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In this note we consider β-ensembles with real analytic potential and arbitrary inverse

temperature β, and review some recent universality results for these measures, obtained
in joint works with L. Erdős and H.-T. Yau. In the limit of a large number of particles,

the local eigenvalues statistics in the bulk are universal: they coincide with the spacing

statistics for the Gaussian β-ensembles. We also discuss the proof of the rigidity of the
particles up to the optimal scale N−1+ε.
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Consider N ordered particles with distribution given by a log-gas at inverse

temperature β, with an external potential V , and a normalization such that the

joint density of the particles (with respect to the Lebesgue measure on the simplex

λ1 ≤ λ2 ≤ · · · ≤ λN ) is

1

Z̃N,β

∏
i<j

|λi − λj |βe−
N
4 β

∑
i V (λi)dλ. (1)

The macroscopic asymptotics of these particles are not universal: the

equilibrium measure ρV minimizes µ 7→
∫
V (x)dµ(x) − 1

2

∫∫
x<y

log |x −
y|dµ(x)dµ(y) and depends on V (this functional has a unique minimizer when

lim infx→±∞ V (x)/ log |x| > 4, which we assume from now).

Our goal in this note is to explain the following result, which states that the

microscopic interactions are universal in the large N limit, depending only on the

inverse temperature β. This was proved for convex V in Ref. 5 and with no con-

vexity assumption in Ref. 6. It states that the correlation functionsa ρ
(V,N)
k of the

point process χ =
∑
δλi converge to those of a limiting point process, sinβ (whose

∗This work was partially supported by NSF grant DMS 1208859
aThe correlation functions of a point process χ satisfy

ρ
(N)
k (x1, . . . , xk) = lim

ε→0
ε−k P(χ(xi, xi + ε) = 1, 1 ≤ i ≤ k).

If χ is almost surely supported on N points, the integration property (Nk)ρ
(N)
k (x1, . . . , xk) =∫

R ρ
(N)
k (x1, . . . , xk+1)dxk+1 also holds. We refer to Ref. 17 for a rigorous definition..
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definition we review in the next section) irrespectively of the external potential V .

Theorem. For fixed β > 0, consider the measure (1). If V is real analytic,

infR V
′′ > −∞ and the support of ρV is connected, then the bulk local interactions

are described in terms of the sinβ process (defined at the end of Section 1): for any

x in the support of ρV and ε > N−1+δ,

1

2ε

∫ x+ε

x−ε

1

ρV (x′)k

∫
Rk
f(u1, . . . , uk)ρ

(V,N)
k

(
x′ +

u1
NρV (x)

, . . . , x′ +
uk

NρV (x)

)
dx′du

−→
N→∞

∫
Rk
f(u1, . . . , uk)ρ

(k)
sinβ

(u1, . . . , uk)du, (2)

where we abbreviate du = du1 . . . duk.

In Section 1, we review the main motivations for this result, from Random

Matrix Theory. Section 2 summarizes some known universality results for randpm

matrices. Sections 3 and 4 give elements towards the proof of the above theorem.

1. The Invariant Ensembles and Coulomb gases

Wigner’s universality surmise about random spectra states that, although the

macroscopic statistics (like the equilibrium measure) depend on the system, the

microscopic statistics are independent of all details except the symmetries. The

core of random matrix theory was therefore summarized in this way: the Hamil-

tonian which governs the behavior of a complicated system is a random symmetric

matrix with no particular properties except for its symmetric nature (Wigner, Ref.

29, 1961). Following Wigner, Dyson, Gaudin and Mehta, Random Matrix Theory

was immediately appreciated also for its mathematical interest: not only does it have

immediate usefulness and validity for real physical systems but, from the mathemat-

ical point of view, it has given rise to profound results and makes use of the deepest

theorems of analysis (Lieb and Mattis, Ref. 20, 1966). In this section, we review

the limiting point processes, which are supposedly universal. Their descriptions was

obtained by analyzing specific integrable matrix models.

To make the problem simpler, the matrix models initially considered are the so-

called Gaussian ensembles, measures on the set of N ×N matrices presenting many

invariances, and therefore computable paradigms for Dyson’s orthogonal, unitary or

symplectic class. For example the Gaussian Unitary Ensemble is uniquely defined

(up to a scaling) on the set of Hermitian matrices by the following two properties:

(a) Invariance by unitary conjugacy H 7→ U∗HU , U ∈ U(N).

(b) Independence of the Hi,j ’s, i ≤ j.

The entries are complex Gaussian random variables, and the joint density for
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the eigenvalues is

1

Z
(β)
N

∏
i<j

|λi − λj |βe−β
N
4

∑
i λ

2
i (3)

after proper normalization, where β = 2. For matrix ensembles with the indepen-

dence condition (b) still satisfied, but symmetric with invariance by orthogonal

conjugacy (resp. quaternionic self-dual with invariance by symplectic conjugacy),

the entries are still Gaussian and the density formula (3) for the spectrum still holds

with β = 1 (resp. β = 4). They are called Gaussian Orthogonal Ensemble (resp.

Gaussian Symplectic Ensemble).

The macroscopic asymptotics of the above spectral measure are described by

Wigner’s semicircle law: the empirical spectral measure 1
N

∑N
k=1 δλk converges in

probability to the distribution

ρsc(x)dx =
1

2π

√
(4− x2)+dx

as N → ∞. Wigner proved it by the method of moments: for any integer k,

N−1 Tr(Hk) converges to the k-th moment of the semicircle law. His method ap-

plies irrespectively of the distribution of the independent entries (provided that they

are centered and have some properly normalized second moment), allowing him to

prove the first universality result, at the macroscopic level. Wigner’s motivation

was to understand the microscopic interactions between energy levels. In particu-

lar, he predicted that the gap probability for eigenvalues in the bulk decays with

a Gaussian tail, P(λi+1 − λi > s/N) ≈ exp(−cs2), contrasting with the exponen-

tial law observed if the eigenvalues λk’s were independent. This difficult analysis of

the gaps at the microscopic scale was performed by Gaudin, Mehta and Dyson, for

the three Gaussian ensembles. For example, for β = 2, by an original argument by

Gaudin , all the correlation functions up to ρ
(N)
1 satisfy the following microscopic

asymptotics: if x ∈ (−2, 2) then

ρ
(N)
k

(
x+

u1
Nρsc(x)

, . . . , x+
uk

Nρsc(x)

)
−→
N→∞

det
k×k

K(ui − uj), (4)

where K(u) = sin(πu)
πu . This was proved by observing that the eigenvalues distri-

bution is a determinantal point process with explicit kernel involving the Hermite

polynomials, whose asymptotics are performed by the Laplace method (see e.g.

Ref. 1 for more precisions). In the cases of orthogonal and symplectic invariant

ensembles, such asymptotics exist, involving Pfaffians instead of determinants.

Wigner and Dyson’s idea is that these simple models are paradigms for the

spectrum of general disordered systems. Supposedly, if the Hamiltonian dynamics

present time reversal invariance, the GOE gives the limiting local statistics of the

spectrum, while the limiting GUE statistics (4) are relevant if there is no time rever-

sal symmetry and the GSE for time-reversal symmetry but no rotational symmetry.

A striking example, extensively tested numerically, asserts that the (quantum) en-

ergy levels of (classic) chaotic billiards satisfy a repulsion of GOE type, see Ref. 4.
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As a distribution of points in R, the measure (3) describes particles confined by

a quadratic external potential and a Coulomb interaction with inverse temperature

β. We will refer to this measure as the Gausian β-ensemble. A natural question is

whether a simple description of the microscopic limit exists for arbitrary β > 0.

Valko and Virág gave such a description, not in terms of the limiting correlation

functions but through an explicit construction of the limiting point process. An

important ingredient for their proof in that the measure (3) is the distribution

of the spectrum of a tridiagonal matrix, a description given by Trotter27 in the

cases β = 1, 2 and 4, and generalized to any β by Dumitriu and Edelman.12 More

precisely, consider the symmetric matrix

M(N) = 1√
βN


N0 χ(N−1)β 0 0

χ(N−1)β N1 χ(N−2)β 0

0 χ(N−2)β N2 χ(N−3)β

0 0
. . .

. . .

,
the Nk’s being standard Gaussian random variables, and the χλ’s independent with

distribution cλx
λ−1e−x

2/2dx, all the upper triangle variables being independent.

Then the eigenvalues of M(N) have distribution (3).

This provides a description of the microscopic interactions in terms of a family of

stochastic differential equation, by a discrete versions of the phase functions in the

Sturm-Liouville theory. More precisely, let f(t) = β
4 e
− β4 t, and consider the coupled

solutions αλ of the stochastic differential equation

dαλ = λfdt+ <
(
(e−iαλ − 1)dZ

)
,

where Z is a bidimensional Brownian motion. Then αλ
2π converges to some αλ(∞) ∈

Z, an increasing function of λ, so N(λ) = αλ(∞) is the repartition function of

a point process, called sinβ . Valkó and Virág introduced the above definition and

proved that, for any x ∈ (−2, 2), the following weak convergence holds:

Nρsc(x)

(∑
k

δλk − x

)
→ sinβ .

For β ∈ {1, 2, 4}, this provides an alternative description of the limiting point

process for the three symmetry classes, and this also gives extension to any β > 0.

The limiting objects being introduced, we now review which models lie in their

universality classes.

2. Universality results

Microscopic universality for random matrices is now well understood by either re-

laxing the invariance assumption (a) or the independence of the entries (b) in the

definition of the Gaussian ensembles.

For self-dual matrices with independent entries, not necessarily Gaussian, spec-

tacular progress occurred in the past five years, including the series of papers (see
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e.g. Ref. 13,14) by Erdős, Knowles, Schlein, Yau, Yin which led for example to

the following universality result. In this statement, the notation ρ
Wig(N)
k describes

the k-th correlation function for the point processes
∑N
k=1 δλ(N)

k

where the λ
(N)
k ’s

are the eigenvalues of W (N), an Hermitian Wigner matrix: its entries are of type

W
(N)
ij = 1√

2N
(Xij + iYij), 1 ≤ i < j ≤ N , W

(N)
ii = 1√

N
Xii, 1 ≤ i ≤ N , all variables

being independent, centered, with variance 1 and finite moment of order 4 + ε.

Theorem 2.1. Under the above hypothesis, for any x ∈ (−2, 2) and ε > N−1+δ,

1

2ε

∫ x+ε

x−ε

1

ρsc(x′)k

∫
Rk
f(u1, . . . , uk)ρ

Wig(N)
k

(
x′ +

u1
Nρsc(x)

, . . . , x′ +
uk

Nρsc(x)

)
dx′du

converges to
∫
Rk f(u1, . . . , uk) detk×kK(ui − uj)du.

The method to prove this theorem is very general and was applied to many other

random matrix models with independent entries (covariance matrices, Erdős-Rényi

graphs and generalized Wigner matrices, i.e. when the variance of the entries is

allowed to vary). It also applies to prove universality for symmetric (resp. self-dual

quaternionic matrices), with limiting correlation function corresponding to β = 1

(resp. β = 4). Another approach was developed in Ref. 26, proving universality

for the Hermitian class, and under the extra assumption (in the symmetric and

symplectic classes) that the first four moments of the entries need to match the

Gaussian ones.

Important ideas for the proof of Theorem 2.1 include:

(i) A strong rigidity estimate on the ordered eigenvalues λ
(N)
1 < · · · < λ

(N)
N : in

the bulk these eigenvalues are concentrated around their typical location up

to scale N−1+ε for any ε > 0. This was obtained by a very precise analysis

of the self-consistent equation, which relates the Stieltjes transforms of W (N)

and its minors.

(ii) An understanding of the local relaxation time for Dyson’s Brownian motion,

which allows to interpolate between Wigner and Gaussian ensembles. Thanks

to the rigidity estimate from the previous step, this time for the local relaxation

of the eigenvalues dynamics is shown to be O(N−1+ε) for arbitrary small ε > 0.

(iii) A Green function comparison theorem, to remove the difference of eigen-

values statistics between W (N) and its very small perturbation, W (N) +

(N−1+ε)1/2H(N) (H(N) being an element from the GUE).

Other spectacular progress about universality occurred, in the past 20 years,

when keeping the invariance property but relaxing the independence. More precisely,

the orthogonal (resp. unitary, symplectic) invariant ensembles are the probability

measures with density 1
ZN,β

e−
N
4 TrV (M) with respect to the Lebesgue measure on

the set of N × N symmetric (resp. Hermitian, self-dual quaternionic) matrices.

The Gaussian ensembles correspond to a quadratic V . Thanks to the conjugacy

invariance of this model, the distribution of the eigenvalues is explicitly computable,
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and exactly coincides with (1), in the special case β = 1 (resp. β = 2, 4). As we

already mentioned, the eigenvalues statistics are not universal at the macroscopic

level, but at the microscopic scale they are, as shown in the following important

result.

Theorem 2.2. Let β = 2. If V is real analytic and x is in the bulk of the limiting

spectral measure ρV (x)dx, then ρ
(V,N)
k

(
x+ u1

NρV (x) , . . . , x+ uk
NρV (x)

)
converges as

N →∞ to detk×kK(ui−uj). Similar results hold for the orthogonal and symplectic

invariant ensembles, the limit being explicit in terms of Pfaffians.

Note that (2) gives a similar result for arbitrary β > 0, but in a less precise way

than the above theorem, due to the ε-averaging.

Many important contributions towards Theorem 2.2 included Deift,

Kriecherbauer, McLaughlin, Venakides, Zhou9 , Bleher, Its3 , Deift, Gioev8 , Pas-

tur, Schcherbina23,24 , Scherbina25 , Lubinsky21 . In particular, in this last work,

the analyticity condition was removed when β = 2, but integrability is still essential

in the proof. Indeed, it relies on the fact that for fixed N , the distribution of the

spectrum is a determinantal or Pfaffian point process, with an explicit kernel in

terms of the orthogonal polynomials with respect to e−V (x)dx (Dyson, Mehta22).

Then it was proved that these orthogonal polynomials can be evaluated from the

solution of a Riemann-Hilbert problem (Fokas, Its, Kitaev16). A steepest descent

analysis of this Riemann-Hilbert problem was performed in a seminal work by Deift

and Zhou11 .

The motivation for the result (2) is both the microscopic universality for one

dimensional log-gases, and an understanding of the universality for invariant en-

sembles, by arguments close to statistical physics. In the next sections, we aim at

explaining the two main steps for a proof of (2):

- Uniqueness of log gases with suitable boundary conditions (Section 3).

- Rigidity of the particles location (Section 4).

The proof therefore shares the same philosophy as the one of Theorem 2.1, but

the techniques differ in many points: steps (1) and (3) cannot have an analogue

because our β-ensembles lack any matrix model, and for step (2) there are no

obvious dynamics for extrapolation, the idea of using the Dyson Brownian motion

will be applied to some conditional measures, that we explain in the next section.

3. The local equilibrium measure

We rename the ordered particles λ1 < · · · < λN as y1 < · · · < yL < xL+1 <

· · · < xL+K < yL+K+1 < · · · < yN , where x = (xL+1, . . . xL+K) are the internal

points and y = (y1, . . . , yL, yL+K+1, . . . , yN ) the external points. We also denote
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I = JL+ 1, L+KK. The conditional measure of x knowing y is

µy(x) =
µ(y,x)∫
µ(y,x)dx

=
1

Zy
e−βNHy(x),

Hy(x) =
1

4

∑
i∈I

Vy(xi)−
1

N

∑
i,j∈I,i<j

log |xj − xi|,

Vy(x) = V (x)− 1

N

∑
j 6∈I

log |x− yj |.

For a small parameter κ > 0, let

Gδ = {y ∈ RN−K | ∀j ∈ JκN,LK ∪ JL+K + 1, (1− κ)NK, |yj − γj | ≤ δ}

denote the set of good external configurations (some weak form of rigidity is still

needed for eigenvalues on the edge, but we omit this non-essential point here).

Fig. 1. Matching the local densities of ρ and ρ̃.

The above definitions are

made for two distinct external

potentials V and Ṽ , the exter-

nal points being y, ỹ, the equi-

librium measures ρV and ρṼ ,

and the conditional measures

µy and µ̃ỹ. To compare these

two measures, after a proper

translation and dilatation we

can assume

[yL, yL+K−1] = [ỹL, ỹL+K−1].

Conditionally to good bound-

ary conditions, the local statis-

tics are universal, as quantified in the following result (see Proposition 4.2 and

Theorem 4.4 in Ref. 5).

Proposition 3.1. Let 0 < ϕ < 1
38 , K = N

39
2 ϕ and δ = Nϕ−1. Then for any

y ∈ Gδ, and smooth compactly supported test function G, ỹ ∈ G̃δ, we have(
Eµy −Eµ̃ỹ

)( 1

K

∑
I

f(N(xi − xi+1))

)
−→ 0. (5)

To get some intuition for this result, imagine that the Hessian of Hy is convex,

with lower bound ∇2Hy ≥ τ−1. Then the Bakry-Émery criterion2 states that µy

satisfies a logarithmic Sobolev inequality with constant τ . More precisely, denote

q =
dµ̃ỹ

dµy
, Dµ(f) = 1

N

∫
|∇f |2dµ the Dirichlet form, and for a probability density

f , Sµ(f) =
∫
f log fdµ the entropy. By the inequality between total variation and

entropy, and then the logarithmic Sobolev inequality, for some universal c1, c2 > 0,

(5) can be bounded by∫
|q − 1|dµy ≤ c1

√
Sµy(q) ≤ c2

√
τDµy(

√
q).
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However, this inequality is not sufficient: an explicit computation shows that,

on the set of good configurations y and ỹ:

- the convexity is of order at most τ−1 = N/K: it mostly comes from the

interaction between the xi’s and yj ’s, and evaluated at x = xL+bK/2c,
1
N

∑
j ∂xx(− log |x− yj |) ≈ 1

N

∑
k≥K/2

1
(k/N)2 ≈ N/K. Defining the typical

location of yk by γk where
∫ γk
−∞ ρV (s)ds = k

N , the previous approximations

are justified if yk is concentrated around γk up to some error of order K/N .

- the Dirichlet form is of order at least N (up to logarithmic corrections):

using the equilibrium constraint V ′(x) = 4
∫

du
x−udρV (u), one can see that

the main term in the Dirichlet form is

1

N

∫ ∑
i

(∑
k

1

xi − yk
− 1

xi − γk

)2

dµy

≈ 1

N

K∑
i=1

(∑
k

|yk − γk|
|xi − γk|2

)2

≈ 1

N

K∑
i=1

∑
k≥K

1/N

((k − i)/N)2

2

≈ N logK.

However, the above heuristics do not take into account the extra convexity coming

from the pairwise interactions between the xk’s. As a consequence, an improvement

is possible if one considers functions of differences between eigenvalues. This was

first observed by Erdős, Schlein and Yau14 in the context of Wigner matrices. For

our conditional measure, the analogue result is that, for arbitrary small ε > 0, for

some c depending on ε,

(
Eµy −Eµ̃ỹ

) 1

K

(∑
f(N(xi − xi+1))

)
≤ c

√
N ε

K
τDµy(

√
q) + c e−N

ε
√

Sµy(q). (6)

The entropy term is negligible due to its exponentially small coefficient, and the

extra K−1 coefficient in front of the Dirichlet form almost yields the expected

convergence to 0. This is however not sufficient, a last ingredient from Ref. 14

being used to speed up the dynsmics of the Dyson Brownian motion, and therefore

improve the inequality (6).

Note that there are still major obstructions to making the above heuristics rig-

orous. One of them is that, for example yL may be very close to xL+1, or that many

yj ’s could pile up close to xL. The contribution to the entropy term, singular of

type 1/(xL+1 − yL)2, could then be exceptionally large. This problem is taken care

of by showing that the local statistics are insensitive to the accumulation of a small

number of yj ’s. For this, the total variation-entropy inequality can be used. An-

other obstruction is that the above heuristics strongly depend on the concentration

properties of the yk’s around the γk’s, till the optimal scale N−1, i.e. on showing

that the good sets are the generic sets. This is explained in the next section.
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4. The rigidity

4.1. Statement of the result

The following result states that the ordered particles of one-dimensional log-gases

exhibit a strong rigidity.

Theorem 4.1 (B., Erdős, Yau). Under the assumptions for (2), the bulk parti-

cles are concentrated up to scale N−1+ε: for any ε > 0 and α > 0, there is a constant

ϑ > 0 such that for any N and k ∈ JαN, (1− α)NK, we have

P
(
|λk − γk| > N−1+ε

)
≤ ϑ−1e−N

ϑ

.

As we already mentioned, by the Bakry Émery criterion,? if ∇H2 > τ−1 > 0

thenµ(dx) = 1
Z e
−H(x)dx satisfies a logarithmic Sobolev inequality with constant τ .

In our case, writing the measure (1) as e−βH , one finds, for any v ∈ RN ,

〈v,∇2Hv〉 =
N

4

∑
V ′′(λi)v

2
i +

∑
i<j

(vi − vj)2

(λi − λj)2
. (7)

As a consequence, if the external potential V is convex, the logarithmic Sobolev

inequality with constant of order N yields fluctuations of the λi’s or order at most

N−1/2, which is not the optimal N−1+ε. However, for global statistics such as∑N
i=1 λi, the Bakry Émery criterion gives fluctuations of order at most at most 1,

which is optimal. Our proof will therefore mainly rely on a proper understanding

of convexity at a local scale, as explained in Subsection 4.2.

For this, we first need to introduce the following three definitions (where ε > 0

depends on a).

Rigidity at scale a: P
(
|λk − γk| ≥ N−1+a

)
≤ exp(−N ε),

Concentration at scale a: P
(
|λk − E(λk)| ≥ N−1+a

)
≤ exp(−N ε),

Accuracy at scale a: |γ(N)
k − γk| ≤ N−1+a,

where we remind that γk is defined by
∫ γk
−∞ ρV (s)ds = k

n , and γ
(N)
k is defined by∫ γ(N)

k

−∞ ρ
(N)
1 (s)ds = k

n . A remarkable fact is that rigidity at scale a for particles in

the bulk implies concentration and then accuracy at a better scale:

Rig(a)
(1)−→ Conc(a/2)

(2)−→ Acc(3a/4)
(3)−→ Rig(3a/4).

This self-improving scheme allows to conclude the proof of the optimal rigidity by

bootstrapping. The step (3) is easy from the definitions. The step (1) relies on a

local logarithmic Soblev inequality, explained in the next subsection, and the step

(2) relies on the loop equation, explained in Subsection 4.3.

4.2. The local logarithmic Sobolev inequality.

The main idea to get an improvement of concentration is that, although the bound

∇2H ≥ N cannot be improved, for most directions v the equation (7) gives a much
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better lower bound, in particular if
∑
vi = 0. More precisely, assume that the

positions of the λk’s are close to γk up to an error of order M/N (M = Na in our

induction), and take a I a subset of M successive particles (called x) in the bulk.

Then, under the constraint
∑
I vi = 0 equation (7) gives an estimate of order

〈v,∇2Hv〉 ≥
(
N

M

)2∑
I

(vi − vj)2 ≥
N2

M

∑
I

v2i .

This improved convexity bound in this specific directions implies a better concen-

tration estimate thanks to the following lemma, where x needs to be thought as

the internal particles (M of them) and y as the external ones. This corresponds to

Lemma 3.9 in Re. 5.

Lemma 4.1. Assume µ = e−(H1+H2), where H1 depends only on x (M particles),

H2 on x and y, H2 convex, and H1 independent of
∑
xi. Suppose that for any

v ∈ RM , 〈v,∇2H1v〉 ≥
(
N
M

)2∑
(vi − vj)2, then for any function of type f(x) =

F (
∑M

1 vixi) (where
∑
vi = 0), the following local logarithmic Sobolev inequality

holds:

Sµ(f) ≤ M

N2
Dµ(

√
f).

The main tool to prove this concentration result is the Brascamp-Lieb inequal-

ity7 , and it implies that linear statistics of type
∑
i:|i−k|<M viλi (

∑
vi = 0) have

fluctuations at most
√
M
N . As an application, denote I

(M)
k = {j : |j − k| ≤ M},

Na = M1 < · · · < M` = κN , and λ
(M)
k =

∑
I
(M)
k

λi

|I(M)
k |

. Write

λk = (λk − λ(M1)
k ) + · · ·+ (λ

(M`−1)
k − λ(M`)

k ) + λ
(M`)
k

The first term, of type
∑
viλi,

∑
vi = 0, is concentrated at scale

√
M1/N = N−1+

a
2

by the above Lemma. For a proper choice of the Mi’s, the other terms of this

telescopic sum have small fluctuations too, and the last one, λ
(κN)
k , has fluctuations

at most N−1, as previously observed by a direct application of the Bakry Émery

criterion.

This completes the (sketch of) proof for the improvement of concentration of

λk, by a multiscale analysis. This does not imply the improvement of rigidity, as

the distance between E(λk) and γk may still be of order N−1+a. This is not the

case as explained in the next subsection.

4.3. The loop equation.

A remarkable fact about β-ensembles is that their Stieltjes transform satisfy a family

of equations, called loop-equations, which turn out to be useful in many situations.

In our case, we will need the first order loop equation, as introduced by Johansson18

in a random matrix theory context (see also Eynard15 , Shcherbina25).
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We define m(z) =
∫ ρV (s)

z−s ds and mN (z) =
∫ ρ

(N)
1 (s)
z−s ds, where z = E + iη. A

good control on mN − m gives information for the typical locations between the

particles: if |mN −m| = O(1) for η ≥ N−1+b, γ(N)
k − γk, is of order at most N−1+b.

The difference mN − m satisfies the following quadratic equation, as can be

proved by integration by parts for example:

(mN −m)2(z) + s(z)(mN −m)(z) = cN (z)

where s is a function depending on ρV and

cN (z) ∼ 1

N2
Var

(∑ 1

z − λi

)
.

The nice fact about this equation is that a bound on the variance (which only

relies on the concentration properties of the λk’s) implies a bound on mN −m (and

therefore of the typical location). More precisely, our improved concentration at

scale N−1+
a
2 gives cN = O(1) for η ≥ N−1+

3
4a, concluding the sketch of the proof

for the improvement of the rigidity.

4.4. Convexification

In this section, till now we critically used the convexity of V , in particular in Lemma

4.1, where in the proof the Brascamp Lieb inequality requires ∇2H2 > 0. Indeed,

remember that for the β-ensemble, writing µ ∼ e−βH , with H = −
∑
i<j log(λj −

λi) + N
4

∑
i V (λi), we have

〈v,∇2Hv〉 =
N

4

∑
V ′′(λi)v

2
i +

∑
i<j

(vi − vj)2

(λi − λj)2
,

Therefore the Hamiltonian is convex only when V is. One can actually circumvent

this problem by the following argument from Ref. 6. It involves many technical

difficulties, but the main idea is summarized hereafter.

Take

H̃ = H +
∑̀
k=1

X2
α, Xα =

∑
i

g(N)
α (i)(λi − γi).

For example, if we chose g
(N)
k (i) ∼ 1, this would add convexity along the direction

(1, . . . , 1), direction along which the Hamiltonian H has poor convexity. If we take

a sufficient large number of such linear statistics (removing the slow modes along

which non-convexity holds, cf. Lemma 3.3 in Ref. 6 for the definition of the g
(N)
α ’s),

one can get the following result:

- For ` large enough (but independent of N) and a good choice of the g
(N)
α ’s,

H̃ is convex, hence optimal bulk rigidity holds for µ̃ ∼ e−NH̃ , by the argu-

ments of the previous subsection.
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- But under µ, by the loop equation, Xα is of order 1 (these macroscopic

statistics were studied in Refs. 18,25), hence rigidity holds for µ as well: for

the measures µ and µ̃ the event with exponentially small probability are

the same (cf. Lemma 3.6 in Ref. 6).
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