

32 logn/n), the expecta-
tion of the number of gaps greater than u

√
32 logn/n. Hence the above quantity

goes to 0 thanks to the uniform estimate of Lemma 3.2.
Finally, showing that P(Xn < 1 − ε) → 0 requires an additional argument, the

negative correlation property for empty sets events, Lemma 3.8. In particular, this
negative correlation implies the following result.

LEMMA 3.3. Consider a set of disjoint arcs on the unit circle. Let Mn be
the number of such intervals free of eigenangles, that is, those Ik’s such that
ξ (n)(Ik) = 0. Then Var(Mn) ≤ E(Mn).
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PROOF. This is a straightforward consequence of Lemma 3.8: as ξ (n) is a de-
terminantal point process, for disjoints I and J , P(ξ (n)(I ∪J ) = 0) ≤ P(ξ (n)(Ij ) =
0)P(ξ (n)(Ik) = 0). Hence, noting mn the number of initial arcs,

E(M2
n) = ∑

1≤j,k≤mn

P
(
ξ (n)(Ij ∪ Ik) = 0

)

≤ 2
∑

1≤j<k≤mn

P
(
ξ (n)(Ij ) = 0

)
P
(
ξ (n)(Ik) = 0

) + ∑
1≤j≤mn

P
(
ξ (n)(Ij ) = 0

)

≤ E(Mn)
2 + E(Mn)

as expected. �

Consider now a number mn of disjoint intervals I1, . . . , Imn of length (1 −
ε)

√
32 logn

n
in (0,2π). We can find mn = �2πn/

√
32 logn� of them. Let Mn be

the number of such intervals free of eigenangles, that is, those Ik’s such that

ξ (n)(Ik) = 0. If there are less than 	n gaps larger than (1 − ε)
√

32 logn
n

, either there
are less than 	n intervals Ik’s free of eigenangles, or there is a gap between suc-
cessive eigenangles containing two intervals,

P(Xn < 1 − ε) ≤ P(Mn < 	n) + P

(
T (n)

1 ≥ 2(1 − ε)

√
32 logn

n

)
.

This last term is bounded by the expectation of the number of gaps greater than

2(1 − ε)
√

32 logn
n

; from (3.3) this goes to 0 if 2(1 − ε) > 1 (true for ε sufficiently
small).

Concerning P(Mn < 	n), first note that by the estimate (3.3), E(Mn) =
n1−(1−ε)2+o(1), so 	n = o(E(Mn)). This allows to use Chebyshev’s inequality, for
sufficiently large n.

P(Mn < 	n) ≤ P
(|Mn − E(Mn)| > E(Mn) − 	n

)
≤ Var(Mn)

(E(Mn) − 	n)2 ≤ E(Mn)

(E(Mn) − 	n)2 ,

where we used Lemma 3.3 in the last inequality. This last term is equivalent to
1/E(Mn), thus going to 0, which completes the proof.

3.2. The GUE: Comparison of Fredholm determinants. For the proof of The-
orem 1.7, precise asymptotics like (3.1) and (3.2) related to unitary groups are not
available in the GUE context. This difficulty can be overcome, our main obser-
vation being Lemma 3.5: the probability that an interval is free of eigenvalues is
equivalent in the GUE(n) and U(n) cases, up to a normalization, if the interval size
is shorter than the expected extreme gap size. The proof relies on a comparison of
the Fredholm determinants associated to KGUE(n) and KU(n).
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The rest of the proof is similar to the one concerning U(n). Indeed, consider an
ε > 0, p > 0, T̃ (n)

	n
the 	nth largest gap in I , and

X̃n = T̃ (n)
	n

tn
, tn =

√
32 logn

n infI
√

4 − x2
.

We then decompose

E(|X̃n − 1|p) ≤ εp + P(X̃n < 1 − ε) + E(|X̃n − 1|p1
X̃n>1+ε

).

This last expectation is, by integration by parts,∫ ∞
ε

pvp−1
P(X̃n > 1 + v)dv + pεp−1

P(X̃n > 1 + ε).

The probability P(X̃n > 1+v) is lower than the expectation of the number of gaps
greater than (1 + v)tn. Lemma 3.6 therefore yields E(|X̃n − 1|p1

X̃n>1+ε
) → 0 as

n → ∞.
Concerning P(X̃n < 1 − ε), we proceed as for the unitary group: for I = (a, b)

with a < b, consider m̃n = �(b − a)/((1 − ε)tn)� disjoint intervals of length (1 −
ε)tn included in I . Let M̃n be the number of these intervals free of eigenvalues.
Then

P(X̃n < 1 − ε) ≤ P(M̃n < 	n) + P
(

T̃ (n)
1 > 2(1 − ε)tn

)
.

From Lemma 3.6 this last probability goes to 0 as n → ∞ if 2(1−ε) > 1, ε < 1/2.
Moreover, from Lemma 3.7,

E(M̃n) � nδ(3.5)

for some δ > 0 depending only on ε and I . Moreover, from the negative correlation
property Lemma 3.8 and the same reasoning as Lemma 3.3,

Var(M̃n) ≤ E(M̃n).(3.6)

As 	n = no(1), from (3.5) E(M̃n)− 	n > 0 for sufficiently large n, which allows us
to use Chebyshev’s inequality,

P(M̃n < 	n) ≤ P
(|M̃n − E(M̃n)| > E(M̃n) − 	n

)
≤ Var(M̃n)

(E(M̃n) − 	n)2
≤ E(M̃n)

(E(M̃n) − 	n)2
,

the last inequality being (3.6). From (3.5) this last term is equivalent to 1/E(M̃n)

and going to 0, as n → ∞, completing the proof.

LEMMA 3.4. Let δn = o(1). The following asymptotics hold for the unitary
group and GUE kernels:
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(1) Uniformly for x, y in (0,2π) and |x − y| = O(δn),

2π

n
KU(n)(x, y) − sin(n(x − y)/2)

n(x − y)/2
= O

(
δn

n

)
.

(2) Let ε0 > 0. Uniformly for x, y in (−2 + ε0,2 − ε0) and |x − y| = O(δn),

1

nρsc(x)
KGUE(n)(x, y) − sin(nπρsc(x)(x − y))

nπρsc(x)(x − y)
= O

(
1

n

)
+ O(δn) + O(nδ2

n).

PROOF. For the unitary group, the kernel is explicit so

2π

n
KU(n)(x, y) − sin(n(x − y)/2)

n(x − y)/2

= sin
(
n
x − y

2

)
1

n(x − y)/2

(
((x − y)/2)

sin((x − y)/2)
− 1

)
.

As |x − y| = O(δn) → 0, by expansion of sin at third order (
x−y

2 )/ sin(
x−y

2 )− 1 =
O((x − y)2), which completes the proof.

Concerning the Gaussian unitary ensemble, the same type of asymptotics hold,
being a direct consequence of formula (2.10). Note that when taking δn = O(1/n),
the speed of convergence to the sine kernel is 1/n2 for the unitary group, much
better that 1/n for the GUE, whose correlation kernel is not translation invariant.

�

LEMMA 3.5. Let δn = O(
√

logn/n), ε0 > 0. Then uniformly for x in (−2 +
ε0, 2 − ε0), ∣∣∣∣PGUE(n)

(
λi /∈

[
x, x + δn

ρsc(x)

]
,1 ≤ i ≤ n

)

− P
U(n)(θi /∈ [0,2πδn],1 ≤ i ≤ n)

∣∣∣∣ ≤ no(1)−1.

PROOF. By inclusion–exclusion, the probability that a determinantal point
process with kernel K has no points in a measurable subset A is the Fredholm
determinant (see, e.g., Lemma 3.2.4 in [1])

det(Id − KA) = 1 +
∞∑

k=1

(−1)k

k!
∫
Ak

det
k×k

(K(xi, xj ))dx1 · · ·dxk.(3.7)

To compare empty sets probabilities, we therefore need to compare Fredholm de-
terminants. A classical inequality (see, e.g., [16], Chapter IV, (5.14)) is

|det(Id + A) − det(Id + B)| ≤ |A − B|1e1+|A|1+|B|1,(3.8)

where |T |1 is the trace norm of a nuclear operator T . However, for positive (like
A or B) operators T (f )(x) = ∫

K(x,y)f (y)dy the trace norm is
∫ |K(x,x)|dx,
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but for nonpositive operators, like A − B , the trace norm is difficult to evaluate,
even for a compactly supported continuous kernel K . However, in such a case, the
Hilbert–Schmidt norm is computable.

|T |22 =
∫ ∫

|K(x,y)|2 dx dy.(3.9)

This is the reason why, instead of the Fredhom determinant and the inequality
(3.8), we will use the modified Carleman–Fredholm determinant

det2(Id + T ) = det(Id + T )e−TrT

and the inequality

|det2(Id + A) − det2(Id + B)| ≤ |A − B|2e(|A|2+|B|2+1)2/2,(3.10)

which can be found in [16], Chapter IV, (7.11). For our purpose, note that from
(3.7), after a simple change of variables, the probability that there are no eigenval-
ues in [x, x + δn/(ρsc(x))] is equal to

1 +
∞∑

k=1

(−1)k

k!
∫
(nδn)k

det
k×k

(
1

nρsc
KGUE(n)

(
x + yi

nρsc(x)
, x + yj

nρsc(x)

))
dy1 · · ·dyk.

In the same way, the probability that there are no eigenvalues in [0,2πδn] is

1 +
∞∑

k=1

(−1)k

k!
∫
(nδn)k

det
k×k

(
2π

n
KU(n)

(
2π

n
yi,

2π

n
yj

))
dy1 · · ·dyk.

Hence inequality (3.10) will be applied with A and B integral operators with re-
spective kernel

A(u, v) = − 1

nρsc
K

GUE(n)
(0,nδn)

(
x + u

nρsc(x)
, x + v

nρsc(x)

)

and

B(u, v) = −2π

n
K

U(n)
(0,nδn)

(
2π

n
u,

2π

n
v

)
.

From Lemma 3.4, the infinite norm between the two kernels above is O(nδ2
n) =

O(logn/n), so by (3.9), integrating on a domain of area (nδn)
2 = O(logn),

|A − B|2 = (
O

(
(logn)2/n2)O(logn)

)1/2 = O
(
(logn)3/2/n

)
.

Moreover, consider a parameter αn > 0, and decompose

|A|22 =
∫ ∫

|A(x, y)|21|x−y|<αn dx dy +
∫ ∫

|A(x, y)|21|x−y|>αn dx dy.

From Lemma 3.4, if |x − y| > αn, then |A(x, y)| is smaller than 1/(παn) +
O(logn/n), and when |x − y| < αn, it is bounded by 1 + O(logn/n). Conse-
quently,

|A|22 = O
(
αn

√
logn

) + O(logn/α2
n) = O((logn)2/3)
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by choosing αn = (logn)1/6. In the same way, |B|22 = O((logn)2/3). Hence

|det2(Id + A) − det2(Id + B)| = O
(

(logn)3/2

n

)
eO((logn)2/3) ≤ no(1)−1.(3.11)

Finally, using once again Lemma 3.4, here on the diagonal,

TrA = −
∫

A(x, x)dx = −nδn + O
(
(logn)3/2/n

)
,(3.12)

and the same for TrB . Finally, write

|det(Id + A) − det(Id + B)|
≤ eTrA|det2(Id + A) − det2(Id + B)| + |eTrA−TrB − 1||det(Id + B)|.

Formulas (3.11) and (3.12) show that the first term is bounded by no(1)−1. More-
over, det(Id + B) is a probability, so bounded by 1, and the estimates of TrA and
TrB , formula (3.12), show that eTrA−TrB − 1 is O(logn/n), completing the proof.

�

LEMMA 3.6. Let s(I ) = infI
√

4 − x2, ε > 0 and αn = √
32 logn/n. There

are some constants c1, c2 > 0 depending only on ε and I , such that for any v > ε

and n ≥ 1,

E|{i :λi ∈ I, λi+1 − λi > (1 + v)αn/s(I )}| ≤ c1n
−c2v.

PROOF. The first step allows reasoning on fixed intervals instead of gaps.
More precisely, note I = [a, b] with a < b, and consider the intervals of length
(1 + v

2 )αn/s(I ) by successive slips of size sn = v
2αn/s(I ).

Jk =
[
a + ksn, a + ksn +

(
1 + v

2

)
αn

s(I )

]
, 0 ≤ k ≤ pn = �(b − a)/sn�.

There an injective map associating to any eigenvalues gap of size at least (1 +
v)αn/s(I ) an interval Jk included in this gap, for example, the one with lower
index. Consequently,

E|{i :λi ∈ I, λi+1 − λi > (1 + v)αn/s(I )}| ≤
pn∑

k=0

P(Jk = 0),

where we use the abbreviation P(Jk = 0) = P(λi /∈ Jk,1 ≤ i ≤ n). The second
step consists in obtaining uniform upper bounds for these empty intervals proba-
bilities. For this purpose, the negative correlation property, Lemma 3.8, is used by
partitioning the interval Jk :

Jk = J
(1)
k � J

(2)
k

qv⊔
j=1

L
(j)
k � Mk,

where:
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• J
(1)
k has length (1 − ε′)αn/s(I ), with ε′ to be chosen positive but sufficiently

small compared to ε;
• J

(2)
k has length ( ε

2 + ε′)αn/s(I );

• the intervals L
(j)
k all have length αn/(2s(I )), and their number is qv = �v − ε�;

• Mk is a residual interval.

The negative correlation property yields

P
GUE(n)(Jk = 0) ≤ P

GUE(n)(J (1)
k = 0

)
P

GUE(n)(J (2)
k = 0

) qv∏
j=1

P
GUE(n)(L(j)

k = 0
)
.

This now can be upper-bounded using Lemma 3.5 because all intervals are shorter
than αn/s(I ): for example, noting x one extremity of J

(1)
k ,

P
GUE(n)(J (1)

k = 0
) = P

U(n)([0, (1 − ε′)αn

√
4 − x2/s(I )

] = 0
) + no(1)−1

≤ P
U(n)([0, (1 − ε′)αn] = 0

) + no(1)−1 = n−(1−ε′)2+o(1)

with o(1) not depending on the index k, and where the last estimate relies on (3.1).
In the same way,

P
GUE(n)(J (2)

k = 0
) ≤ n−(ε/2+ε′)2+o(1), P

GUE(n)(L(j)
k = 0

) ≤ n−1/4+o(1).

Gathering all these results,

E|{i :λi ∈ I, λi+1 − λi > (1 + v)αn/s(I )}| ≤ n1−(1−ε′)2−(ε/2+ε′)2−(1/4+o(1))qv .

We can chose ε′ sufficiently small such that 1 − (1 − ε′)2 − ( ε
2 + ε′)2 < 0 (e.g.,

ε′ = ε2/8). For such a choice, for sufficiently large n not depending on v, the above
exponent is smaller than −c − 1

8�v − ε� for some c > 0. Such a function is smaller
than −c2v on v > ε, for some c2 > 0. �

LEMMA 3.7. Let I = [a, b] with a < b, s(I ) = infI
√

4 − x2, ε ∈ (0,1) and
αn = √

32 logn/n. Consider a maximal number

m̃n = ⌊
(b − a)/

(
(1 − ε)αn/s(I )

)⌋
of disjoint intervals I1, . . . , Imn of length (1 − ε)αn/s(I ) included in I . Let

M̃n = |{1 ≤ j ≤ mn :λi /∈ Ij ,1 ≤ i ≤ n}|
be the number of those intervals containing no eigenvalues. Then

E(M̃n) � nδ

for some δ > 0 depending only on ε and I .
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PROOF. We first take a restricted interval to avoid the fluctuations in the spec-
tral measure: there is I ′ = (a′, b′) ⊂ I with a′ < b′ such that

(1 − ε)
supI ′

√
4 − x2

s(I )
≤ 1 − ε

2
.(3.13)

Then, for a given interval Ik = [x, x + (1 − ε)αn/s(I )] included in I ′, from Lem-
ma 3.5,

P
GUE(n)(λi /∈ Ik,1 ≤ i ≤ n)

= P
U(n)(θi /∈ [

0, (1 − ε)

√
4 − x2/s(I )

]
,1 ≤ i ≤ n

) + no(1)−1

with o(1) uniform in x. From (3.13) this is greater than

P
U(n)

(
θi /∈

[
0,

(
1 − ε

2

)]
,1 ≤ i ≤ n

)
+ no(1)−1 = n−(1−ε/2)2+o(1)

from (3.1). There are n1+o(1) intervals Ik’s included in I ′, so as n → ∞
E(M̃n) ≥ n1−(1−ε/2)2+o(1) � nδ

with δ = (1 − (1 − ε/2)2)/2, for example. �

3.3. The negative association property. As previously noted, to deduce the
asymptotics of the largest gaps, the correlation between distinct gaps is required.

In the context of a point process on a finite set E , let � and �′ be distinct
disjoint subsets of E , and write 0� for the event that the elements of � are free of
particles. Shirai and Takahashi [28] showed that for determinantal point processes,
the empty sets events are negatively correlated.

P(0�∪�′
) ≤ P(0�)P(0�′

).(3.14)

This negative association property has received considerable attention in the past
few years, in the context of ASEP, for example. Still, for discrete determinantal
point processes, formula (3.14) was generalized to all increasing events [24], and
general criteria for the negative association property were given in [4].

The following continuous analog of (3.14) holds. It can be shown by a simple
discretization, relying on results from [4, 24, 28]. We give another justification,
which relies on a work of Georgii and Yoo [15].

LEMMA 3.8 (Negative correlation of the vacuum events). Let ξ (n) be the point
process associated to the eigenvalues of Haar distributed unitary matrix (resp.,
an element of the GUE). Let I1 and I2 be compact disjoint subsets of [0,2π)

(resp., R). Then

P
(
ξ (n)(I1 ∪ I2) = 0

) ≤ P
(
ξ (n)(I1) = 0

)
P
(
ξ (n)(I2) = 0

)
.(3.15)
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PROOF. The general negative correlation result, Corollary 3.3 in [15], requires
a locally trace class operator K with a restriction on its spectrum. More precisely,
consider the unitary case, the GUE proof, being similar. For an operator K acting
on L2((0,2π),μ), if spec(K) ⊂ [0,1], there exist a unique determinantal point
process ξ with kernel K ; see [30]; under the additional hypothesis spec(K) ⊂
[0,1), Georgii and Yoo proved that for any compact and disjoint Borel sets � ⊂
� ⊂ [0,2π),

Pμ

(
ξ(�) = 0|ξ(�/�) = 0

) ≤ Pμ

(
ξ(�) = 0

)
.

In the case of Haar distributed unitary matrices, K = KU(n) is a nuclear oper-
ator with kernel KU(n)(x, y) = 1

2π
sin(n(x−y)/2)
sin((x−y)/2)

, and defines a projection: 1 is in
its spectrum, and the general statement does not directly apply. To care for this
minor problem, look at the restriction K

U(n)
� of KU(n) to a compact subset � of

(0,2π) (KU(n)
� = P�KU(n)P�, P� being the projection on �). Suppose that the

set (0,2π)/� has a nonempty interior. As a projection of KU(n), K
U(n)
� is still

nonnegative and trace class. As for any determinantal point process,

E
(
zξ(n)(�)) = det

(
Id + (z − 1)K

U(n)
�

)
(3.16)

in the sense of Fredholm determinants of a trace class operator. Suppose that K
U(n)
�

has an eigenvalue λ ≥ 1. Then by choosing z = 1 − 1/λ ≥ 0, (3.16) yields

E
(
zξ(n)(I )) = 0 if λ > 1, P

(
ξ (n)(I ) = 0

) = 0 if λ = 1.

In each case, this is absurd because the joint law of the eigenvalues is absolutely
continuous with respect to the Lebesgue measure on (0,2π)n, and (0,2π)/� has
a nonempty interior: both quantities need to be strictly positive. Hence K

U(n)
I1∪I2

is a
trace class operator with spectrum in [0,1), and the result from [15] applies. �

REMARK. Another way to prove Lemma 3.8 is as follows: the inequality can
be stated for the determinantal point process with kernel αKU(n) with 0 < α < 1,
and then the inequality remains true for KU(n) by continuity of the application
K �→ det(Id − K) in the set of trace class operators, by (3.8).
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