
ar
X

iv
:0

71
2.

08
48

v2
  [

m
at

h.
PR

] 
 2

4 
M

ar
 2

01
0

Ewens measures on compact groups and

hypergeometric kernels

P. Bourgade1, A. Nikeghbali2 and A. Rouault3

1 Institut Telecom, 46 rue Barrault, 75634 Paris Cedex 13
and Université Paris 6, LPMA, 175, rue du Chevaleret F-75013 Paris,
e-mail: bourgade@enst.fr

2 Institut für Mathematik, Universität Zürich , Winterthurerstrasse 190, CH-8057
Zürich, Switzerland,
e-mail: ashkan.nikeghbali@math.unizh.ch

3 Université Versailles-Saint Quentin, LMV, Bâtiment Fermat, 45 avenue des
Etats-Unis, 78035 Versailles Cedex,
e-mail: alain.rouault@math.uvsq.fr

Summary. On unitary compact groups the decomposition of a generic element into
product of reflections induces a decomposition of the characteristic polynomial into
a product of factors. When the group is equipped with the Haar probability mea-
sure, these factors become independent random variables with explicit distributions.
Beyond the known results on the orthogonal and unitary groups (O(n) and U(n)),
we treat the symplectic case. In U(n), this induces a family of probability changes
analogous to the biassing in the Ewens sampling formula known for the symmetric
group. Then we study the spectral properties of these measures, connected to the
pure Fisher-Hartvig symbol on the unit circle. The associated orthogonal polynomi-
als give rise, as n tends to infinity to a limit kernel at the singularity.
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1 Introduction

In this paper, U(n,K) is the unitary group over K = R,C or H (the set of
real quaternions).

Let U be distributed with the Haar measure on U(n,C). The random
variable det(Idn −U) has played a crucial role in recent years in the study of
some connections between random matrix theory and analytic number theory
(see [21] for more details). In [10], the authors show that det(Idn −U) can be
decomposed as a product of n independent random variables:

det(Idn − U)
law
=

n∏

k=1

(
1− eiωk

√
B1,k−1

)
, (1)
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where ω1, . . . , ωn, B1,0, . . . , B1,n−1 are independent, the ω′
ks being uniformly

distributed on (−π, π) and the B1,j ’s (0 ≤ j ≤ n− 1) being beta distributed
with parameters 1 and j (with the convention that B1,0 = 1). In particular,
from such a decomposition, fundamental quantities such as the Mellin-Fourier
transform of det(Idn − U) follow at once. The main ingredient to obtain the
decomposition (1) is a recursive construction of the Haar measure using com-
plex reflections. In particular, every U ∈ U(n,C) can be decomposed as a
product of n independent reflections. More precisely, it is proved in [10] that
if s1, . . . , sn are n independent random variables such that for every k ≤ n, sk
is uniformly distributed on the k-th dimensional unit sphere S k in Ck and if
R(k) is the reflection of Ck mapping sk onto the first vector of the canonical
basis, then

R(n)

(
Id1 0
0 R(n−1)

)
. . .

(
Idn−2 0
0 R(2)

)(
Idn−1 0
0 R(1)

)
∼ µU(n,C),

where µU(n,C) stands for the Haar measure on U(n,C). At this stage two re-
marks are in order. First, a similar method works to generate the Haar measure
on the orthogonal group O(n,R) (see [10]) and this was already noticed by
Mezzadri in [25] using Householder reflections. But as already noticed in [10],
Householder reflections would not work for U(n,C) (see next section for more
details). Moreover in [10], a decomposition such as (1) could not be obtained
for the symplectic group USp(2n,C), which also plays an important role in
the connections between random matrix theory and the study of families of L
functions (see [19], [20]). Indeed, there does not seem to be a natural way to
generate recursively the Haar measure on this group.

Question 1. Is there any decomposition of det(Idn − U) as a product
of independent variables of the type (1), when U is drawn from USp(2n,C),
according to the Haar measure?

In this paper we shall prove that, in a sense to be made precise, if a
subgroup G of U(n,K) contains enough reflections, then one can recursively
generate the Haar measure and obtain a decomposition of the type (1) for
det(Idn − U), U ∈ G. In particular this will apply to U(n,H) which can be
identified with the symplectic group, hence answering question 1 above. Our
recursive decomposition of the Haar measure also applies to the symmetric
group. This leads us to our second remark concerning the generation of the
Haar measure obtained in [10] and explained above. Indeed, this way of gen-
erating an element of U(n,C) which is Haar distributed by choosing a vector
(s1, . . . , sn) of independent variables from S 1 × . . .× S n, each si being uni-
formly distributed, is reminiscent of the generation of a random permutation
according to the so-called Chinese restaurant process which we briefly describe
(see [32] for a complete treatment). Let [n] denote the set {1, · · · , n} and Sn

the symmetric group of order n. It is known that for n ≥ 2, every permutation
σ ∈ Sn can be decomposed in the following way:
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σ = τn ◦ · · · ◦ τ2 (2)

where for k = 2, . . . , n, either τk is the identity or τk is the transposition
(k,mk) for some mk ∈ [k − 1]. In the first case we will say by extension that
it is the transposition (k,mk) with mk = k. This decomposition is unique, see
Tsilevich [36], the lemma p. 4075. It corresponds to the Chinese restaurant
generation of a permutation. Let us consider cycles as "tables". Integer 1 goes
to the first table. If τ2 6= Id, then integer 2 goes to the first table, at the left of
1. If τ2 = Id, it goes to a new table. When integers 1, . . . , k are placed, then
k+1 goes to a new table if τk+1 = Id, and goes to the left of τk+1(k+1) = jk+1

if not. We get a bijection between [1] × [2] × · · · × [n] → Sn. It is projective
(or consistent) in the sense that if σ is in Sn+1 the restriction of σ to [n] is in
Sn.

In this setting, the number of cycles kσ of a permutation σ is the number
of tables, i.e. the number of Id in (2) i.e. 1

kσ =

n∑

1

ξr , (3)

where ξr = 1(τr = Id). For a matricial rewriting, we make a change of basis.
Let e′j = en−j+1 and let R(k) be the restriction of τk to [k]. Then the product
in (2) is represented by

R(n)

(
Id1 0

0 R(n−1)

)
. . .

(
Idn−2 0

0 R(2)

)
.

If at each stage, the integer mk is chosen uniformly in [k], then the induced
measure on Sn is the uniform distribution denoted by µSn

.
Actually, one can more generally generate in this way the Ewens measure

on Sn (see Tsilevich [36] and Pitman [32]). The Ewens measure µ(θ), θ > 0, is
a deformation of µSn

obtained by performing a change of probability measure
or a sampling in the following way:

µθ
n(σ) =

θkσ

(θ)n
· µSn

(σ) . (4)

To generate µθ
n, one has to pick n integers m1,m2, . . . ,mn, independently,

from [1]× · · · × [n] according to the probability distribution

P(mk = k) =
θ

θ + k − 1
, P(mk = j) =

1

θ + k − 1
j = 1, · · · , k − 1 .

Question 2. Is there an analogue of the Ewens measure on the unitary
group U(n,C)?

1 The other construction of a random permutation named Feller’s coupling uses the
variables in the reverse order ξn, · · · , ξ1, but this construction is not projective.
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We shall see in this paper that there indeed exists an analogue of the
Ewens measure on U(n,C): more precisely we generalize (4) to unitary groups
and a particular class of their subgroups. The analogue of transpositions are

reflections and the weight of the sampling is now det(Id − U)δ det(Id − U)δ,

δ ∈ C, Re(δ) > −1/2, so that the measure µ
(δ)
U(n) on U(n), which is defined by

E
µ
(δ)

U(n)

(f(U)) =
EµU(n)

(
f(U) det(Id− U)δ det(Id− U)δ

)

EµU(n)

(
det(Id− U)δ det(Id− U)δ

)

for any test function f , is the analogue of the Ewens measure. Such sam-
plings with δ ∈ R have already been studied on the finite-dimensional unitary
group by Hua [18], and results about the infinite dimensional case (on complex
Grassmannians) were given by Pickrell ([30] and [31]). More recently, Neretin
[27] also considered this measure, introducing the possibility δ ∈ C. Borodin
and Olshanski [7] have used the analogue of this measure in the framework
of the infinite dimensional unitary group and proved ergodic properties. For-
rester and Witte in [38] referred to this measure as the cJUE distribution.
We also studied this ensemble in [12] in relation with the theory of orthog-
onal polynomials on the unit circle. Following [38] and [12] we shall call the
ensemble of unitary matrices endowed with this sampled measure the circular
Jacobi ensemble.

It is natural to ask whether the circular Jacobi ensemble has some interest-
ing properties: indeed, the case δ = 0 corresponds to the Haar measure and it
is well known this ensemble enjoys many remarkable spectral properties. For
instance, the point process associated to the eigenvalues is determinantal and
the associated rescaled kernel converges to the sine kernel . The projection of

the measures µ
(δ)
U(n) on the spectrum has the density

1

Zn

n∏

j=1

wT(eiθj )
∏

1≤i<j≤n

|eiθi − eiθj |2

where the weight wT on T = {eiθ, θ ∈ [−π, π]} is defined by

wT(eiθ) = (1− eiθ)δ̄(1− e−iθ)δ = (2− 2 cos θ)ae−b(π sgn θ−θ) ,

(δ = a + ib) and Zn is a normalization constant. Note that when b 6= 0,
an asymmetric singularity at 1 occurs. The statistical properties of the θk’s
depend on the successive orthonormal polynomials (ϕk) with respect to the
normalized version w̃T of wT and the normalized reproducing kernel

K̃T

n(e
iθ, eiτ ) =

√
w̃T(eiθ)w̃T(eiτ )

n−1∑

ℓ=0

ϕℓ(eiθ)ϕℓ(e
iτ ) .
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In [7] the authors consider the image of µ
(δ)
U(n) by the Cayley transform

on the set of Hermitian matrices and make a thorough study of the spec-
tral properties of this random matrix ensemble. In particular they prove that
the eigenvalues form a determinantal process and show that the associated
rescaled kernel converges to some hypergeometric kernel. As expected, we
shall see that the eigenvalues process of the circular Jacobi ensemble is also

determinantal and for every n, we identify the hypergeometric kernel K
(δ)
n

associated with it.

Question 3. Is there an appropriate rescaling of the kernels K
(δ)
n such

that the rescaled kernels converge to some kernel K
(δ)
∞ ?

We shall see that the answer to question 3 is positive and that the kernel

K
(δ)
∞ is a confluent hypergeometric kernel, with a natural connection to that

obtained by Borodin and Olshanski in [7] on the set of Hermitian matrices.
The case δ = 0 corresponds to the sine kernel.

The weight wT is a generic example leading to a singularity

c(+)|θ|2a1θ>0 + c(−)|θ|2a1θ<0

at θ = 0, with distinct positive constants c(+) and c(−). The confluent hyperge-
ometric kernel, depending on the two parameters a and b = 1

2π log(c(−)/c(+)),
is actually universal for the measures presenting the above singularity, as
proved in a forthcoming paper, following the method initiated by Lubinsky
([22], [23]). For a universality result when δ is real see [33].

The layout of the paper is as follows. In Section 2 we present the generation
by reflections and deduce a splitting formula for the characteristic polynomial
(Theorem 2). As an application, we define the generalized Ewens measure
depending on the complex parameter δ (Theorem 3). Section 3 is devoted to
a study of the kernel which governs the correlations of eigenvalues when the
unitary group is equipped with this measure and its asymptotics (Theorem
5). The main properties of the families of hypergeometric functions 2F1 and

1F1 are recalled in the Appendix.

2 Generating the Haar measure and the generalized

Ewens measure

2.1 Complex reflections

Reflections play a central role in the generation of the Haar measure for the
classical compact groups. In the case of O(n) the decomposition into a product
of reflections is well known, see [15] and other references as explained in [25].
Householder reflections are generally used in the case of O(n), but they are
not suitable for U(n,C). Indeed, recall that Householder reflections are of the
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form Hv = Id− 2v〈v| ·〉. For every unit y, it is possible to choose v such that
Hvy = αe1 with α = ± y1

|y1|
, where e1 is the first element of the canonical basis.

So when the ground field is C, then α 6= 1 in general and there does not exist
a Householder reflection which maps y onto e1, whereas this can always be
achieved when the ground field is R. That is why it is not possible to directly
extend the arguments in [25] to U(n,C). In [10] and [12] it is proposed to
use complex (resp. quaternionic) proper reflections, that is norm preserving
automorphisms of Cn (resp. Hn) that leave exactly one hyperplane pointwise
fixed. So a reflection will be either the identity or a unitary transformation U
such that I − U is of rank one. It may be written as

sa,λ(y) = y − a
(1− λ)〈a, y〉

|a|2

where a ∈ Hn and λ ∈ H with |λ| = 1 (λ is the second eigenvalue). If x 6= e1,
there exists a reflection mapping e1 onto x. It is enough to take a = e1 − x
and λ = −(1− x1)(1 − x̄1)

−1 where x1 = 〈e1, x〉.

2.2 Generating the Haar measure on U(n,K) and on some of its
subgroups

We first give conditions under which an element of a subgroup of U(n,K)
(under the Haar measure) can be generated as a product of independent re-
flections. This will lead to some remarkable identities for the characteristic
polynomial.

Let (e1, . . . , en) be an orthonormal basis of Kn. Let G be a subgroup of
U(n,K) and for all 1 ≤ k ≤ n− 1, let

Hk = {G ∈ G | G(ej) = ej , 1 ≤ j ≤ k} ,

the subgroup of G which stabilizes e1, · · · , ek. We set H0 = G. For a generic
compact group A, we write µA for the unique Haar probability measure on
A. Finally for all 1 ≤ k ≤ n let pk be the map U 7→ U(ek).

Proposition 1. Let G ∈ G and H ∈ H1 be independent random matrices,
and assume that H ∼ µH1 . Then GH ∼ µG if and only if G(e1) ∼ p1(µG).

Proof. The proof is exactly the same as in [10] Prop. 2.1, changing U(n+ 1)
into G and U(n) into H.

Definition 1. A sequence (ν0, . . . , νn−1) of probability measures on G is said
to be coherent with µG if for all 0 ≤ k ≤ n− 1,

νk(Hk) = 1 and pk+1(νk) = pk+1(µHk
) .

In the following, ν0 ⋆ ν1 ⋆ · · · ⋆ νn−1 stands for the law of a random variable
H0H1 . . . Hn−1 where all Hi’s are independent and Hi ∼ νi. Now we can
provide a general method to generate an element of G endowed with its Haar
measure.
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Theorem 1. If G is a subgroup of U(n,K) and (ν0, . . . , νn−1) is a sequence
of coherent measures with µG , then we have:

µG = ν0 ⋆ ν1 ⋆ · · · ⋆ νn−1.

Proof. It is sufficient to prove by induction on 1 ≤ k ≤ n that

νn−k ⋆ νn−k+1 ⋆ · · · ⋆ νn−1 = µHn−k
,

which gives the desired result for k = n. If k = 1 this is obvious. If the result
is true at rank k, it remains true at rank k + 1 by a direct application of
Proposition 1 to the groups Hn−k−1 and its subgroup Hn−k.

As an example, take the orthogonal group O(n). Let S
(k)
R

be the unit

sphere {x ∈ R
k | |x| = 1} and, for sk ∈ S

(k)
R

, let R(k) be the matrix of the

reflection which transforms sk into e1. If sk is uniformly distributed on S
(k)
R

and if all the sk are independent, then by Theorem 1, the matrix

R(n)

(
1 0

0 R(n−1)

)
. . .

(
Idn−2 0

0 R(2)

)(
Idn−1 0

0 R(1)

)
.

is µO(n) distributed.

2.3 Splitting of the characteristic polynomial

In view to phrase a general version of formula (1) which is proved in [10], we
need the following definition:

Definition 2. Note Rk the set of elements in Hk which are reflections. If for
all 0 ≤ k ≤ n− 1

{R(ek+1) | R ∈ Rk} = {H(ek+1) | H ∈ Hk},

the group G will be said to satisfy condition (R) (R standing for reflection).

Remark 1. It is easy to see that U(n,K) and Sn satisfy condition (R). In the
next subsection we shall see more examples.

Lemma 1. Let G be a subgroup of U(n,K) which satisfies condition (R). Let
G ∈ G. Then there exist reflections Rk ∈ Rk, 0 ≤ k ≤ n− 1, such that

G = R0R1 . . . Rn−1. (5)

Proof. This result has been established in [12] when G = U(n,C). The proof
in this more general case goes exactly along the same line.

The following deterministic lemma is a key result to obtain a decomposition
of det(Idn − U) as a product of independent random variables:
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Lemma 2. If for k = 1, . . . , n− 1, Rk ∈ Rk, then

det(Idn −R0 · · ·Rn−1) =

n−1∏

k=0

(1− 〈ek+1, Rk(ek+1〉) . (6)

Proof. We start with det(Idn −RH) = (detH) det(H∗ −R). Since H (hence
H∗), stabilizes e1, we have

i) (H∗ −R)(e1) = e1 −R(e1) =: a (say),
ii) for w ⊥ e1, H

∗(w) ⊥ e1 and since R is a reflection, R(w)−w is a scalar
multiple of a.

By the multilinearity of the determinant, we get

det(H∗ −R) = 〈e1, e1 −R(e1)〉det(π(H∗)− Idn−1)

which yields

det(Idn −RH) = (1− 〈e1, R(e1)〉) det(Idn−1 − π(H)) .

Iterating, we can conclude. ⊓⊔
The following result now follows immediately from Theorem 1 and Lemmas

1 and 2.

Theorem 2. Let G be a subgroup of U(n,K) satisfying condition (R), and let
(ν0, . . . , νn−1) be coherent with µG . If G ∼ µG, then

det(Id−G)
law
=

n−1∏

k=0

(1− 〈ek+1, Hk(ek+1), 〉) .

where Hk ∼ νk, 0 ≤ k ≤ n− 1, are independent.

2.4 Applications

The symmetric group.

Consider now Sn the group of permutations of size n. An element σ ∈ Sn can
be identified with the matrix (δjσ(i))1≤i,j≤n (δ is Kronecker’s symbol). It is

clear that 1 is eigenvalue of this matrix, with eigenvector e1 + · · · + en. Ben
Hambly et al. [17] considered the characteristic polynomial at s 6= 1. To make
relevant our problem of determinant splitting, we introduce wreath products,
following the definition of Wieand [37].

Let F be a subgroup of T =
{
x ∈ C | |x|2 = 1

}
, endowed with the Haar

probability measure µF . Then the wreath product F ≀ Sn provides another
example of determinant-splitting. An element of Fn can be thought of as
a function from the set [n] to F . The group Sn acts on Fn in the fol-
lowing way: if f = (f(1), . . . , f(n)) ∈ Fn and σ ∈ Sn, define fσ ∈ Fn

to be the function fσ = f ◦ σ−1. Finally take the product on Fn to be
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(f(1), . . . , f(n)) · (g(1), . . . , g(n)) = (fg(1), . . . , fg(n)). The wreath product of
F by Sn , denoted F ≀ Sn , is the group of elements {(f ; s) : f ∈ Fn, σ ∈ Sn}
with multiplication

(f ;σ) · (h;σ′) = (fhσ;σσ
′) .

If we represent (f ;σ) by the matrix (f(i)δiσ(j))1≤i,j≤n, then the product in
F ≀Sn corresponds to the usual matricial product which makes F ≀Sn a subgroup
of U(n,C). The usual examples are F = {1}, F = Z2 and F = T.

Corollary 1. Let G ∈ G(= F ≀ Sn) be µG distributed. Then

det(Idn −G)
law
=

n∏

j=1

(1− εjXj) ,

with ε1, . . . , εn, X1, . . . , Xn independent random variables, the εj’s µF dis-
tributed, P(Xj = j) = 1/j, P(Xj = 0) = 1− 1/j.

Proof. We apply Theorem 2. As reflections correspond now to transpositions,
condition (R) holds. Moreover Rk(ek+1) is uniformly distributed on the set
Fek+1 ∪ · · · ∪ Fen, so that 〈ek+1, Rk(ek+1)〉 is 0 with probability (n − k)/n
and otherwise, it is uniform on F . ⊓⊔

Remark 2. Notice that if G = (f ;σ) with σ = τn ◦ · · · ◦ τ2 (cf. (2)), then Xj is
the indicator function of τn−j+1 = Id.

Unitary and orthogonal groups

Take G = U(n,C). Then µHk
= fk(µU(n−k,C)) where fk : A ∈ U(n− k,C) 7→

Idk⊕A. As all reflections with respect to a hyperplane of Cn−k are elements of
U(n−k,C), one can apply Theorem 1 and Lemma 2. The Hermitian products
〈ek, hk(ek)〉 are distributed as the first coordinate of the first vector of an
element of U(n − k,C), that is to say the first coordinate of the (n − k)-
dimensional unit complex sphere with uniform measure :

〈ek+1, Hk(ek+1)〉 law
= eiωn

√
B1,n−k−1

with ωn uniform on (−π, π) and independent of B1,n−k−1, a beta variable
with parameters 1 and n− k − 1.

Therefore, as a consequence of Theorem 2, we obtain the following decom-
position formula derived in [10]. For g ∈ U(n,C) which is µU(n,C) distributed,
one has

det(Idn −G)
law
=

n∏

k=1

(
1− eiωk

√
B1,k−1

)
,

with ω1, . . . , ωn, B1,0, . . . , B1,n−1 independent random variables, the ωk’s uni-
formly distributed on (−π, π) and the B1,j ’s (0 ≤ j ≤ n − 1) being beta
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distributed with parameters 1 and j (by convention, B1,0 = 1).

A similar reasoning may be applied to SO(2n) (with the complex unit
spheres replaced by the real ones) to yield the following: let G ∈ SO(2n) be
µSO(2n) distributed, then (Corollary 6.2 in [10])

det(Id2n −G)
law
= 2

2n∏

k=2

(
1− ǫk

√
B 1

2 ,
k−1
2

)
.

The quaternionic group

Our goal with this example is to solve Question 1 which was raised in the
Introduction. To this end we establish an analogous to Lemma 2 and use the
fact that U(n,H) ∼= USp(2n) which is also denoted Sp(n), see for instance
[25] Theorem 2. Then we apply Theorem 1. Let us give details. Recall that
the symplectic group USp(2n,C) is defined as USp(2n,C) = {U ∈ U(2n,C) |
UJn

tU = Jn}, with

Jn =

(
0 Idn

−Idn 0

)
. (7)

Let

φ :






H → M(2,C)

a+ ib+ jc+ kd 7→
(

a+ ib c+ id
−c+ id a− ib

)
,

be the usual representation of quaternions. It is a continuous injective ring
morphism such that φ(x̄) = φ(x)∗. It induces the ring morphism

Φ :

{
M(n,H) → M(2n,C)

(aij)1≤i,j≤n 7→ (φ(aij))1≤i,j≤n
.

In particular

Φ(U(n,H)) = {G ∈ U(2n,C) : GZ̃n
tG = Z̃n}

where Z̃n = J1 ⊕ · · · ⊕ J1 and J1 =

(
0 1
−1 0

)
. Since Z̃n is conjugate to Jn,

defined by (7), the set Φ(U(n,H)) is therefore conjugate to USp(2n,C). We
can therefore consider det(I − Φ(G))

Lemma 3. If for k = 1, . . . , n− 1, Rk ∈ Rk, then

det(Id2n − Φ(R0 · · ·Rn−1)) =

n−1∏

k=0

det(Id2 − φ(〈ek+1, Rk(ek+1〉)) . (8)
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Proof. Let us first remark that the canonical basis e1, . . . , en of Hn is mapped
by Φ into the canonical basis ε1, . . . , ε2n of C2n, where the 2n × 2 matrix
[ε2k−1, ε2k] is exactly Φ(ek). Moreover, if R is a proper reflection (leaving
invariant an hyperplane), Φ(R) is a bireflection of C2n i.e. a unitary transfor-
mation leaving invariant a vector space of codimension 2.

We start with

det
(
(Id2n−Φ(RH)

)
= det

(
Id2n−Φ(R)Φ(H)

)
= detΦ(H) det

(
Φ(H∗)−Φ(R)

)

Since H (hence H∗) stabilizes e1, then Φ(H) (and Φ(H)∗) stabilizes ε1 and
ε2, so we have:

i) (H∗ −R)(e1) = e1 −R(e1) =: a = [a1, a2] (say), hence, for i = 1, 2,

(Φ(H∗)− Φ(R))(εi) = εi − Φ(R)(εi) =: ai .

ii) Assume that 〈e1, w〉 = 0. Trivially, 〈e1, H∗(w)〉 = 0 hence Φ(H∗)(w) is
a matrix whose column vectors are orthogonal to ε1 and ε2. Moreover, since
R is a quaternionic reflection, R(w) − w is a (right) scalar multiple of a (see
[14] Proposition 1.6), so Φ (R(w)− w) is a 2n× 2 matrix whose columns are
in Span (a1, a2).

By the multilinearity of the determinant, we get

det
(
Φ(H)∗ − Φ(R)

)
= det (〈ǫi, aj〉1≤i,j≤2) det(π(H

∗)− Id2n−2)

which yields

det(Idn − Φ(RH)) = det(Id2 − φ(〈e1, R(e1)〉)) det(Id2n−2 − π(H)) .

Iterating, we can conclude. ⊓⊔

Corollary 2. Symplectic group. Let G ∈ USp(2n,C) be µUSp(2n,C) dis-
tributed. Then

det(Id2n −G)
law
=

n∏

k=1

(
(ak − 1)2 + b2k + c2k + d2k

)
,

where the vectors (ak, bk, ck, dk), 1 ≤ k ≤ n are independent and (ak, bk, ck, dk)
are 4 coordinates of the 4k-dimensional real unit sphere endowed with the
uniform measure.

Remark 3. We have (ak, bk, ck, dk)
law
= 1√

N 2
1 +···+N 2

4k

(N1,N2,N3,N4), with the

N ′
i s i.i.d. N (0, 1). Now, since for p < q

N 2
1 + · · ·+N 2

p

N 2
1 + · · ·+N 2

q

law
= B p

2 ,
q−p
2

,
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we get the somehow more tractable identity in law

det(Id2n −G)
law
=

n∏

k=1

((
1 + ǫk

√
B 1

2 ,2k−
1
2

)2
+
(
1−B 1

2 ,2k−
1
2

)
B′

3
2 ,2k−2

)
,

with all variables independent, P(ǫk = 1) = P(ǫk = −1) = 1/2.
This method can be applied to other interesting groups such as USp(2n,R) =

{u ∈ U(2n,R) | uz tu = z} thanks to the morphism

φ :





C → M(2,R)

a+ ib 7→
(
a −b
b a

)
.

The traditional representation of the quaternions in M(4,R)

φ :





C → M(4,R)

a+ ib+ jc+ kd 7→




a −b −c −d
b a −d −c
c d a −b
d −c b a




gives another identity in law for a compact subgroup of U(4n,R).

2.5 The generalized Ewens measure

In this section we wish to define a generalization of the Ewens measure on
U(n,K) and some of its subgroups which will agree with the classical definition
on the symmetric group. We first recall the definition of the Ewens measure
on the symmetric group and how it can be generated.

The Ewens measure on Sn

Recall (see (2) Section 1) that every permutation σ ∈ Sn can be decomposed
in the following way:

σ = τn ◦ · · · ◦ τ2 (9)

where for k = 2, . . . , n, τk is either the identity or the transposition (k,mk)
for some mk ∈ [k − 1]. In the first case we will say by extension that it is the
transposition (k,mk) with mk = k. The number of cycles in the decomposition
of σ is denoted kσ. The system of Ewens measures of parameter θ > 0 consists
in choosing the mk, k = 1, . . . , n independently, with distribution

P(mk = k) =
θ

θ + k − 1
; P(mk = j) =

1

θ + k − 1
, j = 1, . . . , k − 1.

It is known that the induced probability on Sn is

µθ
n(σ) =

θkσ

(θ)n
. (10)
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The generalized Ewens measure

In the following, G is any subgroup of U(n,K). Take δ ∈ C such that

0 < EµG

(
det(Idn −G)δ det(Idn −G)δ

)
< ∞. (11)

For 0 ≤ k ≤ n− 1 we note

exp
(k)
δ :

{ G → R+

G 7→ (1− 〈ek+1, G(ek+1)〉)δ(1− 〈ek+1, G(ek+1)〉)δ
.

Moreover, define detδ as the function

detδ :

{ G → R+

G 7→ det(Idn −G)δ det(Idn −G)δ
.

Then the following generalization of Theorem 1 (which corresponds to the
case δ = 0) holds. However, note that, contrary to Theorem 1, in the fol-
lowing result we need that the coherent measures be supported by the set of
reflections.

Theorem 3. Generalized Ewens sampling formula. Let G be a subgroup
of U(n,K) checking condition (R) and (11). Let (ν0, . . . , νn−1) be a sequence

of measures coherent with µG , with νk(Rk) = 1. We note µ
(δ)
G the detδ-

sampling of µG and ν
(δ)
k the exp

(k)
δ -sampling of νk. Then

ν
(δ)
0 ⋆ ν

(δ)
1 ⋆ · · · ⋆ ν(δ)n−1 = µ

(δ)
G ,

i.e., for all test functions f on G,

E
ν
(δ)
0 ⋆···⋆ν

(δ)
n−1

(f(R0R1 . . . Rn−1)) =
EµG

(
f(G) det(Idn −G)δ det(Idn −G)δ

)

EµG

(
det(Idn −G)δ det(Idn −G)δ

) .

Proof. From Theorem 1, G
law
= R0 . . . Rn−1, hence

EµG

(
f(G) det(Idn −G)δ det(Idn −G)δ

)
=

Eν0⋆···⋆νn−1

(
f(R0 . . . Rn−1) det(Idn −R0 . . . Rn−1)

δ det(Idn −R0 . . . Rn−1)
δ
)
.

From Lemma 2, det(Idn −R0 . . . Rn−1) =
∏n−1

k=0 (1− 〈ek+1, Rk(ek+1)〉), hence

Eν0⋆···⋆νn−1

(
f(R0 . . . Rn−1) det(Idn −R0 . . . Rn−1)

δ det(Idn −R0 . . . Rn−1)
δ
)
=

Eν0⋆···⋆νn−1

(
f(R0 . . . Rn−1)

n−1∏

k=0

exp
(k)
δ (Rk)

)
.

By the definition of the measures ν
(δ)
k , this is the desired result. ⊓⊔
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Before exploring properties of this measure, let us give two examples of
δ-samplings.

First we check that we can recover the classical Ewens measure on the
symmetric group. Consider G = Z2 ≀ Sn. For δ > 0, the δ-sampling in Z2 ≀ Sn

induces a θ = 22δ−1 sampling on Sn.

Proposition 2. For δ > 0, the pushforward of µ
(δ)
Z2≀Sn

by the projection

(f, σ) 7→ σ is µθ
n with θ = 22δ−1.

Similarly, if we associate with each transposition of the decomposition (9) a
Rademacher variable, we get easily a sequence of reflections, and if νk denotes
the k-th corresponding measure, then the system (ν0, · · · , νn−1) is coherent

with µZ2≀Sn
. The pushforward of ν

(δ)
k under the projection is a transposition

biased by θ, so we recover the Ewens sampling formula.

Proof. Recall that the generic element of Z2 ≀ Sn is denoted (f, σ). Let C(σ)
the set of cycles of σ. If c = (d1, . . . , dj) is such a cycle, let ℓ(c) = j and

w(f ; c) =
∏j

1 f(dj). Then it is clear that

det (xIdn − (f ;σ)) =
∏

c∈C(σ)

(
xℓ(c) − w(f ; c)

)
,

and in particular,

det (Idn − (f ;σ)) =

{
0 if ∃c ∈ C(σ) : w(f ; c) = 1
2kσ if ∀c ∈ C(σ) : w(f ; c) = −1 .

(12)

Let P stand for µZ2≀Sn
i.e. the uniform distribution on Z2 ≀ Sn. For any test

function F

E
(
F (σ)| det(Idn − (f, σ))|2δ

)
= E

[
F (σ)E

(
| det(Idn − (f, σ))|2δ |σ

)]
.

Now, conditionally on σ, the weights of the cycles are independent Rademacher
variables (i.e. ±1 with probability 1/2). So,

P
(
∩c∈C(σ){w(f, σ) = −1}|σ

)
= 2−kσ

and, due to (12)

E
(
| det(Idn − (f, σ))|2δ |σ

)
= 2(2δ−1)kσ ,

which easily yields

E
µ
(δ)
Z2≀Sn

F (σ) =

∫

Sn

F (σ)dµθ
n(σ) .

⊓⊔
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The fundamental example remains U(n,C). In the following section, we
will study the determinantal sructure of this model for Re δ > −1/2. In [12]
a precise analysis of the reflections involved in the decomposition is given.
The case δ = 1 has a specific interest. If (θ1, . . . , θn) are the eigenangles of a
unitary matrix, we have

| det(Id− U)|2 =

n∏

j=1

|1− eiθj |2 ,

which, thanks to the density of the eigenangles, yields

E
µ
(1)

U(n)

(f(θ1, . . . , θn))

= cst

∫

(−π,π)n
f(θ1, . . . , θn)

∏

j<k

|eiθj − eiθk |2
n∏

l=1

|1− eiθl |2dθ1 . . .dθn.

This means that the distribution of the eigenangles (θ1, . . . , θn) of a random

matrix drawn according to µ
(1)
U(n) is the same as the distribution of the n first

eigenangles (θ1, · · · , θn) of a random matrix drawn according to µU(n+1,C),
conditionally on θn+1 = 0, or, as seen in [38], as the distribution of (θ1 −
θn+1, · · · , θn − θn+1). More generally, in [11], Bourgade gives a geometrical
characterisation of this kind of measures for δ/2 ∈ N, defining the notion of
conditional Haar measure.

Remark 4. A generalized Ewens sampling formula could also be stated for
Φ(G), with G checking condition (R) and Φ the ring morphism previously
defined.

3 A hypergeometric kernel

In this section, we study the correlations of the point process of eigenvalues

under the measure µ
(δ)
U(n,C) and answer Question 3 (see Introduction) asked by

Borodin-Olshanski in [7] section 8. Let us recall some basic facts on determi-
nantal processes and correlations, referring to the books [1] 4.2 or [6] or [16]
chap. 4.

Let Λ = R or T = {z ∈ C : |z| = 1} = {eiθ; θ ∈ [−π, π]} and let us fix
an integer n. The collection of eigenvalues (λ1, . . . , λn) of a random n × n
Hermitian (resp. unitary) matrix can be viewed as a point process on Λ , i.e.
a random counting measure νn = δλ1 + · · · + δλn

. Let us consider a simple
point process ν on Λ. If there exists a sequence of locally integrable functions
ρk such that for any mutually disjoint family of subsets D1, . . . , Dk of Λ

E

[
k∏

i=1

ν(Di)

]
=

∫
∏

k
i=1 Di

ρk(x1, . . . , xk)dx1 . . . dxk
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then the functions ρk are called the correlation functions, or joint intensities
of the point process. In this case, the process is said to be determinantal with
kernel K if its correlation functions ρk are given by

ρk(x1, . . . , xk) =
k

det
i,j=1

K(xi, xj) .

For ν = νn we denote the correlations by ρk,n for k ≤ n. When the joint
density of the eigenvalues is proportional to

n∏

k=1

w(xk)
∏

1≤j<k≤n

|xk − xj |2

for some weight w, the orthogonal poynomial method shows that the point
process of eigenvalues is determinantal. The use of Cayley transform allows to
connect Hermitian matrices and unitary matrices. We give a detailed descrip-
tion of the consequence of this connection for the corresponding eigenvalue
processes in Subsection 3.1, and its impact on the circular Jacobi ensemble in
Subsection 3.2. Finally, we study the asymptotic behavior in Subsection 3.3.

3.1 Determinantal processes and Cayley transform

We follow the approach of Forrester ([16] 2.5 and 4.1.4). We start with a weight
(positive integrable function) wT on T. The pushforward of the measure

∏

j=1

wT(eiθj )
∏

1≤j<k≤n

|eiθk − eiθj |2dθ1 · · ·dθn

by the stereographic projection (Cayley transform)

λ = i
1− eiθ

1 + eiθ
= tan

θ

2
; eiθ =

1 + iλ

1− iλ

gives the measure

2n
2

n∏

j=1

wT

(
1 + iλj

1− iλj

)
(1 + λ2

j )
−n

∏

1≤j<k≤n

|λk − λj |2dλ1 · · · dλn.

We define the weight wR on R as

wR(x) = (1 + x2)−nwT

(
1 + ix

1− ix

)
.

Conversely

wT(eiθ) =

(
cos

θ

2

)2n

wR

(
tan

θ

2

)
.



Ewens measures on compact groups and hypergeometric kernels 17

If the monomials 1, x, . . . , xn are in L2(wR(x)dx), then the orthogonal poly-
nomial method gives

1

ZR
n

n∏

j=1

wR(λj)
∏

1≤j<k≤n

|λk − λj |2 = det
(
K̃R

n (λj , λk)
)
1≤j,k≤n

where ZR
n is a normalization constant and where

K̃R

n (x, y) =
√
wR(x)wR(y) KR

n (x, y)

KR

n (x, y) =

n−1∑

ℓ=0

pRℓ (x)p
R

ℓ (y)

and the pRℓ are orthonormal with respect to the measure wR(x)dx. The
Christoffel-Darboux formula gives another expression for the kernel

KR

n (x, y) =
κn−1

κn

pRn(x)p
R
n−1(y)− pRn−1(x)p

R
n(y)

x− y

where κj is the coefficient of xj in pRj (x). In terms of the monic orthogonal
polynomials P0, · · · , Pn, this yields

KR

n (x, y) =

n−1∑

ℓ=0

Pℓ(x)Pℓ(y)

‖Pℓ‖2
(13)

=
PR
n (x)P

R
n−1(y)− PR

n−1(x)P
R
n (y)

‖Pn−1‖2(x − y)
. (14)

Besides, on the unit circle, we consider the polynomials ϕℓ (resp. Φℓ) or-
thonormal (resp. monic orthogonal) with respect to the measure wT(eiθ)dθ,
and their reciprocal defined by

Φ⋆
ℓ (z) = zℓ Φℓ(1/z̄) , ϕ⋆

ℓ (z) = zℓ ϕℓ(1/z̄) .

We have then

1

ZT
n

n∏

j=1

wT(eiθj )
∏

1≤j<k≤n

|eiθk − eiθj |2 = det
(
K̃T

n(e
iθj , eiθk)

)
1≤j,k≤n

with

K̃T

n(z, ζ) =
√
wT(z)wT(ζ) KT

n(z, ζ)

and

KT

n(z, ζ) =

n−1∑

ℓ=0

ϕℓ(z)ϕℓ(ζ) .
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The Christoffel-Darboux formula is now

KT

n(z, ζ) =
ϕ∗
n(z)ϕ

∗
n(ζ) − ϕn(z)ϕn(ζ)

1− z̄ζ
(15)

(see [35] 1.12 and 3.2), or

KT

n(z, ζ) =
Φ∗
n(z)Φ

∗
n(ζ)− Φn(z)Φn(ζ)

‖Φn‖2(1− z̄ζ)
. (16)

The kernel K̃R
n (resp. K̃T

n) rules the correlation function ρRn,m(λ1, · · · , λm)

(resp. ρCn,m(eiθ1 , · · · , eiθm)) for m = 1, · · · , n.

3.2 Our weights and their characteristics

For the sake of simplicity we use the polygamma symbol

Γ

[
a, b, · · ·
c, d, · · ·

]
:=

Γ (a)Γ (b) · · ·
Γ (c)Γ (d) · · · .

For δ = a+ib ∈ C with a > −1/2, we will consider two weights on (−π, π)

wT

1 (e
iθ) = (1− eiθ)δ(1− e−iθ)δ = (2− 2 cos θ)ae−b(π sgn θ−θ) (17)

wT

2 (e
iθ) = (1 + eiθ)δ(1 + e−iθ)δ = (2 + 2 cos θ)ae−bθ (18)

These are "pure" Fisher-Hartwig functions. We can go from wT
1 to wT

2 by the
transform

θ 7→ τ := −θ + π(sgn θ) (19)

which carries the discontinuity in θ = 0 to the edges ±π, so that

eiθ = −e−iτ and wT

1 (e
iθ) = wT

2 (e
−iτ ) . (20)

For a > −1/2, the Fourier coefficients of w1 are known ([9] Lemma 2.1)

1

2π

∫ π

−π

wT

1 (e
iθ)e−inθdθ = (−1)nΓ

[
1 + δ + δ̄

δ̄ − n+ 1, δ + n+ 1

]
.

With

c(δ) =
1

2π
Γ

[
1 + δ, 1 + δ̄
1 + δ + δ̄

]
,

the function w̃T
1 (e

iθ) = c(δ)wT
1 (e

iθ) is a probability density on (−π, π). For w2,
we note that

∫ π

−π

wT

1 (e
iθ)e−inθdθ = (−1)n

∫ π

−π

wT

2 (e
iτ )einτdτ.

Moreover we go from one system of polynomials to the other by the mapping
z 7→ −z.
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It is known from [4] p. 304 and [5] p.31-34 that for n ≥ 0 the n-th or-
thonormal polynomial with respect to w̃T

1 (e
iθ)dθ is

Φn(z) = Γ

[
δ + n, δ̄ + 1
δ̄ + n+ 1, δ

]
2F1

(
−n, δ̄ + 1
1− n− δ

; z

)
(21)

with

‖Φn‖2 = Γ

[
δ + δ̄ + n+ 1, n+ 1, δ̄ + 1, δ + 1
δ̄ + n+ 1, δ + n+ 1, δ + δ̄ + 1

]
, (22)

(see also [16] Prop. 4.8 in the case δ real). With the complement formula (48)
we get the other form

Φn(z) = Γ

[
δ + δ̄ + 1 + n, δ̄ + 1
δ̄ + n+ 1, δ + δ̄ + 1

]
2F1

(
−n, δ̄ + 1
δ + δ̄ + 1

; 1− z

)
. (23)

In view of (47) and (21) we identify Φ∗
n as

Φ∗
n(z) = 2F1

(
−n, δ̄
−n− δ

; z

)
, (24)

or, using (48) again

Φ∗
n(z) = Γ

[
δ + δ̄ + 1 + n, δ + 1
δ + n+ 1, δ + δ̄ + 1

]
2F1

(
−n, δ̄

δ + δ̄ + 1
; 1− z

)
. (25)

Borodin and Olshanski considered the following weight on R :

2−δ−δ̄wR

2 (x) = (1 + ix)−δ−n(1− ix)−δ̄−n . (26)

Since this weight depends on n, the reference measure has only a finite set of
moments so that there is only a finite set of orthogonal polynomials (these
are the pseudo-Jacobi polynomials)

pm(x) = (x− i)m 2F1

(
−m, δ + n−m
δ + δ̄ + 2n− 2m

;
2

1 + ix

)
(27)

m < a+ n− 1
2 . Let us call K̃R

2,n the corresponding kernel.

3.3 Asymptotic behavior

For the weight wR
2 , Borodin and Olshanski considered the (thermodynamic)

scaling limit λ 7→ nλ and proved ([7] Theorem 2.1)

Theorem 4 (Borodin-Olshanski). Let Re δ > −1/2.

1. We have

lim
n

(sgn x sgn y)nnK̃R

2,n(nx, ny) = K̃R

∞(x, y) (28)
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uniformly for x, y in compact sets of R⋆ × R⋆, where (for x 6= y)

K̃R

∞(x, y) :=
1

2π
Γ

[
δ + 1, δ̄ + 1

δ + δ̄ + 1, δ + δ̄ + 2

]
P̃ (x)Q(y)−Q(x)P̃ (y)

x− y
(29)

P̃ (x) =

∣∣∣∣
2

x

∣∣∣∣

δ+δ̄
2

e−
i
x
+π (δ−δ̄) sgn x

4 1F1

(
δ

δ + δ̄ + 1
;
2i

x

)
(30)

Q(x) =
2

x

∣∣∣∣
2

x

∣∣∣∣

δ+δ̄
2

e−
i
x
+π (δ−δ̄) sgn x

4 1F1

(
δ + 1

δ + δ̄ + 2
;
2i

x

)
. (31)

2. The limiting correlation is given by

lim
n

nmρRn,m(nλ1, · · · , nλm) = det
(
K̃R

∞(λi, λj)
)

1≤i,j≤m
. (32)

The kernel K̃R
∞(1/x, 1/y) is called the confluent hypergeometric kernel in [8].

For the circular model, we choose the set-up w1 for the sake of consistency
with the above sections. The singularity is in z = 1 i.e. θ = 0. To study the
asymptotic behavior of the point process on T at the singularity (edge) we
have two ways: either take the thermodynamic scaling θ 7→ θ/n, or use the
result on R.

Theorem 5. Let Re δ > −1/2.

1. With the weight w1,

lim
n

n−1K̃T,1
n (eiθ/n, eiτ/n) = K̃T

∞(θ, τ) (33)

with, for θ 6= τ

K̃T

∞(θ, τ) =
1

2iπ
Γ

[
1 + δ, 1 + δ̄

1 + δ + δ̄, 1 + δ + δ̄

]
P T(θ)P T(τ) − P T(θ)P T(τ)

θ − τ

(34)

where

P T(θ) := |θ| δ+δ̄
2 ei

θ
2−

π
4 (δ−δ̄) sgn θ

1F1

(
δ

δ + δ̄ + 1
; −iθ

)
= P̃

(
− 2θ−1

)
,

(35)

and

K̃T

∞(θ, θ) =
|θ|δ+δ̄

2π
Γ

[
1 + δ, 1 + δ̄

1 + δ + δ̄, 1 + δ + δ̄

]
Re

[
1F1

(
δ

δ + δ̄ + 1
;−iθ

)[
1F1

(
δ̄

δ + δ̄ + 1
; iθ

)
− 2 1F1

(
δ̄ + 1

δ + δ̄ + 2
; iθ

)]]

(36)
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2. The limiting correlation is given by

lim
n

nmρT,1n,m(eiθ1/n, · · · , eiθm/n) = det
(
K̃T

∞(θi, θj)
)

1≤i,j≤m
. (37)

Proof. We begin with a direct proof of (33) when θ 6= τ , and then proceed
with the proof of (33) when θ = τ , which directly yields (37) and we end with
an alternate proof of (37) using (32) and the Cayley transform.

1) The following lemma describes the asymptotical behavior of the quantities
entering in the kernel.

Lemma 4. When n → ∞

lim
n

‖Φn‖2 = Γ

[
δ̄ + 1, δ + 1
δ + δ̄ + 1

]
(38)

Moreover if nθn → θ, then (uniformly for θ in a compact set)

limn−δΦn(e
iθn) = Γ

[
δ̄ + 1

δ + δ̄ + 1

]
1F1

(
δ̄ + 1

δ + δ̄ + 1
; iθ

)
, (39)

limn−δ̄Φ⋆
n(e

iθn) = Γ

[
δ + 1

δ + δ̄ + 1

]
1F1

(
δ̄

δ + δ̄ + 1
; iθ

)
, (40)

limn−δ̄+1(Φ⋆
n)

′(eiθn) = δ̄Γ

[
δ + 1

δ + δ̄ + 2

]
1F1

(
δ̄ + 1

δ + δ̄ + 2
; iθ

)
. (41)

Proof. Let us first recall that, as n → ∞,

Γ (c+ n)

Γ (n)
∼ nc , (42)

which gives immediately (38). The limits in (39) and (40) are then conse-
quences of (23), (25) and the limiting relation (50). Besides, in view of (49)
and (25),

(Φ⋆
n)

′(z) =
nδ̄

δ + δ̄ + 1
Γ

[
δ + δ̄ + n, δ + 1

δ + δ̄ + 1, δ + n+ 1

]
2F1

(
−n+ 1, δ̄ + 1
δ + δ̄ + 2

; 1− z

)
.

It remains to apply (50). ⊓⊔
A) For θ 6= τ , we have, by the Christoffel-Darboux formula (15):

lim
n

i(θ − τ)Γ (δ + δ̄ + 1)n−(δ+δ̄+1)KT,1
n (eiθ/n, eiτ/n) =

1F1

(
δ

δ + δ̄ + 1
; −iθ

)
1F1

(
δ̄

δ + δ̄ + 1
; iτ

)

− 1F1

(
δ + 1

δ + δ̄ + 1
; −iθ

)
1F1

(
δ̄ + 1

δ + δ̄ + 1
; iτ

)
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Now, applying the Kummer’s formula (52)

1F1

(
δ + 1

δ + δ̄ + 1
; −iθ

)
= e−iθ

1F1

(
δ̄

δ + δ̄ + 1
; iθ

)

1F1

(
δ̄ + 1

δ + δ̄ + 1
; iτ

)
= eiτ 1F1

(
δ

δ + δ̄ + 1
; −iτ

)

Besides we have (recall that we used w̃1)

K̃T,1
n (eiθ/n, eiτ/n)

KT,1
n (eiθ/n, eiτ/n)

= c(δ)
√
w1(eiθ/n)w1(eiτ/n)

and from the very definition of w1

limn2(δ+δ̄)w1(e
iθ/n)w1(e

iτ/n) = |θτ |2Reδe−Imδπ(sgn θ+sgn τ)

We conclude that (33) holds true.

B) On the diagonal In the following z and ζ are elements of T. If F and G
are differentiable functions on T, the de l’Hospital rule gives

lim
ζ→z

F (z)G(ζ) − F (ζ)G(z)

z − ζ
= F ′(z)G(z)− F (z)G′(z) .

Taking
F (z) = z−nΦn(z) , G(z) = Φn(z) ,

so that

F ′(z) = −nz−n−1Φn(z) + z−nΦ′
n(z) , G′(z) = −z−2Φ′

n(z)

we get the value of the kernel on the diagonal:

lim
ζ→z

Φ∗
n(z)Φ

∗
n(ζ)− Φn(z)Φn(ζ)

1− z̄ζ
= −n|Φn(z)|2 + 2Re[Φn(z)zΦ

′
n(z)]

= n|Φ∗
n(z)|2 − 2Re[Φ∗

n(z)z(Φ
∗
n)

′(z)].

(43)

It remains to apply the lemma.
Notice that

lim
n

n−(1+δ+δ̄)KT,1
n (1, 1) =

1

Γ (δ + δ̄ + 2)
.

2) Alternate proof of (37)
The pushforward of the measure

ρR,2n (x1, · · · , xn)dx1 . . . dxn
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by the Cayley transform is,

2−nρR,2n

(
tan

θ1
2
, · · · , tan θn

2

) n∏

k=1

cos−2 θk
2

dθ1 . . .dθn

which, at the level of kernels gives

ρT,2n,m(eiθ1 , · · · , eiθm)) = det

[
K̃R,2

n

(
tan

θi
2
, tan

θj
2

)
1

2 cos θi cos θj

]

1≤i,j≤m

.

Coming back to the superscript 1 with the help of (19) we obtain

ρT,1n,m(eiθ1 , · · · , eiθm)) = det [Hn(θi), Hn(θj)]1≤i,j≤m

with

Hn(θ, θ
′) = K̃R,2

n

(
− cot

θ

2
,− cot

θ′

2

)
1

2| sin θ
2 sin

θ′

2 |
.

Let us rescale the angles. Since limn n tan θ
n = θ , limn n tan θ′

n = θ′ and
since the limit in (28) is uniform on compact subsets, we get

lim
1

n
Hn

(
θ

n
,
θ′

n

)
=

2

|θθ′|K̃
R

∞

(
−2

θ
,− 2

θ′

)
.

We remark that P T(θ) = P̃ (x) with xθ = −2. Moreover, from (53), we
have

i

δ̄ + δ + 1
Q(x) = P T(θ)− P T(θ)

so that, if τ = −2/y

i

δ̄ + δ + 1

[
P̃ (x)Q(y)− P̃ (y)Q(x)

]
= P T(θ)P T(τ) − P T(τ)P T(θ)

and consequently
θτ

2
K̃T

∞(θ, τ) = K̃R

∞(x, y) . (44)

⊓⊔
Remark 5. 1. To have a graphical point of view of this kernel, we refer to

[13] p.56–60.
2. In [26], the behavior of the limiting kernel on R is used to study asymp-

totics of the maximal eigenvalue of the generalized Cauchy ensemble.
3. An easy computation shows that for δ real, δ > −1/2, we recover the

Bessel kernel

KT

∞ =
π

2

√
θτ

Jδ+ 1
2
(πθ2 )Jδ− 1

2
(πτ2 )− Jδ− 1

2
(πθ2 )Jδ+ 1

2
(πτ2 )

2(θ − τ)
,

and for δ = 0 the sine kernel

KT

∞ =
sin( θ−τ

2 )

π(θ − τ)
.
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4 Appendix: Hypergeometric functions

For a classical reference on hypergeometric functions, see [2].
The Gauss hypergeometric function is defined as

2F1

(
a, b
c

; z

)
=

∞∑

k=0

(a)k(b)k
(c)k

zk

k!
(45)

where (x)n stands for the Pochhammer symbol (x)k = x(x+1) . . . (x+k−1),
with the convention (x)0 = 1. When a = −n ∈ −N0, it is a polynomial

2F1

(
−n, b
c

; z

)
=

n∑

k=0

(−1)k
(
n

k

)
(b)k
(c)k

zk. (46)

The following relations are useful:

zn 2F1

(
−n, b
c

; z−1

)
= (−1)n

(b)n
(c)n

2F1

(
−n,−n− c+ 1
−n− b+ 1

; z

)
(47)

2F1

(
−n, b
c

; 1− z

)
=

(c− b)n
(c)n

2F1

(
−n, b

−n+ b+ 1− c
; z

)
(48)

d

dz
2F1

(
a, b
c

; z

)
=

ab

c
2F1

(
a+ 1, b+ 1

c+ 1
; z

)
. (49)

It is known that, uniformly for z in a compact set, for b, c fixed

lim
N

2F1

(
−N, b

c
; − z

N

)
= 1F1

(
b
c
; z

)
(50)

where

1F1

(
b
c
; z

)
=

∞∑

k=0

(b)k
(c)k

zk

k!
(51)

is the confluent hypergeometric function.
It satisfies Kummer’s formula:

ez 1F1

(
a
c
; −z

)
= 1F1

(
c− a
c

; z

)
, (52)

the recursion formula

1F1

(
a
c
; z

)
= 1F1

(
a− 1
c

; z

)
+

z

c
1F1

(
a

c+ 1
; z

)
, (53)

and the derivative formula

d

dz
1F1

(
a
c
; z

)
=

a

c
1F1

(
a+ 1
c+ 1

; z

)
. (54)
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