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Institute of Science and Technology Austria

lerdos@ist.ac.at

H.-T. Yau

Harvard University
htyau@math.harvard.edu

J. Yin

University of Wisconsin, Madison
jyin@math.wisc.edu

We prove the Wigner-Dyson-Mehta conjecture at fixed energy in the bulk of the spectrum for gen-
eralized symmetric and Hermitian Wigner matrices. Previous results concerning the universality of
random matrices either require an averaging in the energy parameter or they hold only for Hermi-
tian matrices if the energy parameter is fixed. We develop a homogenization theory of the Dyson
Brownian motion and show that microscopic universality follows from mesoscopic statistics.

Keywords: Universality, Homogenization, Dyson Brownian motion.

1 Introduction ......................................................................................................................................... 2

2 Main result and sketch of the proof ..................................................................................................... 3

3 Homogenization.................................................................................................................................... 7

4 Proof of the universality at fixed energy .............................................................................................. 22

5 Mesoscopic fluctuations for Gaussian ensembles .................................................................................. 34
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1 Introduction

E. Wigner discovered that energy levels of large quantum systems exhibit remarkably simple universality
patterns. He introduced a fundamental model, the Wigner matrix ensemble, and postulated that the statistics
of the eigenvalue gaps, i.e. differences of consecutive eigenvalues, depend only on the symmetry class of
the model and are independent of the details of the ensemble. Although the central universal objects in
Wigner’s original work were the eigenvalue gap distributions, the subsequent developments showed that the
correlation functions play a key role. In fact, a few years after Wigner’s pioneering work, Gaudin, Mehta
and Dyson computed explicitly the eigenvalue correlation functions for the Gaussian cases and expressed the
eigenvalue gap distributions in terms of them. Later on, Mehta formalized a version of the (Wigner-Dyson-
Mehta) universality conjecture in his seminal book [28] by stating that the appropriately rescaled correlation
functions for any Wigner ensemble coincide with those for the Gaussian cases as N , the size of the matrix,
tends to infinity. This holds for both real symmetric and complex Hermitian ensembles (Conjectures 1.2.1
and 1.2.2 in [28]). The topology of the convergence, however, was not specified explicitly.

One possible topology for the correlation functions is the pointwise convergence. But the convergence in
this topology cannot hold for Wigner ensembles with discrete (e.g. Bernoulli) matrix elements so it could
only be used for a certain subclass of Wigner matrices. Thus a reasonably strong topology suitable for the
universality of the whole class of Wigner matrices is the vague convergence of the local correlation functions,
rescaled around a fixed energy E; in short we will call it fixed energy universality (see Section 2 for the
precise definitions). Certainly, instead of fixing the energy E, we can also take weak convergence in E or
equivalently, taking some average in the energy. We will call universality in this weaker topology averaged
energy universality. Finally, one can go back to Wigner’s original point of view and ask for universality of
the gap distributions.

The Wigner-Dyson-Mehta conjecture has been widely open until the recent work [10] where a general
scheme to approach it was outlined and carried out for complex Hermitian matrices. The basic idea is
first to establish a local version of the semicircle law and use it as an input to control the correlation
function asymptotics in the Brezin-Hikami formula (which is related to Harish-Chandra/Itzykson-Zuber
formula). This provides universality for the so-called Gaussian divisible models with a very small Gaussian
component, or “noise” (previously, this universality was established by Johansson [25] when the noise is of
order one). The last step is an approximation of a general Wigner ensemble by Gaussian divisible ones and
this leads to the fixed energy universality for Hermitian Wigner matrices whose matrix elements have smooth
distributions. The various restrictions on the laws of matrix elements were greatly relaxed in subsequent
works [8, 11, 16, 32]. In particular, using the local semicircle law [12] as a main input, Tao-Vu [32] proved a
comparison theorem which provides an approximation result for Wigner matrices satisfying a four moment
matching condition. Finally, the conditions for tail distributions of the matrix elements were greatly relaxed
in [8, 16, 33]. For a concise review on the recent progress on the universality for random matrices, see,
e.g., [17].

For real symmetric matrices, no algebraic formula in the spirit of Brezin-Hikami is known. A completely
new method based on relaxation of the Dyson Brownian Motion (DBM) to local equilibrium was developed
in a series of papers [14,15,20]. This approach is very robust and applies to all symmetry classes of random
matrices, including also sample covariance matrices and sparse matrices [8,15], but it yields only the average
energy universality. Although the energy averaging is on a very small scale, it so far cannot be completely
removed with this method.

We now comment on a parallel development for the universality of the eigenvalue gaps which was Wigner’s
original interest. Correlation functions at a fixed energy E carry full information about the distribution of
the eigenvalues near E. In particular, the Fredholm determinant and the Jimbo-Miwa-Mori-Sato formulae
yield the probability that no eigenvalues appear in a neighborhood around E. The universality of the
distribution of the gap with a fixed label (which we will call gap universality), e.g. the difference between,
say, the N/2-th and (N/2− 1)-th eigenvalues, however cannot be deduced rigorously from the fixed energy
universality. Conversely, the gap universality does not imply the fixed energy universality either. The reason
is that eigenvalues with a fixed label fluctuate on a scale larger than the mean eigenvalue spacing, so fixed
energy and fixed label universalities are not equivalent. The gap universality was established in [18] via a
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De Giorgi-Nash-Moser type Hölder regularity result for a discrete parabolic equation with time dependent
random coefficients Bij(t) = (xi(t)−xj(t))−2 where x(t) is the DBM trajectory. The gap universality for the
special case of Hermitian matrices satisfying the four moment matching condition was proved earlier in [31].

To summarize, the Wigner-Dyson-Mehta conjecture was completely resolved in the sense of averaged
energy and fixed label gap universalities for both symmetric and Hermitian ensembles. In the sense of fixed
energy universality, it was proved for the Hermitian matrices, but not for real symmetric ones. In the current
paper, we settle this last remaining case of the Wigner-Dyson-Mehta conjecture by proving the universality
of local correlation functions at any fixed energy E in the bulk spectrum for generalized Wigner matrices of
any symmetry classes. Our theorem in particular implies the following three new results for real symmetric
matrices (including the Bernoulli cases): (1) existence of the density of states on microscopic scales for
generalized Wigner matrices, (2) the extension of the Jimbo-Miwa-Mori-Sato formula of the gap probability
to generalized real Wigner matrices, (3) the precise distribution of the condition number or the smallest (in
absolute value) eigenvalue of generalized Wigner matrices. Our proof also applies to the third symmetry
class, the symplectic matrices, but we will focus on the real symmetric case as this is the most complicated
case from the technical point of view.

The essence of the current work is a homogenization theory for the discrete parabolic equation with time
dependent random coefficients Bij(t) = (xi(t)−xj(t))−2. By a rigidity property of the DBM trajectories, the
random coefficients are close to deterministic ones, Bij(t) ≈ (γi − γj)−2 if |i− j| � 1 (the typical locations
γi are defined in (2.5)). The continuous version of the corresponding heat kernel is explicitly known; in fact
locally it is given by e−t|p|(i, j) where |p| =

√
−∆. By coupling two DBM for two different initial conditions

x(0) and y(0) (one for Wigner, one for a reference Gaussian ensemble), we show that after a sufficiently
long time, the difference between xi(t) and yi(t) is given by the deterministic heat kernel acting on the
difference of the initial data. Due to the scaling properties of the explicit heat kernel, this latter involves
only mesoscopic linear statistics of the initial conditions which are more accessible than microscopic ones.
Homogenization thus enables us to transfer mesoscopic statistics to microscopic ones. The main steps of the
proof will be described in the next section in more details.

Convention. For two N -dependent positive quantities a = aN , b = bN we say that a and b are comparable,
a ∼ b, if there exists a constant C > 0, independent of N , such that C−1 6 a/b 6 C.

2 Main result and sketch of the proof

2.1 The model and the result. We consider the following class of random matrices.

Definition 2.1. A generalized Wigner matrix HN is a Hermitian or symmetric N ×N matrix whose upper-
triangular elements hij = hji, i 6 j, are independent random variables with mean zero and variances
σ2
ij = E(|hij |2) that satisfy the following two conditions:

(i) Normalization: for any j ∈ J1, NK,
∑N
i=1 σ

2
ij = 1.

(ii) Non-degeneracy: σ2
ij ∼ N−1 for all i, j ∈ J1, NK.

In the Hermitian case, we furthermore assume that Var<(hij) ∼ Var=(hij) for i 6= j and that one of the
following holds: (1) <(hij),=(hij) are independent, or (2) the law of hij is isotropic, i.e. |hij | is independent
of arg hij, which is uniform on (0, 2π).

We additionally assume that there exists p > 0 large but fixed such that

sup
i,j,N

E
(

(
√
N |hij |)p

)
<∞. (2.1)

For example p = 10 is sufficient for our purpose, in this work we will not try to get the lowest possible
exponent p, for the clarity of exposition. We denote by

x1 6 . . . 6 xN
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the N random eigenvalues of a generalized Wigner matrix HN . Let µ(N)(u) be the associated probability
distribution of the spectrum, where u = (u1, . . . , uN ) is an element of the simplex Σ = {u : u1 6 . . . 6
uN} ⊂ RN . The universal limiting point process for random spectra will be uniquely characterized by the
limits of the k-point correlation functions for k = 1, 2, . . . as N →∞. These are defined1 by

ρ
(N)
k (u1, . . . , uk) =

∫
RN−k

µ̃(N)(u)duk+1 . . . duN , (2.2)

where µ̃(N) is the symmetrized version of µ(N), defined on RN instead of the simplex: µ̃(N)(u) = 1
N !µ

(N)(u(σ))

where u(σ) = (uσ(1), . . . , uσ(N)) with uσ(1) 6 . . . 6 uσ(N). The limiting density (k = 1 point correlation
function) of the eigenvalues is the Wigner semicircle law and it will be denoted

d%(x) = %(x)dx =
1

2π

√
(4− x2)+dx.

In the fundamental particular case where HN is a real symmetric matrix from the Gaussian Orthogonal
Ensemble (GOE), the correlation functions are known to converge on microscopic scales, the limit being
expressible as a determinant [6, 7, 28,29]: for any v ∈ Rk and E ∈ (−2, 2), we have

1

%(E)k
ρ

(N,GOE)
k

(
E +

v

N%(E)

)
=

1

%(E)k
ρ

(N)
k

(
E +

v1

N%(E)
, . . . , E +

vk
N%(E)

)
→ ρ

(GOE)
k (v) , (2.3)

where this limit is independent of E ∈ (−2, 2). For complex Hermitian matrices from the Gaussian Unitary

Ensemble (GUE), the same statement holds with a different limit ρ
(GUE)
k (v).

Bulk universality for generalized Wigner matrices was considered for various convergence types, notably
the two following ones. We state them only in the symmetric case, the Hermitian setting being similar.

Fixed energy universality (in the bulk). For any k > 1, F : Rk → R continuous and compactly supported
and for any κ > 0, we have, uniformly in E ∈ [−2 + κ, 2− κ],

lim
N→∞

1

%(E)k

∫
dvF (v)ρ

(N)
k

(
E +

v

N%(E)

)
=

∫
dvF (v)ρ

(GOE)
k (v) . (2.4)

Averaged energy universality (in the bulk). For any k > 1, F : Rk → R continuous and compactly supported,
and for any ε, κ > 0, we have, uniformly in E ∈ [−2 + κ, 2− κ],

lim
N→∞

1

%(E)k

∫ E+s

E

dx

s

∫
dvF (v)ρ

(N)
k

(
x+

v

N%(E)

)
dv =

∫
dvF (v)ρ

(GOE)
k (v) , s := N−1+ε.

Fixed energy universality obviously implies averaged energy universality. As mentioned in the introduc-
tion, fixed energy universality was proved for Hermitian matrices from the generalized Wigner ensemble.
This required the use of the Brézin-Hikami-Johansson formula, a tool with no known analogue for symmet-
ric matrices. General methods developed in the past five years, such as the local relaxation flow, allowed
to prove universality for the symmetric class only in the sense of averaged energy. Our result establishes
universality at fixed energy, with no need for any averaging, for the symmetric class. It also provides a new
proof for the Hermitian class.

Theorem 2.2 (Universality at fixed energy). For symmetric or Hermitian matrices from the generalized
Wigner ensemble satisfying (2.1), fixed energy universality holds in the bulk of the spectrum.

The above theorem implies for example that the joint interval probabilities converge, more precisely, for
disjoint intervals I1, . . . , I`, and integers n1, . . . , n` ∈ N, the limit

lim
N→∞

P
(∣∣∣∣{xi ∈ E +

Ij
N%(E)

}
∣∣∣∣ = nj , 1 6 j 6 `

)
1Note that, strictly speaking, (2.2) only makes sense when µ(N) has a density; in the general case, it needs to be interpreted

in the distribution sense, i.e. after integrating with respect to a regular test function, as understood on the LHS of (2.4).
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exists. It is independent of E ∈ (−2, 2) and of the details of the distributions of the matrix entries, in
particular they can be computed in the Gaussian ensemble where more explicit formulas are available. For
example, the gap probability for Bernoulli random matrices converges on the microscopic scale:

lim
N→∞

P
(
{xi ∈ E +

[0, t]

Nπ%(E)
} = ∅

)
= E1(0, t),

where E1 can be made explicit from the solution to a Painlevé equation of fifth type [23,34].

Before giving the main ideas of the proof, we introduce the typical locations of eigenvalues with respect
to the semicircular distribution: they are defined by∫ γk

−2

d% =
k + 1

2

N
, k = 1, 2, . . . , N. (2.5)

2.2 Sketch of the proof. We now outline the main steps towards the proof of Theorem 2.2, in the symmetric
case. As mentioned in the introduction, it does not rely on improvements of existing methods such as the
local relaxation flow. The Dyson Brownian motion plays again a key role in the following approach, but
surprisingly our method requires understanding its behaviour for relatively large time, t = N−τ , for some
small τ , instead of t = N−1+ε for small ε.

First step. Coupling and discrete integral operator. We run a coupled DBM with two different initial
conditions, one from the Wigner ensemble we wish to study and one from a comparison Gaussian ensemble.
At time 0, let x = x(0) be the ordered spectrum of a generalized Wigner matrix, and let y(0) denote the
eigenvalues of an independent GOE matrix. In the actual proof we have to start the coupling at a time
t0 ∼ N−τ0 , τ0 > τ instead of time 0, but we neglect this technical issue in the current presentation. Consider
the unique strong solutions for the following Dyson Brownian motion, more precisely its Ornstein-Uhlenbeck
version:

dx`(t) =

√
2

N
dB`(t) +

 1

N

∑
k 6=`

1

x`(t)− xk(t)
− 1

2
x`(t)

 dt, (2.6)

dy`(t) =

√
2

N
dB`(t) +

 1

N

∑
k 6=`

1

y`(t)− yk(t)
− 1

2
y`(t)

 dt.

Note that the underlying Brownian trajectories (B`)16`6N are the same. Then the normalized differences
δ`(t) := et/2(x`(t)− y`(t)) satisfy an integral equation of parabolic type, namely

∂tδ`(t) =
∑
k 6=`

bk`(t)(δk(t)− δ`(t)), bk`(t) =
1

N(x`(t)− xk(t))(y`(t)− yk(t))
. (2.7)

Second step. Homogenization. We consider the following continuous analogue of (2.7):

∂tft = −Kft, (Kf)(x) :=

∫ 2

−2

f(x)− f(y)

(x− y)2
%(y)dy. (2.8)

A key step in our approach consists in proving that (2.8) gives a good approximation for (2.7). Indeed, if the
initial conditions match in the sense that f0 is smooth enough and f0(γk) = δk(0), then for any t = N−τ ,
with a sufficiently small τ > 0 there exists ε > 0 such that for any bulk index ` (i.e. ` ∈ JαN, (1− α)NK for
some small fixed α > 0) we have

δ`(t) = (e−tKf0)` + O(N−1−ε). (2.9)
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The above homogenization result holds for generic trajectories x(t), y(t). It relies on optimal rigidity esti-
mates for these eigenvalues [21], a level repulsion bound similar to [13], and Hölder continuity for equations
of type (2.7), obtained in [17].

Third step. The continuous heat kernel. The heat kernel for the equation (2.8) can be expressed by an explicit
formula, see (3.22). For short times, i.e. τ close to 1 it almost coincides with e−t|p| where |p| =

√
−∆.

However, we will need τ close to 0, hence the effect of the curvature from the semicircle law cannot
be neglected, and the explicit formula will be useful. This allows us to compute explicitly e−tKf0 and to
rewrite (2.9) as follows. There exists ε > 0 such that, for a fixed E in the bulk and for any ` satisfying
|γ` − E| < N−1+ε, we have

x`(t)− y`(t) = ζ̃xt − ζ̃
y
t + O(N−1−ε), (2.10)

where

ζ̃xt :=
1

N

N∑
k=1

(Pt(xk(0))− Pt(γk)) , (2.11)

is a smooth linear statistics of x = x(0) on the mesoscopic scale t = N−τ � 1. Here Pt is an explicit
function, the antiderivative of the heat kernel (3.22) (see (4.57)). We repeat the above steps with the initial
condition x replaced by z, the spectrum of another GOE independent of x and y. In summary, we proved

x`(t) = y`(t)− ζ̃yt + ζ̃xt + O(N−1+ε), z`(t) = y`(t)− ζ̃yt + ζ̃zt + O(N−1+ε). (2.12)

From a technical perspective, the existence of a closed form for the kernel of K is essential in the above
second and third steps.

Fourth step: Reformulation of universality through mesoscopic observables. For any continuous and compactly
supported test function Q : Rk → R and E ∈ (−2, 2), define

Q(x, E) :=

N∑
i1,...,ik=1

Q(N(xi1 − E), N(xi2 − xi1), . . . , N(xik − xi1)).

Theorem 2.2 can be restated as
EQ(x(0), E) = EQ(z(0), E) + o(1). (2.13)

Let Q̂ denote the Fourier transform in the first variable. By a standard approximation argument, it is
sufficient to prove (2.13) for any Q such that Q̂ is compactly supported, in [−m,m], say. We will first prove
that (2.13) holds for the corresponding DBM trajectories after some time t = N−τ , where τ will depend on
m:

EQ(x(t), E) = EQ(z(t), E) + o(1). (2.14)

Using the representation (2.12), we easily see that (2.14) holds if we have

EQ(y(t)− ζ̃yt , E − ζ̃xt ) = EQ(y(t)− ζ̃yt , E − ζ̃zt ) + o(1). (2.15)

Note that y(t) and ζ̃yt are independent from ζ̃xt and ζ̃zt . Moreover, (2.15) is simpler than the original

microscopic universality problem, because ζ̃xt and ζ̃zt are mesoscopic observables. In the next two steps,
we explain how (2.15) can be proved under the following, strange, compatibility assumption between the
dynamics time and the Fourier support of the test function:

τ 6
c

m2
. (2.16)

Fifth step. Mesoscopic fluctuations for the Gaussian orthogonal ensemble. To justify (2.15), we first prove

that the distribution of ζzt := Nζ̃zt is very close to a Gaussian, with variance of order τ logN . This central
limit theorem for the linear statistics of type (2.11) relies on the method initiated in [24]. For reasons
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apparent in the next step, we will need to control the the distribution of ζzt even beyond its natural scale
(τ logN)1/2. More precisely, we will prove that, for some fixed constants b and c > 0, we have

µ̂z(λ) = µ̂z,t(λ) = E
(
e−iλζzt

)
= e−

λ2

2 τ logN−iλb + O(N−c). (2.17)

For macroscopic linear statistics, corresponding to t independent of N in our notation, Johansson proved the
central limit theorem in [24] by considering the logarithm of their Laplace transform. The proof of (2.17)
involves additional technicalities because µ̂z may vanish, see Section 5. In particular we will need rigidity
estimates from [4] to prove (2.17).

Sixth step. Reverse heat flow. For any fixed a, h ∈ R, consider the functions

F (a) := EQ(y(t)− ζ̃yt , E − a), Fh(a) := F (a− h)− F (a).

We can express the convolution of Fh with µz as follows:

(Fh ∗ µz)(a) = EQ(y(t)− ζ̃yt , E − a+ h− ζ̃zt )− EQ(y(t)− ζ̃yt , E − a− ζ̃zt )

= EQ(z(t), E − a+ h)− EQ(z(t), E − a) + O(N−c) = O(N−c). (2.18)

for some c > 0. Here the second equality follows from the second formula in (2.12). The last step in (2.18)
uses that on microscopic scales and with a high accuracy the distribution of the GOE spectrum is translation
invariant; a fact that follows from an effective polynomial speed of the the convergence (2.3) uniformly in E
in the bulk.

From the estimate (2.18) on Fh ∗ µz we bound Fh. This is a reverse heat flow type of question, because
µz is almost a Gaussian distribution, from the previous step. One can reverse the heat flow because (1) Fh
is analytic, explaining our original Fourier support restriction on Q, and (2) the estimate (2.17) is precise
enough. Namely, taking the Fourier transform in (2.18), we obtain

F̂h(λ) = O
(
N−cµ̂z(λ)−1

)
= O(Nm2τ−c)

for any λ in the Fourier support of Q, where we used (2.17). This explains why we need (2.16) in order to

prove that F̂h, and then Fh, are o(1). We therefore obtained

EQ(y(t)− ζ̃yt , E − a+ h) = EQ(y(t)− ζ̃yt , E − a) + o(1)

uniformly in a, h. It is then elementary, by simple convolution, to prove (2.15) and therefore (2.14).

Seventh step. Green function comparison theorem. Finally, to obtain universality for the eigenvalues x(0) of
the initial Wigner ensemble from the time evolved ones x(t), t = N−τ , we use a Green function comparison
theorem, of type close to the one introduced in [20]: (2.14) implies (2.13).

3 Homogenization

From this section, we only consider symmetric matrices which is the most involved case since the level
repulsion estimate requires an additional regularization. Section 3.1 would not be necessary for β > 1, the
rest of the proof is insensitive to the value of β.

3.1 Regularized dynamics. Our goal is to estimate the coupled difference δ`(t) = et/2(x`(t)− y`(t)), which
satisfies the dynamics (2.7). Notice that the singularity of the coefficient bjk is not integrable and this
will create serious difficulties in the analysis. We first perform a cutoff to tame this singularity which
requires a level repulsion estimate. Since such estimate holds only for large enough time, we will perform the
regularization only after an initial time t0 := N−τ0/2 with some τ0 > 0. We then show that the difference
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between the original and cutoff dynamics is negligible for times t ∈ (t0, 1). The estimates in this section are
valid for any fixed τ0. We assume τ0 6 1 which is the relevant regime.

We recall the equation for the x(t) dynamics from (2.6) and for t ∈ (t0, 1), we define its regularized
version as

dx̂j(t) =

√
2

N
dBj(t) +

 1

N

∑
k 6=j

1

xj(t)− xk(t) + εjk
− 1

2
x̂j(t)

 dt (3.1)

with εjk = ε for j > k, εjk := −ε for j < k, and we set x̂i(s) := xi(s), for s 6 t0. Notice that x̂(t) may not
preserve the ordering, but we do not need this property. Let qi := N(xi − x̂i) denote the rescaled difference
between the original dynamics and the regularized one. It satisfies the equation (t > t0)

dqi
dt

= Ωi −
qi
2
, with Ωi(t) :=

∑
j 6=i

εij
(xi − xj)(t)((xi − xj)(t) + εij)

. (3.2)

Since qi(t0) = 0, we can solve this equation by

qi(t) =

∫ t

t0

e−(t−s)/2Ωi(s)ds, t > t0. (3.3)

Let p > 2 and p′ be its conjugate exponent. We have

E sup
t06t61

∣∣∣∣∫ t

t0

Ωi(s)ds

∣∣∣∣ 6 sup
t06t61

E|Ωi(t)| 6 sup
t06t61

∑
j 6=i

(
E

1

|xi − xj |p′(t)

)1/p′
(
E

εp∣∣(xi − xj)(t) + εij
∣∣p
)1/p

.

(3.4)
Recall the rigidity estimate from [21] asserting that for any ξ,D > 0, if for some large moment p = p(ξ,D)
(2.1) is satisfied, then there exists C > 0 such that

P(Gξ,x,i) > 1− CN−D, with Gξ,x,i := {|xi(t)− γi| 6 N−2/3+ξ (̂i)−1/3, 0 6 t 6 1}, (3.5)

where î := min(i,N + 1 − i) (the subscript x refers to the x(t) process). The original rigidity estimate
in [21] was formulated for any fixed generalized Wigner ensemble, i.e. for a fixed t. A minor continuity
argument in the time variable ensures that rigidity holds simultaneously for all times in a compact interval
(see Lemma 9.3 of [18] for a similar argument). Note also that the original rigidity estimate from [21] assumes
subexponential decay of the entries distribution, but this is easily weakened to the finite moment assumption
(2.1) (see remark 2.4 in [9]).

Denote by gi(t) := xi+1(t)− xi(t) the gap at i-th location. A trivial estimate yields that(
EGξ,x,i

εp

(gi(t) + ε)p

)1/p

6

(
EGξ,x,i

ε2

(gi(t) + ε)2

)1/p

(with a slight abuse of notations we write Gξ,x,i instead of its characteristic function within the expectation).
Using the level repulsion estimate, i.e., Corollary B.2, we have for any ξ > 0 that(

EGξ,x,i
ε2

(gi(t) + ε)2

)1/p

6 Cε2/pN2/pN (C1τ+ξ)/p| log ε|1/p, t = N−τ ∈ [t0, 1] (3.6)

where C1 is the constant from Corollary B.2. We introduced the notation t = N−τ and we will use t and τ
in parallel, similarly to the notation t0 = N−τ0/2. The other factor in (3.4) is even easier to estimate and it
gives (

E
1

|xi − xj |p′(t)

)1/p′

6 N1/p′N (C0τ+ξ)/p′ .

8



Choosing for example ε = N−3C0−100, 2 < p < 3, and ξ small, we therefore proved that

P(Gx) > 1− CN−2, with Gx := { sup
t06t61,i∈J1,NK

|xi − x̂i|(t) 6 N−2C0−50}. (3.7)

Hence the trajectories of x̂ and x are very close to each other.
We also regularize the y(t) dynamics, i.e. we have

dyj(t) =

√
2

N
dBj(t) +

 1

N

∑
k 6=j

1

yj(t)− yk(t)
− 1

2
yj(t)

 dt, (3.8)

dŷj(t) =

√
2

N
dBj(t) +

 1

N

∑
k 6=j

1

yj(t)− yk(t) + εjk
− 1

2
ŷ`(t)

 dt.

with the same definition as previously for εij , and ŷj(t) := yj(t) for t < t0. Note that Bj represents the same
Brownian motion in each of the equations (2.6), (3.1) and (3.8). With a similar argument, we can assume
that y is very close to ŷ on another set Gy. We now define G1 := Gx ∩ Gy.

Now we analyse the difference of the two cutoff dynamics. Setting wi := Net/2(x̂i − ŷi), w satisfies an
equation of the form (t > t0)

dwi
dt

=
1

N

∑
j 6=i

wj − wi
[(xi − xj)(t) + εij ][(yi − yj)(t) + εij ]

+ ζi (3.9)

with an error term ζi satisfying

|ζi(t)| 6
∑
j 6=i

|xi − x̂i|+ |xj − x̂j |+ |yi − ŷi|+ |yj − ŷj |
((xi − xj)(t) + εij) ((yi − yj)(t) + εij)

.

With the level repulsion estimate as in (3.6), we have

EG1|ζi(t)| 6 CN−2C0−50
∑
j 6=i

(
E

1

((xi − xj)(t) + εij)
2

)1/2(
E

1

((yi − yj)(t) + εij)
2

)1/2

6 CN−C0−30.

(3.10)
Therefore, there is a set G2 with P(G2) > 1− CN−1 such that on this set we have

sup
t06t61

max
i

∫ t

t0

|ζi(s)|ds 6 N−C0−20. (3.11)

We now show that ζi is negligible in the equation (3.9). This follows from the stability of the parabolic
equation

∂tv(t) = −B(t)v(t), (3.12)

where B is the positive and positivity preserving matrix defined by

(B(t)v)i =

N∑
j=1

Bij(t)(vi − vj), (3.13)

Bij(t) :=

{
1

N(xi−xj)(t)(yi−yj)(t) if t 6 t0,
1

N((xi−xj)(t)+εij)((yi−yj)(t)+εij) if t > t0.
(3.14)

Indeed, suppose that w satisfies (3.9), i.e.

∂sw(t) = −B(t)w(t) + ζ(t) (3.15)
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with the same initial data at time t0, v(t0) = w(t0), and ζ satisfying the estimate (3.11). Then we have

∂t(w − v)(t) = −B(t)(w − v)(t) + ζ(t) (3.16)

with vanishing initial data. Let UB(s, t) denote the semigroup associated with (3.12) from time s to time
t > s, i.e.

∂tUB(s, t) = −B(t)UB(s, t) (3.17)

for any t > s and UB(s, s) = I. By the Duhamel formula, we have

(w − v)(t) =

∫ t

t0

UB(s, t)ζ(s)ds.

Since UB is a contraction (in any Lp norm, in particular in L∞), using (3.11) in G2 we have

‖(w − v)(t)‖∞ 6 N−C0−20, t ∈ [t0, 1],

i.e., the effect of the perturbative term ζ on the solution is negligible.
To summarize, we proved that the set G = G1 ∩ G2 satisfies P(G) > 1 − CN−1 uniformly in 0 6 τ 6 1

and in this set G we have, for any i and t ∈ (t0, 1), that

Net/2(xi(t)− yi(t)) = vi(t) + O
(
N−1

)
(3.18)

where v satisfies (3.12) with initial condition v0 = N(x0 − y0).

3.2 Continuous space operator. We now construct an operator in the continuum which approximates the
discrete operator defined by B. Recall the definition of the typical location γk from (2.5). If we replace xi
and yi by γi and neglect the regularization ε, we have the following classical operator U on `2(J1, NK):

(Uu)j :=
∑
i 6=j

1

N |γi − γj |2
(uj − ui). (3.19)

We now define an operator K acting on smooth functions on [−2, 2] as

(Kf)(x) =

∫ 2

−2

f(x)− f(y)

(x− y)2
d%(y), (3.20)

where the integral is in the principal value sense. Then K is the continuum limit of U in the sense that, for
large N , (Uuf )j ≈ (Kf)(γj), where ufj = f(γj). The following lemma provides an explicit formula for the

evolution kernel e−tK .

Lemma 3.1. Let f be smooth with all derivatives uniformly bounded. For any x, y ∈ (−2, 2), denote
x = 2 cos θ, y = 2 cosφ with θ, φ ∈ (0, π). Then

(e−tKf)(x) =

∫
pt(x, y)f(y)d%(y) (3.21)

where the kernel is given by

pt(x, y) :=
1− e−t

(1 + e−t − 2e−t/2 cos(θ + φ))(1 + e−t − 2e−t/2 cos(θ − φ))
=

1− e−t

|ei(θ+φ) − e−t/2|2 |ei(θ−φ) − e−t/2|2
.

(3.22)

Remark 1. The above formula is the same as the one in [1, page 462]. Lemma 3.1 shows that Biane’s
q-Ornstein Uhlenbeck generator coincides (for q = 0) with the convolution kernel (3.20).
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Remark 2. If we neglect the curvature of the semicircle, i.e. γi’s are equidistant on scale 1/N , and formally
extend the operator U to Z, we obtain the following translation invariant operator U∞ on `2(Z):

(U∞u)j :=
∑

i∈Z\{j}

N

|i− j|2
(uj − ui), u ∈ `2(Z). (3.23)

The Fourier transform of the kernel 1/k2 is given by
∑
k∈Z\{0}

1
k2 (1− e−ikp) = π

12 |p|, i.e.

(̂U∞u)(p) = c0N |p|û(p), c0 :=
π

12
, p ∈ [−π, π],

where û(p) :=
∑
k∈Z e

−ipkuk and uk = 1
2π

∫ π
−π e

ipkû(p)dp. Therefore the heat kernel of U∞ can be computed
by Fourier transform for any t > 0:

e−tU
∞

(0, k) =
1

2π

∫ π

−π
e−tc0N |p|e−ikpdp =

1

N

2c0t

(tc0)2 + (k/N)2

(
1− (−1)ke−πc0t

)
. (3.24)

The operator U∞ is the discrete analogue of the operator N
√
−∆. The heat kernel e−tN

√
−∆ is closely

related to pt(x, y), but, compared with (3.22), there are substantial differences near the edges and also when
t is large.

Proof of Lemma 3.1. Let Un be the Chebishev polynomial of the second kind, defined by

UN (cos θ) =
sin((n+ 1)θ)

sin θ
.

and we defined Pn(x) = Un(x/2). The proof relies on the following diagonalization: for any n > 0,

KPn =
n

2
Pn. (3.25)

For n = 0, (3.25) is obvious. For n = 1 this is the classical equilibrium relation∫ 2

−2

d%(y)

x− y
=
x

2
. (3.26)

The following recursion relation is classical:

Pn+1(x) = xPn(x)− Pn−1(x). (3.27)

This yields, assuming that (3.25) holds up to the index n,

KPn+1(x) = xKPn(x)−KPn−1(x) +

∫ 2

−2

Pn(y)

x− y
d%(y)

= x
n

2
Pn(x)− n− 1

2
Pn−1(x) + Pn(x)

∫ 2

−2

d%(y)

x− y
+

∫ 2

−2

Pn(y)− Pn(x)

x− y
d%(y)

=
n+ 1

2
xPn(x)− n− 1

2
Pn−1(x) +

∫ 2

−2

Pn(y)− Pn(x)

x− y
d%(y)

where we used (3.26). Hence (3.25) will be proved with n+ 1 instead of n if∫ 2

−2

Pn(x)− Pn(y)

x− y
d%(y) = Pn−1(x) (3.28)

holds. To prove (3.28) for any n, one can again proceed by induction. This formula is obviously true for
n = 0, 1. Assuming it is true up to index n, with (3.27) we get∫ 2

−2

Pn+1(x)− Pn+1(y)

x− y
d%(y) = xPn−1(x) +

∫
Pn−1(y)d%(y)− Pn−2(x) = Pn(x)
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where we used that Pn−1 is orthogonal to 1 with respect to the semicircle measure. This concludes the proof
of (3.28) and therefore (3.25) for all n.

The conclusion of the lemma now easily follows: the kernel, defined through (e−tKf)(x) =
∫
pt(x, y)f(y)d%(y),

can be written in the eigenbasis as pt(x, y) =
∑
n>0 e

−n2 tPn(x)Pn(y). Using the representation Pn(2 cos θ) =
sin((n+ 1)θ)/ sin θ and expanding the sin to get four geometric series concludes the proof.

We record some properties of the kernel (3.22) that easily follow from the explicit formula and from the
asymptotics γj + 2 ∼ (j/N)2/3 for j 6 N/2,

pt(γi, γj) 6
Ct

t2 + (γi − γj)2
, i ∈ JαN, (1− α)NK, j ∈ J1, NK, t 6 1, (3.29)

∑
j

pt(γi, γj) 6
∑
j

Ct

t2 + (γi − γj)2
6 C, i ∈ JαN, (1− α)NK, t 6 1, (3.30)

|∂xpt(γi, x)| 6 Ct|γi − x|
(t2 + (γi − x)2)2

i ∈ JαN, (1− α)NK, t 6 1, (3.31)

where the constant C depends only on the positive parameter α > 0.

3.3 The homogenization result. For any δ ∈ R and E ∈ (−2, 2) we define the index set

I(δ) = I(E, δ) := {i : |γi − E| 6 N−1+δ}. (3.32)

The main result of this section is the following theorem.

Theorem 3.2. Suppose x(t) and y(t) are two DBM driven by the same Brownian motions (see (2.6)) and
with initial data given by the spectra of two generalized Wigner matrices. There exist positive constants
τ0 6 1/4, δ1, δ2, δ3 such that for any t ∈ [2t0, 1], with t0 := N−τ0/2, and |E| < 2− κ with κ > 0 we have

P
(

max
i∈I(E,δ1)

∣∣∣Nxi(t)−N(yi(t) + (Ψt−t0x(t0))i − (Ψt−t0y(t0))i

)∣∣∣ > N−δ2
)

6 N−δ3 , (3.33)

where Ψs is a linear operator defined by

(Ψsx)i := e−s/2
1

N

∑
j

ps(γi, γj)xj . (3.34)

The main tool to prove Theorem 3.2 is a homogenization result. In order to state it, we first construct a
partition of unity as follows. For any j = 1, 2, . . . , N let

g̃j := min(γj+1 − γj , γj − γj−1) ∼ N−2/3(ĵ)−1/3

with the convention that γN+1 =∞, γ0 = −∞. For all even indices j define a smooth function ξj supported
in [γj−1 + g̃j/100, γj+1 − g̃j/100] and ξj(x) = 1 for |x− γj | 6 g̃j/100 such that∫ γj

γj−1

ξj(x)d%(x) =

∫ γj+1

γj

ξj(x)d%(x) =
1

2N
. (3.35)

For odd indices j, we define ξj by ξj(x) = 1 − ξj−1(x) for γj−1 6 x 6 γj and by ξj(x) = 1 − ξj+1(x)
for γj 6 x 6 γj+1. We thus have ξj(x) + ξj+1(x) = 1 for any j whenever x ∈ [γj , γj+1]. In particular,∑
j ξj(x) = 1. Notice that by construction∫

ξj(x)d%(x) =
1

N
, supp ξj ⊂ [γj−1 + g̃j/100, γj+1 − g̃j/100] (3.36)
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hold for all j = 1, 2, . . . , N . For any discrete function (i.e. vector) v : i→ vi define its continuous extension
by

ev(x) :=
∑
j

ξj(x)vj . (3.37)

Notice that ev(γi) = vi.
The main homogenization result is the following theorem. It is formulated for the parabolic equation

(3.12) with general random coefficients Bij(t) under certain conditions. Later we will verify that rigidity
and level repulsion for x(t) and y(t) imply that Bij(t) defined in (3.14) satisfy these conditions.

Theorem 3.3. Fix three small positive constants, ξ, ρ, α. Choose τ0 ∈ [0, 1
4 ], and set t0 := N−τ0/2. Consider

the equation (3.12) with time dependent random coefficients Bij(s) in the time interval s ∈ [tin, tend] with
t0 < tend − tin 6 C. Denote by F = Fξ the event on which the following two bounds hold:∣∣∣Bij(s)− 1

N(γi − γj)2

∣∣∣ 6 N−
2
3 +ξ
[
(̂i)−1/3 + (ĵ)−1/3

]
N(γi − γj)3

, ∀i, j, |i− j| > Nξ, ∀s ∈ [tin, tend], (3.38)

Bij(s) >
N−ξ

N(γi − γj)2
, ∀i, j, ∀s ∈ [tin, tend]. (3.39)

Furthermore we assume that

max
ij

max
s∈[tin,tend]

E
[
F|Bij(s)|

]
6

Nρ

N |γi − γj |2
. (3.40)

If ξ and ρ are small enough, then there are constants c4, c5 > 0, so that the following holds. For any fixed
space-time point (t, i) ∈ [tin + t0, tend]× JαN, (1− α)NK there is an event S ⊂ F with P(F \ S) 6 N−c4 so
that on S we have ∣∣∣(UB(tin, t)v)i −

∫
pt−tin(γi, y)ev(y)d%(y)

∣∣∣ 6 N−c5‖v‖∞ (3.41)

for any vector v ∈ RN and for any sufficiently large N > N0(α). Note that the set S depends on the choice
(t, i), but the exponents c4, c5 do not.

Remark. Our proof can easily be extended to hold for any τ0 < 1/3, but then the smallness of ξ, ρ, c4, c5
will depend on how close τ0 is to 1/3. However, even the 1/3 threshold for the exponent τ0 is not optimal,
it is due to various cutoffs that can be improved with more work. We do not pursue this direction since, for
the purpose of this paper, only the small τ0 regime is needed.

The following statement asserts that rigidity and level repulsion estimates on the DBM trajectories ensure
that the conditions in Theorem 3.3 hold for Bij given in (3.14) with a high probability provided that τ0 is
small.

Theorem 3.4. There exist positive constants c4, c5 > 0 and τ0 > 0 such that the following holds. Fix
α ∈ (0, 1), set t0 := N−τ0/2. Consider the equation (3.12) with coefficients Bij(s) given by two coupled DBM
x(s) and y(s), s ∈ [0, 1], as defined in (3.14). Then for any space-time point (t, i) ∈ [2t0, 1]× JαN, (1−α)NK
there exists a set S = S(t, i) in the joint probability space of the coupled DBM’s x(s) and y(s), with P(S) >
1−N−c4 , such that on the set S (3.41) holds for any v ∈ RN and N > N0(α, τ0).

Proof. Choose tin := t0, tend := 1 in Theorem 3.3. The estimates (3.38) and (3.39) directly follow from
the rigidity bound (3.5) on the set

F̃ξ :=
⋂
i

Gξ,x,i ∩ Gξ,y,i,

thus Fξ ⊃ F̃ξ (here we used the fact that the parameter ε in the definition of Bij is much smaller than the

rigidity threshold N−1+ξ). From (3.5) F̃ξ has a very high probability, P(F̃ξ) > 1 − N−D for any D (note

that F and F̃ are independent of τ0). For (3.40) we claim that

EFξ|Bjk(s)| 6 NC0τ0+3ξ

N |γj − γk|2
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holds for any ξ > 0. Indeed, for |j − k| > Nξ this follows form the rigidity estimates. For |j − k| 6 Nξ with
j < k one may estimate Bjk(s) 6 Bj,j+1(s) and then use a Schwarz inequality similar to (3.10). Finally,
applying Corollary B.2 as in (3.6), we get

EBj,j+1(s) 6 NC0τ+ξN1/3(ĵ)2/3| log ε| 6 NC0τ0+2ξ

N |γj − γj+1|2
6

NC0τ0+3ξ

N |γj − γk|2
.

Setting ρ = C0τ0 + 3ξ, we verified (3.40). Choosing τ0 and ξ sufficiently small, we can apply Theorem 3.3
to conclude (3.41). For the probability of S we have P(S) > 1 − N−D − N−c4 which satisfies the required
bound by reducing c4 a bit.

Proof of Theorem 3.2. Pick positive constants c4, c5, τ0 sufficiently small so that Theorem 3.4 applies. With-
out loss of generality we may assume that τ0, c4, c5 6 1/100 and τ0 6 c5/100. Recall the notation
t0 = N−τ0/2. For brevity we write x := x(t0) and y := y(t0). We would like to apply Theorem 3.4
for the vector v of the form there is such a factor: x and y evolve by OU, but v does not.

vj := Net0/2(xj − yj) . Nξ(ĵ/N)−1/3, (3.42)

but then ‖v‖∞ ∼ N1/3+ξ in (3.41) would be too large, as the edge indices contribute. So we have to perform
a cutoff and use (3.41) only for the bulk indices and use an L1 → L∞ heat kernel bound to control the
contribution near the edge. We therefore rewrite v = w + u where wj := vj if N1−ν 6 j 6 N −N1−ν and
wj := 0 otherwise, for some exponent ν > 0 chosen later. Equation (3.41) with initial condition w yields∣∣∣(UB(t0, t)w)i −

∫
pt−t0(γi, y)ew(y)d%(y)

∣∣∣ 6 N−c5‖w‖∞ 6 N−c5+ ν
3 +ξ (3.43)

on the set S(t, i) for any i ∈ I(E, δ1). Using the definition of ew, from (3.31), (3.30) and (3.36) we have∣∣∣ ∫ pt−t0(γi, y)ew(y)d%(y)− 1

N

∑
j

pt−t0(γi, γj)wj

∣∣∣
6
∑
j

|wj |
∣∣∣ ∫ pt−t0(γi, y)ξj(y)d%(y)− 1

N
pt−t0(γi, γj)

∣∣∣
6
∑
j

|wj |
∫
|pt−t0(γi, y)− pt−t0(γi, γj)|ξj(y)d%(y)

6 CN−2+ 2ν
3 +ξ

∑
j

t|γi − γj |
(t2 + (γi − γj)2)2

6 Ct−1N−1+ 2ν
3 +ξ, i ∈ I(E, δ1), t > 2t0.

since |y − γj | 6 CN−1+ν/3 and |wj | 6 N
ν
3 +ξ on the support of ξj with ĵ > N1−ν . Moreover, from (3.29)

and using that uj 6= 0 only for ĵ 6 N1−ν ,∣∣∣ 1

N

∑
j

pt−t0(γi, γj)uj

∣∣∣ 6 Ct

N

∑
j

|uj | 6 CtN−
2
3ν+ξ, i ∈ I(E, δ1), t > 2t0. (3.44)

Together with (3.43) this gives that∣∣∣(UB(t0, t)w)i −
1

N

∑
j

pt−t0(γi, γj)vj

∣∣∣ 6 C
(
N−c5+ ν

3 +ξ + t−1N−1+ 2ν
3 +ξ + tN−

2
3ν+ξ

)
(3.45)

on the set S(t, i) for any t > 2t0, i ∈ I(E, δ1).
Moreover, thanks to the following Proposition 3.5 (in our application b = N−ξ, we use (3.39) and we

shift the initial time from 0 to t0 ) we have

‖UB(t0, t)u− ū‖∞ 6 CN3ξt−3N−1
∑
j

|uj − ū|, t > 2t0,
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where ū := N−1
∑
j uj and thus |ū| 6 CN−2ν/3+ξ. Hence we have proved that

‖UB(t0, t)u‖∞ 6 CN−
2
3ν+ξ + t−3N−

2
3ν+4ξ. (3.46)

Combining this with (3.45), choosing ν = c5, ξ = c5/100 and recalling τ0 6 c5/100, we have proved that∣∣∣(UB(t0, t)v)i −N−1
∑
j

pt−t0(γi, γj)vj

∣∣∣ 6 CN−c5/2, (3.47)

on the set S(t, i) for any i ∈ I(E, δ1) and any t with 1 > t > 2t0.
Finally, we need to guarantee that (3.47) holds for all i ∈ I(E, δ1) simultaneously, i.e. we take the

intersection
S(t) :=

⋂
i∈I(E,δ1)

S(t, i).

The cardinality of I(E, δ1) is bounded by CNδ1 and P(S(t, i)) > 1−N−c4 , so by choosing δ1 < c4, we obtain
that P(S(t)) > 1− 1

2N
−c4 . Now we choose δ2 < c5/2 and δ3 < c4 and together with (3.18), we conclude the

proof of Theorem 3.2.

For any u ∈ RN we define the `p norms as

‖u‖p :=
( 1

N

N∑
i=1

|ui|p
)1/p

.

The following decay estimate extends Proposition 10.4 of [4]. Notice that the convention of `p norm in this
paper differs from that used in [4] by a normalization factor N−1.

Proposition 3.5. Suppose that the coefficients of the equation (3.12) satisfy for some constant b that

Bjk(s) >
b

N(γj − γk)2
, 0 6 s 6 σ. (3.48)

Then for any u with
∑
j uj = 0 we have the decay estimate

‖UB(0, s)u‖∞ 6 C(sb)−3‖u‖1, 0 6 s 6 σ. (3.49)

Proof. We first prove the same inequality for the operator K, i.e., for any mean zero function f that

‖e−2tKf‖∞ 6
C

t3
‖f‖%,1, (3.50)

where

‖f‖%,p :=

(∫
|f(x)|pd%(x)

)1/p

. (3.51)

Recall Corollary 4 of [1] (see also (10.19) of [4]) asserting that there is a constant C so that

‖f‖2%,3 6 C
(
‖f‖2%,2 + 〈f,Kf〉%

)
. (3.52)

By the explicit diagonalization of K, (3.25), the spectral gap of K is equal to 1/2. Hence for
∫
fd% = 0, we

have ‖f‖2%,2 6 2〈f,Kf〉% and thus

‖f‖2%,3 6 C〈f,Kf〉%. (3.53)

We shall drop the subscript % in the following argument. Suppose ft solves the equation

∂tft = −Kft (3.54)
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and the initial data has zero mean, i.e.,
∫
f0d% = 0. Then we have

∂s‖fs‖22 = −〈fs,Kfs〉 6 −C‖fs‖
8
3
2 ‖fs‖

− 2
3

1 ,

where we have used (3.53) and the Hölder inequality

‖f‖23 > ‖f‖
8
3
2 ‖f‖

− 2
3

1 .

Since ‖fs‖1 is non-increasing, we can integrate this inequality to have

‖ft‖2 6
C

t3/2
‖f0‖1.

For any g with
∫
gd% = 0, we have

|〈g, e−tKft〉| = |〈e−tKg, ft〉| 6
∥∥e−tKg∥∥

2
‖ft‖2 6

C

t3
‖g‖1‖f0‖1. (3.55)

Since
∫
e−tKftd% =

∫
f0d% = 0 by assumption, the mean zero condition of g can be removed and we have

thus proved (3.50).
We can now follow the similar argument to prove (3.49). After a time rescaling, we can assume that

b = 1. The key ingredient in the previous argument is the Sobolev inequality (3.52). Now we will need
a discrete version. This can be achieved by extending a discrete function to the continuum with a simple
interpolation procedure. This idea was used in [4] and we will not repeat it here. Once a discrete version
of (3.52) is proved, the rest of the proof is identical to the one in the continuum. Thus we have proved
(3.49).

3.4 Proof of Theorem 3.3. Without loss of generality, we can assume that tin = 0 by a simple time shift.
For simplicity, we also set tend = 1, as the actual value of tend influences only irrelevant constant prefactors.
By definition (3.37) and the equation (3.12), we have

∂tev(t) = −Rtv(t), (3.56)

where

(Rtv)(x) :=

N∑
j,k=1

ξj(x)(vj − vk)Bkj(t) (3.57)

takes the vector v to the function Rtv for any fixed t. Suppose that f = f(t, x) is a solution to the continuum
equation

∂tf(x) = −(Kf)(x), (3.58)

where K is defined in (3.20). Then we have

∂t(ev(t) − f(t)) = −K(ev(t)− f(t)) + [Kev(t) −Rtv(t)]. (3.59)

We will need to solve this equation from time tin = 0 to t. We will take the initial condition at time tin = 0
to be v for the discrete equation and f(0) = ev for the continuous one.

By the Duhamel formula, we have

ev(t) − f(t) =

∫ t

0

e−(t−s)K [Kev(s) −Rsv(s)]ds = Φ− Ω, (3.60)

where the functions Φ,Ω are given by

Ω(z) :=

∫ t

0

ds

∫
d%(x)pt−s(z, x)

∫
d%(y)

ev(s, y)− ev(s, x)

|x− y|2
, (3.61)

Φ(z) :=

∫ t

0

ds

∫ ∫
d%(x)d%(y)

∑
j,k

pt−s(z, x)ξj(x)(vk(s)− vj(s))Bkj(s). (3.62)

16



We have used that
∫

d%(y) = 1 in (3.62). We will need these functions for z := γi in order to obtain (3.41),
but we will keep the shorter z notation. Note that ev(t)(γi) = vi(t) = (UB(0, t)v)i, thus the left hand side of
(3.41) is Φ(z)− Ω(z) with z = γi.

Step 1: Cutoff of long range part. We first cutoff the contributions to Ω,Φ when |x − y| > ` for some
N−2/3 � `� 1 to be fixed later on. In this regime, we will need to use cancellation between Ω and Φ. We
start with the following definition that for any subset D in R2 × R define

ΩD :=

∫ t

0

ds

∫ ∫
1D(x, y, s)d%(x)d%(y)pt−s(z, x)

ev(s, y)− ev(s, x)

|x− y|2
. (3.63)

If D is symmetric under x↔ y, then we have

ΩD =
1

2

∫ t

0

ds

∫ ∫
1D(x, y, t)d%(x)d%(y)[pt−s(z, x)− pt−s(z, y)]

ev(s, y)− ev(s, x)

|x− y|2
. (3.64)

Similarly we can define

ΦD :=

∫ t

0

ds

∫ ∫
d%(x)d%(y)1D(x, y, t)

∑
j,k

pt−s(z, x)ξj(x)(vk(s)− vj(s))Bkj(s), (3.65)

and for symmetric D we have

ΦD =
1

2

∫ t

0

ds

∫ ∫
d%(x)d%(y)1D(x, y, t)

∑
j,k

[pt−s(z, x)ξj(x)− pt−s(z, y)ξk(y)](vk(s)− vj(s))Bkj(s). (3.66)

Let
Â` := {(x, y) : |x− y| > `}, D` := Â` × [0, t]. (3.67)

Using (3.62) and (3.61), we can decompose the error term ΦD`−ΩD` in this region into Φ1
D`
−Ω1

D`
+Φ2

D`
−Ω2

D`
,

where

Φ1
D`
− Ω1

D`
:= −

∫ t

0

ds

∫ ∫
d%(x)d%(y)1Â`(x, y)pt−s(z, x)

∑
j

ξj(x)vj(s)
[∑

k

Bjk(s)− 1

|x− y|2
]
. (3.68)

The second term is

Φ2
D`
− Ω2

D`
=

∫ t

0

ds

∫ ∫
d%(x)d%(y)1Â`(x, y)pt−s(z, x)

∑
k

vk(s)
[∑

j

ξj(x)Bjk(s)− ξk(y)
1

|x− y|2
]
. (3.69)

Since
∑
j ξj(x) = 1, we can replace ξk(y) 1

|x−y|2 by
∑
j ξj(x)ξk(y) 1

|x−y|2 . Recall the normalization condition∫
d%(y)ξk(y) = 1/N (3.36). If we could neglect the factor 1Â`(x, y) in this normalization, we had

Φ2
D`
− Ω2

D`
≈
∫ t

0

ds

∫ ∫
d%(x)d%(y)1Â`(x, y)pt−s(z, x)

∑
k,j

vk(s)ξj(x)ξk(y)
[
NBjk(s)− 1

|x− y|2
]
. (3.70)

Indeed, the difference between the two sides of (3.70) is∫ t

0

ds

∫
d%(x)pt−s(z, x)

∑
k,j

vk(s)ξj(x)Bjk(s)

∫
|x−y|>`

d%(y)
[
1− ξk(y)N

]
. (3.71)

Notice that |γj − x| 6 g̃j from the support property of ξj(x) and that the last integral is zero unless the
support of ξk(y) overlaps with one of the boundaries y = x ± ` of the integration regime. Thus (3.71) can
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be bounded from above by∫ t

0

ds

∫ ∫
|x−y|>`

d%(x)d%(y)pt−s(z, x)
∑

k,j,||γj−γk|−`|64g̃j+4g̃k

|vk(s)|ξj(x)ξk(y)NBjk(s)

6C‖v‖∞`−2

∫ t

0

ds

∫ ∫
|x−y|>`

d%(x)d%(y)pt−s(z, x)
∑

k,j,||γj−γk|−`|64g̃j+4g̃k

ξj(x)ξk(y)

6C‖v‖∞`−2

∫ t

0

ds

∫ ∫
1
(∣∣|x− y| − `∣∣ 6 CN−1[%(x)−1 + %(y)−1]

)
d%(x)d%(y)pt−s(z, x)

6C‖v‖∞`−2N−1t, (3.72)

where in the first step we used that under the constraints on the summations, we have NBjk 6 C`−2 from
(3.38) and from the fact that g̃j , g̃k � `. In the second step we translated the constraint on the indices j, k
to a constraint on x, y using that g̃j ∼ %−1(γj), and finally we integrated out y, x and s in this order. We
also used the contraction property ‖v(s)‖∞ 6 ‖v‖∞.

For the term on the r.h.s. of (3.70), we will use the coordinate system x = 2 cos Θ(x) with 0 6 Θ(x) 6 π.
From the estimate (3.38), for |x− y| > `� N−2/3 we have

∑
k,j

ξj(x)ξk(y)
∣∣∣NBjk(s)− 1

|x− y|2
∣∣∣ 6 N−1+ξ 1

|x− y|3
[(sin Θ(x))−1 + (sin Θ(y))−1]. (3.73)

Together with ‖v(t)‖∞ 6 ‖v‖∞, we have

Φ2
D`
− Ω2

D`
6 N−1+ξ ‖v‖∞

∫ t

0

ds

∫ ∫
|x−y|>`

d%(x)d%(y)pt−s(z, x)
1

|x− y|3
[(sin Θ(x))−1 + (sin Θ(y))−1]

6
t| log `|
`2

N−1+ξ ‖v‖∞ . (3.74)

In the last step we used that z is away from the edge, so in the regime where x is near the edge and
[sin Θ(x)]−1 ∼ %(x)−1 becomes singular, we know that pt−s(z, x) 6 C from (3.22).

The estimate of the Φ1
D`
− Ω1

D`
term is similar. We write the d%(y) integration in (3.68) as∫

|x−y|>`
d%(y)

[∑
k

Bjk(s)− 1

|x− y|2
]

=

∫
|x−y|>`

d%(y)
∑
k

ξk(y)
[
NBjk(s)− 1

|x− y|2
]

+
∑
k

Bjk(s)

∫
|x−y|>`

d%(y)(1−Nξk(y))

The first term can be estimated exactly the r.h.s. of (3.70) (the only difference is vj(s) in (3.68) instead of
vk(s) in (3.70) but these factors are estimated by ‖v‖∞ anyway). The second term is analogous to (3.71).
This completes the estimate of the regime |x− y| > `.

From now on, we will work on the complement of Â`, i.e. in the regime |x − y| 6 `. We will not use
cancellation between Φ and Ω and will estimate them separately by splitting the integrals into further sub-
regions. As the estimates for Φ and Ω are similar, we will work out only one of them in every region.

Step 2: Time region away from the final time t via the energy bound. In this step, we estimate the
contribution to the integrals (3.61), (3.62) for times s ∈ [0, t − t1] with some t1 � t. The main idea to
deal with this regime is to use energy bound for the dynamics (3.12) and the regularity of the continuous
evolution kernel pt−s(x, y).

We start with a general estimate to show how energy bound is used to control ΩD. For a set D ⊂ R2×[0, t],
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symmetric under x↔ y, using the Schwarz inequality, we have

ΩD =
1

2

∫ t

0

ds

∫ ∫
1D(x, y, t)d%(x)d%(y)[pt−s(z, x)− pt−s(z, y)]

ev(s, y)− ev(s, x)

|x− y|2
6
√
WD

1 W
D
2 , (3.75)

WD
1 :=

1

2

∫ t

0

ds

∫ ∫
d%(x)d%(y)1D[pt−s(z, x)− pt−s(z, y)]2

1

|x− y|2
, (3.76)

WD
2 :=

1

2

∫ t

0

ds

∫ ∫
d%(x)d%(y)1D

[ev(y)− ev(x)]2

|x− y|2
. (3.77)

We start with the second term WD
2 . For γj 6 x 6 γj+1 and γk 6 y 6 γk+1, from the construction of ξ’s, we

have

ev(x)− ev(y) = ξj(x)vj + ξj+1(x)vj+1 − ξk(y)vk − ξk+1(y)vk+1

= (1− ξj+1(x))vj + ξj+1(x)vj+1 − (1− ξk+1(y))vk − ξk+1(y)vk+1

= vj − vk + ξj+1(x)(vj+1 − vj)− ξk+1(y)(vk+1 − vk). (3.78)

In particular, when j = k, we have

|ev(x)− ev(y)| =
∣∣∣ξj+1(x)− ξj+1(y)

∣∣∣|vj+1 − vj | 6 Cg̃−1
j+1|x− y||vj+1 − vj | 6

C|x− y||vj+1 − vj |
|γj+1 − γj |2

.

For neighboring indices, i.e. when k = j + 1,

ev(x)− ev(y) = [ξj+1(x)− 1](vj+1 − vj)− ξj+2(y)(vj+2 − vj+1). (3.79)

Notice that when |x−y| 6 g̃j+1/400, we have |x−γj+1| 6 g̃j+1/200, |y−γj+1| 6 g̃j+1/200 and by definition
of the ξ’s we have ξj+1(x) = 1, ξj+2(y) = 0, so ev(x) − ev(y) = 0. Therefore for any set D, we can bound
WD

2 by

WD
2 =

∑
j,k

∫ t

0

∫ γj+1

γj

d%(x)

∫ γk+1

γk

d%(y)
[ev(x)− ev(y)]2

|x− y|2
ds

6 C
∑
j 6=k

∫ t

0

[vj(s)− vk(s)]2

N2|γj − γk|2
ds+ C

∑
j

∫ t

0

[vj(s)− vj+1(s)]2

N2|γj − γj+1|2
ds

6 Nξ 1

N

∑
j,k

∫ t

0

[vj(s)− vk(s)]2Bkj(s)ds (3.80)

= Nξ 1

N

∑
j

[
v2
j (0)− v2

j (t)
]
6 Nξ‖v‖22 6 Nξ‖v‖2∞.

In (3.80) we have used (3.39). The last step is the energy estimate that can be obtained by integrating the
time derivative ∂s‖v(s)‖22.

Choose t1 = tN−2a with some a > 0 to be fixed later and define D1 := {|x− y| 6 `}× [0, t− t1] (Here D1

is a new set, not to be confused with D` defined earlier). For z in the bulk, we can use the explicit formula
of pt (3.22) so that

WD1
1 =

∫ t−t1

0

ds

∫
|x−y|6`

d%(x)d%(y)[pt−s(z, x)− pt−s(z, y)]2
1

|x− y|2
6

`

t21
. (3.81)

Together with (3.75) and (3.80), we have proved that |ΩD1
| 6 CNξ

√
`
t1
‖v‖∞. Similarly, we can bound ΦD1

and obtain

|ΦD1
|+ |ΩD1

| 6 CNξ

√
`

t1
‖v‖∞ . (3.82)

19



Step 3: Time region near the final time t via the Hölder regularity. In this step and the next one we
consider the final time region s ∈ [t − t1, t]. Notice that we will not use the smoothness of the continuous
kernel pt−s(x, y) which depends on t − s and becomes singular when s is close to t. Instead, in Step 3 we
consider the regime in (3.66) where x (hence also y) is not too far from the fixed reference point z. In this
case we will use the the Hölder regularity of the solution to the equation (3.12). In Step 4, we look at the
complement regime, when x and y are far from z, and we can use the large distance decay of the kernel pt.

We first recall this basic Hölder estimate from [18]. We will need this result in the following form and in
Appendix A we will explain how this particular version follows from the general statement in [18].

Lemma 3.6. For any t > t0 = N−τ0/2 and a small constant 0 < a < 1 − τ0 fixed, we set `1 = tN−a. For
any real z with |z| < 2 define

Ξz(`1) :=
{

(j, k) : 1 6 j, k 6 N, |γj − z| 6 `1, |γk − z| 6 `1
}
. (3.83)

Consider the equation (3.12) with coefficients (3.14) satisfying (3.38)–(3.40). If the exponent ρ > 0 in (3.40)
is sufficiently small, depending on a, then there exists a set G ⊂ [t− tN−a, t] of “good times” with Lebesgue
measure

|[t− tN−a, t] \ G| 6 (tN−a)1/4N−3/4, (3.84)

and a set Rz,t in the probability space with

P(Rz,t) > 1−N−ρ (3.85)

such that in the set Rz,t the following oscillation estimate holds: for any time s ∈ G and indices j, k ∈ Ξz(`1)
we have ∣∣vj(s)− vk(s)

∣∣ 6 N−qa‖v‖∞. (3.86)

Here the exponent q is a positive constant independent of any parameters.

If (3.86) holds, we say that Hölder regularity holds at the space time point (z, t).

For any t1 � `1 � t and N−2/3 � `� `1, denote by

A`,`1 := {(x, y) : |x− y| 6 `; |z − x| 6 `1 and |z − y| 6 `1} (3.87)

and consider ΦD from (3.65) with D`,`1 := A`,`1 × [t− t1, t]. With a similar estimate on the boundary terms
of the set A`,`1 as in (3.72), one obtains

ΦD`,`1 = Φ̃D`,`1 +O
(
‖v‖∞`−2N−2/3t1

)
, (3.88)

where

Φ̃D`,`1 :=
1

2

∫ t

t−t1

∫
d%(x)d%(y)1A`,`1 (x, y)[pt−s(z, x)− pt−s(z, y)]

∑
j,k

ξj(x)ξk(y)NBkj(s)(vk(s)− vj(s))ds.

(3.89)
Notice that the characteristic function on x, y puts a constraint on the indices j, k via the support properties
of ξ’s, in particular (j, k) ∈ Ξz(`1). From Lemma 3.6 there is a set G of ”good times” and an event Rz,t such
that the Hölder estimate (3.86) holds in the intersection of Rz,t and the event F defined in Theorem 3.3.
Thus there is a positive constant q > 0 such that for j, k with ξj(x)ξk(y)1A`,`1 (x, y) 6= 0 and t− t1 6 s 6 t
we have

E1(G)1(F ∩Rz,t)|Bjk(s)|
∣∣vj(s)− vk(s)

∣∣ 6 N−qa‖v‖∞EF|Bjk(s)|. (3.90)

Using the estimate (3.40), we have

E1(G)1(F ∩Rz,t)|Bjk(s)|
∣∣vj(s)− vk(s)

∣∣ 6 Nρ 1

N |γj − γk|2
N−qa‖v‖∞. (3.91)
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We can use
1

|γj − γk|2
6

C

|x− y|2 +N−2
, (3.92)

whenever ξj(x)ξk(y) 6= 0 and j 6= k. By splitting the time integration into good and bad times, we can

bound the expectation of Φ̃D`,`1 by

E1(F ∩Rz,t)Φ̃D`,`1 6 NρN−qa‖v‖∞
∫ t

t−t1
ds

∫
d%(x)d%(y)1A`,`1 (x, y)

|pt−s(z, x)− pt−s(z, y)|
|x− y|2 +N−2

+N−a+ρ‖v‖∞

6 NρN−qa logN‖v‖∞, (3.93)

where the second term comes from the “bad” times s after using the estimate (3.84) and estimating |vk(s)−
vj(s)| 6 2‖v‖∞ in (3.89).

Step 4: Time region near the final time t via the decay of the kernel pt−s(x, y). We now consider the
contribution from the region

Ã`,`1 := {(x, y) : |x− y| 6 `; |z − x| > `1 or |z − y| > `1}, D̃`,`1 := Ã`,`1 × [t− t1, t], (3.94)

i.e. estimate ΦD̃`,`1
, see (3.66). As in (3.88), it is sufficient to consider the more symmetrized version

Φ̃D̃`,`1
:=

1

2

∫ t

t−t1

∫
d%(x)d%(y)1Ã`,`1

(x, y)[pt−s(z, x)− pt−s(z, y)]
∑
j,k

ξj(x)ξk(y)NBkj(s)(vk(s)− vj(s))ds

with a common factor ξj(x)ξk(y). Using ` � `1, we see that both |z − x| and |z − y| are bounded from
below by `1/2, so the pt−s kernels are not singular. By (3.40) and ‖v(t)‖∞ 6 ‖v‖∞, we have

EF|Bjk(s)|
∣∣vj(s)− vk(s)

∣∣ 6 Nρ 1

N |γj − γk|2
‖v‖∞. (3.95)

Using (3.92), we can thus bound the expectation of Φ̃D̃`,`1
by

EFΦ̃D̃`,`1
6 Nρ‖v‖∞

∫ t

t−t1
ds

∫
d%(x)d%(y)1Ã`,`1

(x, y)|pt−s(z, x)− pt−s(z, y)| 1

|x− y|2 +N−2

6 Nρ t
2
1

`21
‖v‖∞. (3.96)

Step 5: The conclusion. Collecting all error terms from (3.72), (3.74), (3.82), (3.93), (3.96), and neglecting
irrelevant logarithmic factors, we have

E1(F ∩Rz,t)|Φ− Ω| 6
[ t
`2
N−1+ξ +

√
`

t1
+NρN−qa +Nρ t

2
1

`21

]
‖v‖∞. (3.97)

Recall the choices `1 = tN−a, t1 = tN−2a, we have

E1(F ∩Rz,t)|Φ− Ω| 6 Nξ+ρ
[ t
`2
N−1 +

√
`

t
N2a +N−qa

]
‖v‖∞. (3.98)

Choosing ` = t2N−5a so that the second term is small, we have

E1(F ∩Rz,t)|Φ− Ω| 6 Nξ+ρ
[
t−3N−1+10a +N−aq

]
‖v‖∞. (3.99)

Hence for t > t0 = N−τ0/2 with τ0 6 1/4, one can choose sufficiently small positive exponents ξ, ρ, a, so that
E1(F ∩Rz,t)|Φ−Ω| 6 N−c‖v‖∞ with some positive c > 0. We can choose c 6 ρ. After a Markov inequality
and using (3.85), we see that |Φ − Ω| 6 N−c/2‖v‖∞ on an event S with probability larger than 1 −N−c/2
This completes the proof of Theorem 3.3.
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4 Proof of the universality at fixed energy

In this section, we prove our main result Theorem 2.2. The key ingredient of the proof is Lemma 4.1 below,
asserting that local eigenvalue statistics of DBM for sufficiently large but still of order o(1) times converges
to those of GOE. In order to state this lemma, we first introduce some notations.

The trajectory (x(t))t>0will always denote Dyson Brownian motion dynamics, on the simplex x1(t) 6
. . . 6 xN (t), with initial condition given by eigenvalues of a generalized Wigner matrix. See (2.6). The
processes (y(t))t>0, (z(t))t>0 follow the same dynamics on the simplex, with different, independent, initial
conditions, given by the spectrum of a GOE. Omission of the time parameter means initial condition:
xk = xk(0).

For any k ∈ N and any smooth function O : Rk → R, we denote the W 2,∞(Rk) Sobolev norm by

‖O‖W 2,∞ =
∑

∑
j αj62

∥∥∥ k∏
j=1

∂αjxj O(x)
∥∥∥
∞
. (4.1)

We will consider test functions O ∈W 2,∞(Rk) that are compactly supported in [−L,L]k for some L > 0.
For an initial Wigner matrix H0 we define the Ornstein-Uhlenbeck matrix flow as the solution of the SDE

dHt =
dBt√
N
− Ht

2
dt, Ht=0 = H0, (4.2)

where Bt is a matrix of standard real or complex Brownian motions in the same symmetry class as H0. The
distribution of Ht coincides with

Ht
d∼ e−t/2H0 + (1− e−t)1/2HG, (4.3)

where HG is a standard GOE matrix, independent of H0. Recall the well-known fact that the law of the
solution x(t) to the DBM (2.6) is the same as that of the eigenvalues of Ht provided that the law of the

initial data for (2.6) is given by the eigenvalues of H0. Recall the definition of the correlation functions ρ
(N)
k

from Section 2 and define the rescaled correlation functions around a fixed energy E by

ρ
(N, resc)
k,E (v) :=

1

%(E)k
ρ

(N)
k

(
E +

v

N%(E)

)
. (4.4)

We will use ρ
(N, resc)
k,E,t (v) for the rescaled correlation functions of the eigenvalues of Ht.

Lemma 4.1. For a fixed k ∈ N and L > 0, let O ∈ W 2,∞(Rk) be a test function supported in [−L,L]k.
Suppose that H0 satisfies all the assumptions in Definition 2.1 and (2.1). For a fixed positive number τ we
set t = N−τ . Fix any κ > 0. Then for any |E| 6 2− κ we have∣∣∣∣∫ dvO(v)ρ

(N, resc)
k,E,t (v)−

∫
dvO(v)ρ

(GOE)
k (v)

∣∣∣∣ 6 C‖O‖W 2,∞τ1/2 (4.5)

holds for any small enough τ 6 τ0(κ) any sufficiently large N > N0(τ, κ). Here the constant C depends only
on L and κ.

Throughout this section we use the relation t = N−τ between t and τ , and we will use both letters in
parallel. In order to extend the universality result from Wigner ensembles Ht with a Gaussian component
of size of order t = N−τ to all Wigner ensembles, we follow the standard approach via the following Green
function comparison theorem.

Lemma 4.2. Consider two N × N generalized Wigner matrices, H(v) and H(w) with matrix elements
hij given by the random variables N−1/2vij and N−1/2wij, respectively, and satisfying the assumptions in
Definition 2.1 and the moment condition (2.1). We assume that the first four moments of vij and wij satisfy,
for some δ > 0, that∣∣E(< vij)a(= vij)b − E(<wij)a(=wij)b

∣∣ 6 N−δ−2+(a+b)/2, 1 6 a+ b 6 4. (4.6)
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Let ρ
(N,v)
k and ρ

(N,w)
k be the k−point correlation functions of the eigenvalues w.r.t. the probability law of the

matrix H(v) and H(w), respectively. Then for any test function O and any |E| 6 2− κ we have

lim
N→∞

∫
dvO(v)

(
ρ

(N, v, resc)
k,E (v)− ρ(N,w, resc)

k,E (v)
)

= 0. (4.7)

Proof. Recall [19, Lemma 3.4], where it was proved that for any real random variable θ such that

E θ = 0, E θ2 = 1, E|θ|4 6 C,

and small t > 0, there exists random variable θ̃ = θ̃(θ, t) and an independent, standard normal random
variable X ∼ N (0, 1) such that

(i) θ̃ has subexponential decay;

(ii) the first three moments of e−t/2θ̃ + (1− e−t)1/2X equal to those of θ;

(iii) the difference between the fourth moment of e−t/2θ̃ + (1− e−t)1/2X and θ is O(t).

Inspecting the proof in [19], one can easily show that (i) can be strengthened to require that θ̃ has a
Gaussian decay. Moreover, one can easily extend this result to complex random variables θ if (1) <(θ),=(θ)
are independent, or (2) the law of θ is isotropic, i.e. |θ| is independent of arg θ, which is uniform on (0, 2π).

In this case there exists a complex random variable θ̃ satisfying the corresponding condition (1) or (2) and
each item (i)-(iii).

We apply this result to each entry of H. Therefore, there exists a generalized Wigner matrix H̃, satisfying
the assumptions in Definition 2.1 and (2.1) such that if we define

H̃t = e−t/2H̃ + (1− e−t)1/2HG,

then the first four moments of the matrix entries of H̃t almost match those of H in the following sense:

E
[
<(H̃t)ij

]a[=(H̃t)ij
]b

= E
[
<Hij

]a[=Hij

]b
, 0 6 a, b 6 3, 1 6 a+ b 6 3,∣∣∣E [<(H̃t)ij

]a[=(H̃t)ij
]b − E

[
<Hij

]a[=Hij

]b∣∣∣ 6 CN−2t, a+ b = 4.

Furthermore, H̃t satisfies the assumptions in Definition 2.1 and the decay condition (2.1). Applying Lemma

4.2 with the choice H(v) = H and H(w) = H̃t, t = N−τ and δ := τ , we obtain that the correlation functions
of H asymptotically match those of H̃t, i.e.,

lim
N→∞

∫
dvO(v)

(
ρ

(N, resc)
k,E (v)− ρ̃(N, resc)

k,E,t (v)
)

= 0 (4.8)

for any test function O. Now we can apply (4.5) with H̃ and H̃t playing the role of H0 and Ht, respectively,

since H̃ satisfies the assumption in Definition 2.1 and (2.1). We obtain that the correlation functions of H̃t

asymptotically match those of HG:

lim sup
N→∞

∣∣∣∣∫ dvO(v)ρ̃
(N, resc)
k,E,t (v)−

∫
dvO(v)ρ

(GOE)
k (v)

∣∣∣∣ 6 C‖O‖W 2,∞τ1/2. (4.9)

Combining (4.8) and (4.9), and letting τ → 0 after the N →∞ limit, we obtain that

lim
N→∞

∫
dvO(v)

(
ρ

(N, resc)
k,E (v)− ρ(GOE)

k (v)
)

= 0 (4.10)

holds for compactly supported test functions O ∈ W 2,∞. To extend this result to a general continuous
function O supported in [−L,L]k, we use a simple approximation. For any ε > 0, there exist W 2,∞ functions
O+,ε and O−,ε, supported in [−L− ε, L+ ε]k, such that

O+,ε > O > O−,ε, ‖O+,ε −O−,ε‖∞ 6 2ε.
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Applying (4.10) to O±,ε, we obtain

lim sup
N→∞

∫
dvO(v)ρ

(N, resc)
k,E (v) 6

∫
dvO+,ε(v)ρ

(GOE)
k (v) .

and similar lower bound for lim inf. Together with the fact that ρ
(GOE)
k is bounded, it implies that (4.10)

holds for any continuous, compactly supported observable, which completes the proof of Theorem 2.2.

4.1 Reduction to observables with compact Fourier support. This section presents an approximation argu-
ment: we show that universality for a special class of test functions can be extended to W 2,k test functions
as required in Lemma 4.1. After a change of variables, we will work with test functions that have a com-
pact support in the Fourier space in the energy variable. Universality for such test functions is stated in
Lemma 4.4 below and will be proven in the subsequent Section 4.2.

First we will need the following precise estimates on the correlation functions of GOE, which were proved
in [30, Theorem 3] and [5].

Lemma 4.3. As in (2.3),

1

%(E)k
ρ

(N,GOE)
k

(
E +

v

N%(E)

)
= ρ

(GOE)
k (v) +O(N−1/2), (4.11)

uniformly holds for (v, E) in any fixed compact subset of Rk× (−2, 2) (for matrices from the GUE, the same

statement holds with a different limit ρ
(GUE)
k (v)).

Let xG be the vector of ordered eigenvalues of HG and let x(t) be the eigenvalues of Ht in (4.2). Simply
rescaling the variables in O with %(E), the above lemma shows that for the proof of (4.5) it is sufficient to
prove that ∣∣∣∣∣∣E

N∑
i1,i2···ik=1

O
({
N(xij (t)− E)

}k
j=1

)
− E

N∑
i1,i2···ik=1

O
({
N(xGij − E)

}k
j=1

)∣∣∣∣∣∣ 6 Cτ1/2 (4.12)

holds for any compactly supported O ∈W 2,∞(Rk).
For brevity, we assume that O has only two arguments, i.e., k = 2; the general case is proven analogously.

Furthermore, with a change of variables (a, b)→ (a, b− a), we use the test function of the form

Q(N(xi − E), N(xj − xi)) instead of O(N(xi − E), N(xj − E)). (4.13)

The new test function Q is still compactly supported and lies in W 2,∞; its advantage is that it depends on
E only through its first variable. Therefore, under the assumption of Lemma 4.1, it is sufficient to prove
that for small enough τ ,∣∣∣∣∣∣E

N∑
i,j=1

Q
(
N(xi(t)− E), N(xj(t)− xi(t))

)
− E

N∑
i,j=1

Q
(
N(xGi − E), N(xGj − xGi )

)∣∣∣∣∣∣ 6 C‖Q‖W 2,∞τ1/2 (4.14)

holds for sufficiently large N and with C depending only on L and κ. For simplicity, we define

Q(x, E) :=

N∑
i,j=1

Q
(
N(xi − E), N(xj − xi)

)
, E ∈ R. (4.15)

Let Q̂(p, y) be the Fourier transform of Q w.r.t. the first argument, i.e.,

Q̂(p, y) =

∫
R
Q(x, y)e−ipxdx. (4.16)
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In this section, hat always denotes a partial Fourier transform, i.e. Fourier transform only in the first variable.
The Fourier-space variables will be denoted by p. We will also say that Q̂(p, y) ∈ W 2,∞ if Q̂ as a function
of p, y is in the Sobolev space.

The following lemma, proven in Section 4.2, states that that universality for large time holds for observ-
ables whose Fourier transforms have compact support.

Lemma 4.4. Let Q : R2 → R be a function such that Q̂ ∈W 2,∞, and

supp Q̂ ⊂ [−m,m ]× [−L,L] (4.17)

for some fixed m, L ∈ N. There exists a constant δ0 independent of m and L such that for any κ > 0

EQ(x(t), E)− EQ(xG, E) = O(N−τ ), t = N−τ (4.18)

holds uniformly for |E| 6 2− κ and τ 6 δ0
m2+1 .

We now prove Lemma 4.1 assuming Lemma 4.4 holds. The first step is to approximate a compactly
supported observable Q(x, y) ∈ W 2,∞ by an observable Q(x, y) whose Fourier transform Q̂(p, y) is com-
pactly supported as required in Lemma 4.4. The following lemma provides an effective control on this
approximation.

Lemma 4.5. Let q ∈W 2,∞(R) be a symmetric cutoff function, supported on [−1, 1] such that q(p) = 1 for
|p| 6 1/2, and q ′(p) 6 0 for p > 0. For Q ∈W 2,∞ and suppQ ∈ [−L,L]2, define Qm via its partial Fourier
transform as

Q̂m(p, y) := Q̂(p, y)qm(p), qm(p) := q(p/m). (4.19)

Then there exists a constant C, depending only on L and q, such that for any m ∈ N, (x, y) ∈ R2, we have

|(Qm −Q)(x, y)| 6 C‖Q‖W 2,∞

(1 + x2)
m−1, (4.20)

‖Q̂m‖W 2,∞ 6 C‖Q‖W 2,∞ . (4.21)

Proof of Lemma 4.5. We have

xn(Qm −Q)(x, y) =

∫
R

(i∂p)
n

2π

[(
Q̂m − Q̂

)
(p, y)

]
eipxdp, (4.22)

pn1(∂p)
n2Q̂(p, y) =

∫
R

(−i)n1+n2(∂x)n1 [xn2Q(x, y)] e−ipxdx. (4.23)

Using (4.23) with n1 = 0, 2, since Q is compactly supported in [−L,L]2, we have

|(∂p)nQ̂(p, y)| 6 Cn,L(1 + |p|2)−1‖Q‖W 2,∞ . (4.24)

Similarly, using (4.22) we have

|xn(Qm −Q)(x, y)| 6 Cn

∫ ∑
n1+n2=n

|(∂p)n1(qm − 1)(p)|
∣∣∣(∂p)n2Q̂(p, y)

∣∣∣dp.
By definition, if n1 6= 0 then |(∂p)n1(qm − 1)| 6 Cm−1. If n1 = 0 then |(∂p)n1(qm − 1)| is supported in
{p : |p| > m/2}. Together with (4.24), we have

|xn(Qm −Q)(x, y)| 6 Cn,L‖Q‖W 2,∞ m−1.

Choosing n = 0 and 2, we complete the proof of (4.20). The (4.21) can be easily derived from the definition
of Qm and (4.23) (with n1 = 0).
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Lemma 4.5 provides an approximation for any smooth observables with compact support by observables
with compact support in the Fourier space. On the other hand, to estimate the error resulting from this
approximation, we will need the following corollary which gives an effective bound on the density of x(t),
the eigenvalues of Ht, at the local scale 1/N .

Corollary 4.6. Define

#(x, E, s1, s2) :=
∣∣∣{(i, j) ∈ N2 : |xi − E| 6

s1

N
, |xi − xj | 6

s2

N

}∣∣∣ . (4.25)

For any fixed L > 1 and κ > 0, with the δ0 in Lemma 4.4, there exists constant C > 0 such that for τ 6 δ0/2

lim sup
N→∞

max
|E|62−κ

E#(x(t), E, 1, L) 6 C, t = N−τ , τ 6 δ0/2. (4.26)

Proof. Let g, h ∈ W 2,∞(R) be two real functions such that supp ( ĝ ) = [−1, 1], supp(h) = [−2L, 2L]. We
assume that min|x|6a g(x) > b for some 0 < a 6 1 and b > 0. Furthermore, we assume that 1 > h(x) > 0 for
any x ∈ R and h(x) = 1 for |x| 6 L. Define

Q(x, y) := b−2g2(x)h(y). (4.27)

Since ĝ2 = ĝ ? ĝ, it is clear that Q satisfies the assumption in Lemma 4.4 with m = 2, and L being replaced
by 2L. Then applying (4.18) to Q defined in (4.27), and using that EQ(xG, E) is bounded from Lemma 4.3,
we have that

lim sup
N→∞

EQ(x(t), E) 6 C (4.28)

holds uniformly for any |E| 6 2− κ. From the definition of Q in (4.27), we have

min
x,y∈R

Q(x, y) > 0 and Q(x, y) > 1, (x, y) ∈ [−a, a]× [L,L].

Then (4.28) implies
lim sup
N→∞

max
|E|62−κ

E#(x(t), E, a, L) 6 C

for some constant C. Hence (4.26) also holds, since a ∼ 1, which completes the proof of Corollary 4.6.

We now have all the ingredients to complete the proof of Lemma 4.1.

Proof of Lemma 4.1. For any compactly supported Q ∈ W 2,∞(R2), we construct Qm as in (4.19). The
definition of Qm, and (4.21) guarantee that Qm satisfy the assumption of Lemma 4.4. Then applying
Lemma 4.4 for Qm, we obtain for any fixed m ∈ N that

EQm(x(t), E) = EQm(xG, E) + O(N−τ ), t = N−τ , τ 6
δ0

m2 + 1
, (4.29)

where δ0 is from (4.18). On the other hand, we will show below that if τ 6 δ0/2, then

|EQ(x(t), E)− EQm(x(t), E)| 6 C ‖Q‖W 2,∞m−1 (4.30)

holds for some C independent of m and τ and and large enough N . Notice that (4.30) also holds if we replace

the x(t) with xG, since x(t)
d∼ xG if x(0)

d∼ xG. Combining (4.29) and (4.30), and choosing m = δτ−1/2

with a small δ 6 δ0, we obtain (4.14), i.e., (4.12) in the case k = 2. One can easily extend the above proof
to the general k case. Together with Lemma 4.3, it implies the desired result (4.5).

Hence it only remains to prove (4.30). Using (4.20), we have

max
y

max
x:|x−n|61

|(Qm −Q)(x, y)| 6 C‖Q‖W 2,∞

1 + n2
m−1.

26



With the definition of #(x(t), E + n
N , 1, L) in (4.25), it implies that

|EQ(x(t), E)− EQm(x(t), E)| 6 ‖Q‖W 2,∞
1

m

∑
n

C

1 + n2
E#(x(t), E +

n

N
, 1, L). (4.31)

For n 6 N1/2, E#(x(t), E + n
N , 1, L) can be bounded by (4.26) (after replacing κ with κ/2). For n > N1/2

we can use the trivial bound
E#(x(t), E +

n

N
, 1, L) 6 Nξ

for any ξ > 0 that directly follows from the rigidity of eigenvalues of Ht if N > N0(ξ) is large enough.
Inserting these bounds into (4.31), we obtain (4.30) and complete the proof of Lemma 4.1.

4.2 Universality for test functions with compact Fourier support: Proof of Lemma 4.4. Recall that E
satisfies |E| 6 2 − κ. All the constants in the following proof depend on κ, but we will not carry this
dependence explicitly in the notation. For any nonnegative integer α introduce the notation

Q(α)(x, y) := (∂x)αQ(x, y).

Recall

xn1(∂x)n2Q(x, y) =

∫
in1+n2

2π
(∂p)

n1

[
pn2Q̂(p, y)

]
eipxdp.

As in (4.20), with assumption (4.17) and Q̂ ∈W 2,∞ we obtain that there exists some constant C such that
for any α ∈ Z>0, and y ∈ R∣∣∣Q(α)(x, y)

∣∣∣ 6 Cdα(1 + x2)−1, dα :=
(
m2 + α2

)
mα−1‖Q̂‖W 2,∞ . (4.32)

The multiindex α used in this section has nothing to do with the threshold α to indicate indices away from
the edge, see e.g., (3.29).

The main input to prove Lemma 4.4 is the homogenization result, Theorem 3.2, stating that for any
τ < τ0 with a sufficiently small τ0, two coupled DBMs (2.6) driven by the same Brownian motions satisfy
the estimate

Nxi(t)−N
(
yi(t) + (Ψt−t0x(t0))i − (Ψt−t0y(t0))i

)
= O(N−δ2), t = N−τ > 2t0 = N−τ0 , (4.33)

for all i ∈ I(δ1) with probability bigger than 1−N−δ3 . We recall from (3.34) that Ψtx is given by (Ψtx)i =
N−1

∑
k pt(γi, γk)xk, and δ1, δ2, δ3 are small positive exponents.

In our application we choose y(t0) to be distributed by µG, i.e, the eigenvalue distribution of a Gaussian
matrix ensemble. Since x(t0)’s are the eigenvalues of a generalized Wigner matrix, we denote their distribu-
tion by µW . The joint distribution of the coupled DBM processes {x(s)}06s6t and {y(s)}06s6t, as defined
in (2.6), is given by µW ⊗ µG ⊗ µB , where µB = µ ({B`(t)}16`6N,06s6t) is the measure of the independent
Brownian motions. For simplicity, for expectation w.r.t. µW ⊗ µG ⊗ µB , we just use E. For the expectation
of functionals f of x(t), we will sometimes use EµW f(x(t)) instead of EµW⊗µBf(x(t)) and similarly we use
EµGf(y(t)) for functionals of y(t).

Below, we apply the homogenization result (4.33) to Q(α). Recall the definition of I(δ) from (3.32).

Lemma 4.7. For x ∈ RN and s > 0, define

ξxs := ξxs (E) := N(Ψsx)i0 −N(Ψsγ)i0 , i0 := min{i : γi > E}. (4.34)

(The notation ξxs should not be confused with the rigidity exponent ξ.) Recalling τ0 provided by Theorem 3.2,
there exists δQ 6 τ0 such that for any 0 < δ 6 δQ and any 0 < τ 6 δ/5 we have (with the usual t = N−τ ,
t0 = N−τ0/2 conventions)

max
|E′−E|6N4τ−1

∣∣∣∣∣∣EµW Q(α)(x(t), E′)−
∑

i,j∈I(δ)

E Q(α)
(
N(yi(t)− E′) + ξ

x(t0)
t−t0 − ξ

y(t0)
t−t0 , N(yj(t)− yi(t))

)∣∣∣∣∣∣
6 3N−δ/2dα+1 (4.35)
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for large enough N > N0 where N0 is independent of α, the order of derivatives.

Notice that although Lemma 4.4 is formulated at a fixed energy E, for its proof we will need to understand
E Q(α)(x(t), E′) for nearby energies E′ as well, which explains the introduction of E′ in (4.35).

Proof. First we show that the summation over all indices i, j in the definition of Q (4.15) can be restricted
to the interval I(δ). This directly follows from the rigidity of eigenvalues x(t) and from the bound (4.32):
there exists some δc > 0 (here we use subscript c for cutoff) such that for 0 < δ 6 δc and τ 6 δ/5, we have

max
|E′−E|6N−1+4τ

∣∣∣∣∣∣Q(α)(x(t), E′)−
∑

i,j∈I(δ)

Q(α)
(
N(xi(t)− E′), N(xj(t)− xi(t))

)∣∣∣∣∣∣ 6 dαN
−δ/2 (4.36)

holds with probability greater than 1−N−10 for large enough N independent of α.
With Theorem 3.2, and from the derivative estimate from (3.31), one can easily check that there exists

some constants δh (“h” stands for homogenization), and τ0 such that (3.33) holds for any 0 < τ 6 τ0 and
δ1, δ2, δ3 6 δh and we also have

|pt(γi, γj)− pt(γi+1, γj)| 6 N−3δh , ∀ i ∈ I(δh), 1 6 j 6 N. (4.37)

Using (4.37) and the rigidity of eigenvalues, we know that for any 0 < τ < τ0,

P
(

max
i,j∈I(δh)

|(Ψt−t0(x(t0)− γ))i − (Ψt−t0(x(t0)− γ))j | > N−1−δh
)

6 N−10. (4.38)

Define Q(α)(x, E) as in (4.15) with Q(α) replacing Q. Combining (3.33), (4.38) and (4.36), and using rigidity
and (4.32), we obtain that for any δ: 0 < δ 6 δQ := min(δc, δh)/3 and 0 < τ < min(δ/5, τ0),

max
|E′−E|6N4τ−1

∣∣∣∣∣∣Q(α)(x(t), E′)−
∑

i,j∈I(δ)

Q(α)
(
N(yi(t)− E′) + ξ

x(t0)
t−t0 − ξ

y(t0)
t−t0 , N(yj(t)− yi(t))

)∣∣∣∣∣∣ 6 2N−δ/2dα+1

(4.39)
holds with probability larger than 1 − 2N−δ for large enough N independent of α. Here for the second
variable of Q(α) we first use (3.33), for any i, j ∈ I(δ),

xj(t)− xi(t) =yj(t)− yi(t) + (Ψt−t0x)j − (Ψt−t0x)i − (Ψt−t0y)j + (Ψt−t0y)i +O(N−1−δ)

=yj(t)− yi(t) + (Ψt−t0(x− γ))j − (Ψt−t0(x− γ))i − (Ψt−t0(y − γ))j + (Ψt−t0(y − γ))i +O(N−1−δ)

=yj(t)− yi(t) +O(N−1−δ),

with the shorthand writing x = x(t0), y = y(t0), where in the second step we smuggled in the γ’s and in
the last step we used (4.38). Similar argument applies to the first variable of Q(α).

On the complement event of probability at most 2N−δ but still on the event where the rigidity holds, we
use that for any fixed τ , δ and ξ > 0,

∣∣∣Q(α)(x(t), E′)
∣∣∣+

∣∣∣∣∣∣
∑

i,j∈I(δ)

Q(α)
(
N(yi(t)− E′) + ξ

x(t0)
t−t0 − ξ

y(t0)
t−t0 , N(yj(t)− yi(t))

)∣∣∣∣∣∣ 6 dαN
ξ

holds for all E′ : |E′ −E| 6 N4τ−1. Finally, on the event where the rigidity does not hold, we can estimate
Qα by maximum norm; the contribution of this event is still negligible in the expectation. Together with
(4.39), we obtain (4.35) and complete the proof of Lemma 4.7.

To understand the second term in (4.35), we define a (non-random) function F as follows:

F (a) := EµG
∑

i,j∈I(δQ)

Q
(
N(yi(t)− E) + a− ξy(t0)

t−t0 , N(yj(t)− yi(t))
)
, (4.40)
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and we always assume δQ 6 10−4. We can now rewrite (4.35) as follows: for τ < min(δ/5, τ0)

max
|h|6N4τ

∣∣∣EµW Q(α)(x(t), E + h/N)− EµW F (α)(ξ
x(t0)
t−t0 − h)

∣∣∣ 6 3N−δQ/2dα+1. (4.41)

We do not have a direct understanding of ξ
x(t0)
t−t0 ; although it concerns local statistics on a relatively large

mesoscopic scale t − t0 ∼ N−τ , but in (4.41) we would need it with a precision that cannot be obtained
from the available local semicircle laws for Wigner matrices. The key observation is that F is essentially a

constant function, so the actual distribution of ξ
x(t0)
t−t0 does not matter. The following lemma formalizes the

statement that F is essentially a constant:

Lemma 4.8. With the choice δ0 := min(δQ/3, τ0) and τ < δ0
m2+1 , we have

F (a)− F (0) = O(d2N
−τ ), ∀ a : |a| 6 N4τ . (4.42)

We first prove Lemma 4.4 assuming that Lemma 4.8 holds and then we will prove Lemma 4.8 in the next
Section 4.3. Using rigidity for x and the fact that

pt(γi, γj) 6
Ct

t 2 + (γi − γj)2
, i ∈ I(δQ), 1 6 j 6 N,

(see (3.29)), we obtain that for any 0 < τ < τ0 and ξ > 0,

P
(

max
i∈I(δQ)

|(Ψt−t0x)i − (Ψt−t0γ)i| > N−1+ξ

)
6 N−10. (4.43)

Choosing ξ small enough in (4.43), we have

|ξx(t0)
t−t0 | 6 Nτ . (4.44)

Hence for τ < δ0
m2+1 , and |E′ − E| 6 N4τ−1 we have

EµW Q(x(t), E′) = EµW F (ξ
x(t0)
t−t0 ) +O(N−τd1) = F (0) +O(N−τd2). (4.45)

In the first step we used (4.41) and in the second we used (4.42) and (4.44). This implies that, up to a
negligible error, the left side of the last equation is independent of the specific initial Wigner ensemble µW ,
in particular, it is the same as for the Gaussian ensemble, i.e. µG. Since in the Gaussian case, we have

x(t)
d∼ xG, this proves (4.18) and completes the proof of Lemma 4.4.

4.3 Constantness of F : Proof of Lemma 4.8. Notice that F is defined exclusively by the Gaussian ensem-
ble, so the proof of Lemma 4.8 will be a Gaussian calculation where additional tools are available.

Step 1: Apriori bounds on F . For convenience, we define

Fh(a) := F (a− h)− F (a). (4.46)

By definition, for the α-th derivative of F (a), we have

F (α)(a) := E
∑

i,j∈I(δQ)

Q(α)
(
N(yi(t)−E)+a− ξy(t0)

t−t0 , N(yj(t)−yi(t))
)
, F

(α)
h (a) := F (α)(a−h)−F (α)(a).

(4.47)
It follows from (4.41) that for τ < min(δQ/5, τ0)∣∣∣EµWQ(α)

(
x(t), E − rN−1

)
− EµWQ(α)

(
x(t), E + hN−1 − rN−1

)
− EµWF (α)

h (ξ
x(t0)
t−t0 + r)

∣∣∣ 6 6dα+1N
−δQ/2

(4.48)
uniformly holds for α > 0 and |h|, |r| 6 N4τ .

The following lemma provides an a priori bound on the derivatives of F .

29



Lemma 4.9. With F defined in (4.40), for any positive ξ, and τ < min(δQ/5, τ0)

‖F (α)‖∞ 6 dαN
ξ (4.49)

holds uniformly for α > 0. Furthermore, uniformly for α > 0 we have

1(|a| > N2δQ)|F (α)(a)| 6 |a|−2dαN
ξ. (4.50)

Proof. For any fixed a > 0, we define a subset of the probability space Ωa := Ωξ,δQ,a. If |a| 6 3N2 then Ωa
is the event such that

max
i∈I(δQ)

|γi − yi(t)| 6 N−1+ξ, |ξy(t0)
t−t0 | 6 NδQ , and max

i
|yi(t)| 6 N2

hold. If |a| > 3N2, then let the event Ωa be the set on which

max
i
|yi(t)| 6

|a|
3N

holds. Note that in the second case, the upper bound of yi’s implies |ξy(t0)
t−t0 | 6 |a|/3. Since

∑
i y

2
i (t) =

TrH(t)2 =
∑
ij |hij |2 ∼ N−1χ2

N2 , where χ2
N2 is chi-square distribution with N2 degrees of freedom, one can

easily check that χ2
N2 is smaller than 2N2 with a very high probability, and the probability density decay

faster than polynomials. Together with rigidity, and (4.43), it implies that

P(Ωca) 6 min(N−10, N−5a−2). (4.51)

By the definition of Ωa and (4.32), for any α > 0, ξ > 0 and |a| 6 3N2, we have∣∣∣E1(Ωa)
∑

i,j∈I(δQ)

Q(α)
(
N(yi(t)− E) + a− ξy(t0)

t−t0 , N(yj(t)− yi(t))
)∣∣∣

6 max
b,b′∈R

sup
ω∈Ωa

∑
i∈I(δQ)

∣∣∣Q(α) (N(yi(t)− E) + b, b′)
∣∣∣N2ξ 6 dαN

4ξ. (4.52)

One can easily obtain the same bound for |a| > 3N2, since in that case |N(yi(t)− E) + a− ξy(t0)
t−t0 | > |a|/10

on the event Ωa.

On the other hand, the contribution from Ωc to F (α)(a) is negligible thanks to (4.51). Hence together

with (4.52), we obtain (4.49). Similarly, with (4.32) and |ξy(t0)
t−t0 | 6 NδQ , we have (4.50).

Step 2. Estimating F with a Gaussian convolution. In order to show that Fh(a) is negligible, we first prove
that its convolution with a Gaussian kernel is small (and in Step 3 below we remove this convolution). This
is formulated in Lemma 4.10 below. We cannot prove this result directly, but we can show that EFh(X)
is small, where X is a random variable close to a Gaussian. The key is to choose the random variable X
appropriately: it will be the mesoscopic statistics ξxt−t0 defined in (4.34) but applied to the case where x is
distributed by GOE. On one hand, by going back to the homogenization result, we show that EFh(ξxt−t0)
is small, this will be formulated in (4.56) below. On the other hand, by using the Gaussian fluctuation of
mesoscopic eigenvalue statistics, we show that ξxt−t0 is close to a Gaussian random variable, this will follow
from the combination of (4.59) and (4.64) below. Now we explain these two ingredients in detail.

The homogenization results in the form (4.41) and (4.48) hold any Wigner ensemble x(0). In particular,
they also hold for the case µW = µG. To avoid confusion with the other Gaussian ensemble denoted by y
earlier, when taking µW to be µG we denote the eigenvalues by z instead of x in this argument. Since for

any t > 0, the probability measure of z(t) is also µG, then for any |E| 6 2−κ/2 (for brevity we write ρ
(N,G)
2
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instead of ρ
(N,GOE)
2 and similarly for the limiting correlation functions)

EµGQ(α)
(
z(t), E

)
=

∫
Q(α) (u1, u2 − u1) ρ

(N,G)
2 (E +

u

N
)du, u = (u1, u2)

=
∑
n∈Z

∫
|u1|6 1

2

Q(α) (n+ u1, u2 − u1) ρ
(N,G)
2 (En +

u

N
)du, En = E + nN−1

=
∑

|n|6N1/2

∫
|u1|6 1

2 ,|u2−u1|6L
Q(α) (n+ u1, u2 − u1) ρ

(N,G)
2 (En +

u

N
)du +O(dαN

−1/2+2ξ)

(4.53)

for any fixed ξ > 0. Here for the last line, we used (4.32) and rigidity of eigenvalues. It follows from Lemma
4.3 (with choosing the compact set {u : |u1| 6 1

2 , |u2 − u1| 6 L} × {x : |x| 6 2− κ/3}) that the last line of
(4.53) equals∑

|n|6N1/2

∫
|u1|6 1

2 ,|u2−u1|6L
Q(α) (n+ u1, u2 − u1) %(En)2ρ

(G)
2

(
%(En)u

)
du +O(dαN

−1/2+2ξ) (4.54)

where C depends on κ and L. For |h|, |r| 6 N1/2, we define the notations

E∗ = E0 − rN−1, E∗∗ = E0 + hN−1 − rN−1, E∗n = E∗ + n, E∗∗n = E∗∗ + n.

It is well known from the explicit formula that ρ
(G)
2 (v) is uniformly smooth on any compact support. Then

%(E∗n)2ρ
(G)
2 (%(E∗n)u)− %(E∗∗n )2ρ

(G)
2 (%(E∗∗n )u) = O(dαN

−1/2).

Together with (4.54) and (4.53) we obtain that∣∣∣EµGQ(α)
(
z(t), E − rN−1

)
− EµGQ(α)

(
z(t), E + hN−1 − rN−1

)∣∣∣ 6 CdαN
−1/2+ξ 6 dαN

−1/3 (4.55)

uniformly holds for α > 0 and |h|, |r| 6 N4τ .

We remark that one can also prove (4.55) directly from (4.54) without using the smoothness of ρ
(G)
2 (v)

but using a version of (4.32) for ∂yQ
(α). It requires Q̂ ∈ W 3,∞, so it can be implemented by increasing the

regularity condition from W 2,∞ to W 3,∞ from the beginning of the proof. Therefore, with (4.48) applied to
µG instead of µW , we have ∣∣∣EµGF (α)

h (ξ
z(t0)
t−t0 + r)

∣∣∣ 6 7dα+1N
−δQ/2 (4.56)

for any 0 < τ < min(δQ/5, τ0).

The next ingredient is to show that ξ
z(t0)
t−t0 is close to a Gaussian random variable. Recall ξ

z(t0)
t−t0 is defined

as
ξ
z(t0)
t−t0 =

∑
k

pt−t0(γi0 , γk) (zk(t0)− γk) , i0 := min{i : γi > E}.

The kernel ps(x, y) is originally defined on [−2, 2]2; we now extend it linearly to a larger set in the second
variable so that it remains a differentiable function. For |γ| > 2, we simply define ps(γi0 , γ) such that
∂γps(γi0 , γ) = ∂γps(γi0 ,±2). We also define Ps : R→ R as a function such that

Ps(γ) :=

∫ γ

γi0

ps(γi0 , x)dx for |γ| 6 3 (4.57)

and suppPs = [−4, 4] and |P ′′s (γ)| 6 C for 2 6 |γ| 6 4. With lemma lem:diagonalization on ps, it is easy
to check that for i0 : i0 ∼ N , and N − i0 ∼ N , and s� 1,

‖Ps‖∞ 6 C, P ′s(γ) 6
Cs

s2 + (γi0 − γ)2
, P ′′s (γ) 6

Cs|γi0 − γ|
s4 + (γi0 − γ)4

, γ ∈ R. (4.58)
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Then with (4.58), rigidity of eigenvalues z(t0) and mean value theorem, for any ξ > 0, we have

P
(∣∣∣ξz(t0)

s − ζz(t0)
s

∣∣∣ > N−1+ξ
)
6 N−10, ζz(t0)

s :=
∑
j

[
Ps
(
zj(t0)

)
− Ps(γj)

]
, ∀s� 1. (4.59)

Combining (4.59), (4.49) and (4.56), then we obtain that for any fixed τ < min(δQ/5, τ0)∣∣∣EµGF (α)
h (ζ

z(t0)
t−t0 + r)

∣∣∣ 6 8dα+1N
−δQ/2 (4.60)

uniformly holds for α > 0 and |h|, |r| 6 N4τ .
The characteristic function of linear statistics of zj(t0) in the form

∑
j

Pt−t0
(
zj(t0)

)
−
∫ 2

−2

Pt−t0(s)%(s)ds (4.61)

will be analyzed in Section 5 in details. The main result (Theorem 5.4) states that this linear statistics
is asymptotically Gaussian with parameters (expectation and variance) expressed as certain functionals of
Pt−t0 . These functionals are somewhat complicated and will be defined later right above (5.8). With (4.58),
a simple calculation gives that their values on Pt−t0 are given by

σ2(Pt−t0) = τ logN + o(logN), δ(Pt−t0) = O(1), ε(Pt−t0) = O(N2τ ), t− t0 ≈ N−τ .

With these values, Theorem 5.4 states that

EµG exp
(
iλζ

z(t0)
t−t0

)
= e−

λ2

2 σ(Pt−t0 )2+iλ(δ(Pt−t0 )+δ̃(Pt−t0 )) + O
(
N−1/100

)
, (4.62)

for |λ| 6 (2τ)−1/2, where δ̃(Ps) is defined as

δ̃(Ps) :=
∑
j

Ps(γj)−
∫ 2

−2

%(u)Ps(u)du

to account for the difference between (4.61) and the definition of ζ
z(t0)
t−t0 in (4.59). By a Riemann sum

approximation, one can easily obtain δ̃(Pt−t0) = O(1). Theorem 5.4 concerns only the small λ regime; but
Lemma 5.6 complements it in the regime (2τ)−1/2 6 |λ| 6 N1/10 with a crude estimate of order N−1/100.
Note that in this regime and for small τ the first term in the r.h.s. of (4.62) is smaller than N−1/100, so
(4.62) holds throughout the regime |λ| 6 N1/10.

We now define ζ as a new Gaussian random variable with expectation δ(Pt−t0) + δ̃(Pt−t0) and variance
σ(Pt−t0):

ζ ∼ N
(
δ(Pt−t0) + δ̃(Pt−t0), σ(Pt−t0)

)
. (4.63)

Using (4.62), the distribution of ζ is close to that of ζ
z(t0)
t−t0 in the following way;

EµG exp
(
iλ ζ

z(t0)
t−t0

)
= E exp (iλ ζ) + O

(
N−1/100

)
(4.64)

for |λ| 6 N1/10. Finally, we use (4.64) to replace ζ
z(t0)
t−t0 with ζ in the bound (4.60). This gives the following

main result of Step 2.

Lemma 4.10. Define ζ as in (4.63) with t = N−τ and τ < min(δQ/5, τ0). Then∣∣∣EF (α)
h (ζ + r)

∣∣∣ 6 Cdα+2N
−δQ/2 (4.65)

uniformly holds for α > 0 and |h|, |r| 6 N4τ , where C is independent of α, h and r.
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Proof. We define

Fh,r,α(a) := F
(α)
h (r − a).

It follows from (4.64) that∣∣∣EF (α)
h (ζ + r)− EF (α)

h (ζ
z(t0)
t−t0 + r)

∣∣∣ 6 CN−1/100

∫
|p|6N1/10

∣∣∣ ̂(Fh,r,α)(p)
∣∣∣ dp+

∫
|p|>N1/10

∣∣∣ ̂(Fh,r,α)(p)
∣∣∣dp.

(4.66)
For the last term, using Lemma 4.9, we have∣∣∣ ̂(Fh,r,α)(p)

∣∣∣ =
1

|p|2

∣∣∣∣∫ (Fh,r,α)
′′

(a)e−ipada

∣∣∣∣ 6 Cdα+2N
3δQ |p|−2.

Similarly, we have ‖F̂h,r,α‖∞ 6 Cdα+2N
3δQ . Then

‖ ̂(Fh,r,α)‖1 6 Cdα+2N
3δQ ,

∫
|p|>N1/10

∣∣∣ ̂(Fh,r,α)(p)
∣∣∣dp 6 Cdα+2N

−1/10+3δQ . (4.67)

Together with (4.66) and (4.60), we obtain (4.65) and complete the proof of Lemma 4.10.

Step 3: Removal of the Gaussian convolution. The expectation w.r.t. the Gaussian variable ζ in (4.65) can
be viewed as evolving the standard heat equation on the function Fh and its derivatives up to times given
by the variance σ = σ(Pt−t0). We will thus show that from the estimates on the heat evolution on Fh given
in (4.65) we have effective estimates on the function Fh. This is similar to backward uniqueness of the heat
equation for analytic functions, supplemented by precise bounds. This step is the reason why we need to
consider test functions with compact Fourier support in Section 4.2.

Recall F (α) are uniformly bounded in (4.49). Together with (4.32), we can define:

U(r, t) :=

∞∑
α=0

sα

α!
F

(2α)
h (r), r, s ∈ R.

With (4.49) and the estimate dα 6 Cαm from (4.32), this power series is convergent and termwise differentiable
in both variables arbitrary many times. It is easy to check that

∂sU(r, s) = ∂2
rU(r, s).

Thus U(r, s) is the solution of the heat equation with an initial condition U(r, 0) = Fh(r) that is analytic in
a strip around the real axis. Therefore the usual semigroup property extends to negative times as well and
for any µ, σ > 0 we have

Fh(r) = U(r, 0) =

∫
U
(
r − r′,−σ2

) 1

σ
√

2π
e−

(r′)2

σ2 dr′ =

∫
U
(
r − r′ + µ,−σ2

) 1

σ
√

2π
e−

(r′−µ)2

σ2 dr′.

Recall ζ defined in (4.63). Choosing µ = δ(Pt−t0) + δ̃(Pt−t0) and σ = σ(Pt−t0), we obtain

Fh(r) =

∞∑
α=1

(
− σ2(Pt−t0)

)α
α!

EF (2α)
h

(
ζ + δ(Pt−t0) + δ̃(Pt−t0)

)
, r ∈ R.

Using (4.65) and (4.32), for τ < min(δQ/5, τ0), we obtain that

|Fh(r)| 6 Cd2N
m2τ−δQ/2 (4.68)

uniformly holds for |h|, |r| 6 N4τ . Let δ0 := min(δQ/3, τ0). Inserting (4.68) into (4.48) with r = α = 0, we
obtain (4.42) and complete the proof of Lemma 4.8.
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5 Mesoscopic fluctuations for Gaussian ensembles

This section follows Johansson’s method [24] to prove Gaussian fluctuations of linear statistics at any meso-
scopic scale N−1+ε. An important ingredient is the optimal rigidity of the eigenvalues obtained in [2–4],
allowing the choice of any ε > 0. Moreover, while limiting Gaussian behaviour of linear statistics is obtained
in [24] by characterizing the Laplace transform, in this section we choose to work with the Fourier trans-
form, for the sake of better estimates on the speed of convergence. This implies technical complications: the
partition function may vanish.

Consider the probability measure

dµ(y) :=
1

Z

∏
16k<`6N

|yk − y`|βe−β
N
4

∑N
k=1 y

2
kdy (5.1)

on the simplex y1 < · · · < yN . For a given function f : R→ R we consider the general linear statistics

SN (f) :=

N∑
k=1

f(yk)−N
∫
f(s)%(s)ds,

and we are interested in the Fourier transform

Z(λ) := ZN (λ) = Eµ(eiλSN (f)).

We will need the following complex measure, modification of the GOE: assuming Z(λ) 6= 0, we define

dµλ(y) :=
eiλSN (f)

Z(λ)
dµ(y).

The following lemma about the total variation of µλ is elementary.

Lemma 5.1. If Z(λ) 6= 0, for any measurable A we have |µλ|(A) 6 µ(A)
|Z(λ)| .

We will use the following rigidity estimate, proved for a wide class of β-ensembles including the quadratic
beta ensemble in [4]. We use the notation k̂ = min(k,N + 1− k).

Lemma 5.2. For any ξ > 0 there exists c > 0 such that for any N > 1 and k ∈ J1, NK we have

µ
(
|yk − γk| > N−

2
3 +ξ(k̂)−

1
3

)
6 e−N

c

.

As an easy consequence of Lemmas 5.1 and 5.2, rigidity estimates for µ yield rigidity estimates for µλ, at
the expense of a factor Z(λ)−1. It also gives estimates on the 1-point function and variances for the measure
µλ. We recall the definition of the correlation functions from (2.2), in particular the 1-point function satisfies

N

∫
h(s)%

(N,λ)
1 (s)ds = Eµλ

(∑
k

h(yk)

)
=

∫ ∑
k

h(yk)dµλ(y),

for any continuous bounded test-function h. We also define the complex variance by Varµ
λ

(X) = Eµλ
(
X2
)
−(

EµλX
)2

. We introduce the notation for the Stieltjes transform of the empirical measure, and its expectation

w.r.t. µλ, by

sN (z) :=
1

N

∑
k

1

z − yk
, mN,λ(z) := Eµ

λ

(sN (z)).

We will also use the following notation for the Stieltjes transform of the semicircle distribution :

m(z) :=

∫
%(s)

z − s
ds =

z −
√
z2 − 4

2
,

where the square root is chosen so that m is holomorphic on [−2, 2]c and m(z)→ 0 as |z| → ∞.
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Lemma 5.3. Assume that Z(λ) 6= 0. For any ξ > 0 there exists c > 0 such that for any N > 1 and
k ∈ J1, NK we have ∣∣µλ∣∣ (|yk − γk| > N−

2
3 +ξ(k̂)−

1
3

)
6

e−N
c

|Z(λ)|
. (5.2)

As a consequence, the following estimates hold: for fixed ξ > 0, for any 0 < |η| < 1 (remember z = E + iη),
N > 1, and f ∈ C 2(R) we have∫
R

f ′(s)

z − s
%

(N,λ)
1 (s)ds−

∫
R

f ′(s)

z − s
%(s)ds =

N−1+ξ

|Z(λ)|
O

(∫
|f ′′(s)|
|z − s|

ds+

∫
|f ′(s)|
|z − s|2

ds+
e−N

c

η2
(‖f ′‖∞ + ‖f ′′‖∞)

)
,

(5.3)

mN,λ(z)−m(z) = O

(
N−1+ξ

|ηZ(λ)|

)
, (5.4)

m′N,λ(z)−m′(z) = O

(
N−1+ξ

η2|Z(λ)|

)
, (5.5)

Varµ
λ

(
1

N

∑
k

1

z − yk

)
= O

(
N−2+2ξ

η2|Z(λ)|2

)
. (5.6)

Proof. The rigidity estimate (5.2) is immediate from Lemmas 5.1 and 5.2. For the proof of (5.3), we first
write the left hand side of (5.3) as

1

N

N∑
k=1

Eµ
λ

(∫ yk

γk

∂s

(
f ′(s)

z − s

)
ds

)
+

N∑
k=1

∫ γk

γk−1

ds%(s)

∫ γk

s

∂u

(
f ′(u)

z − u

)
du. (5.7)

Let γ(u) := max{γk : γk 6 u}. The second sum above is easily bounded by∫ 2

−2

∣∣∣∣∂u f ′(u)

z − u

∣∣∣∣du∫ u

γ(u)

%(s)ds = O

(
1

N

∫ (
|f ′(s)|
|z − s|2

+
|f ′′(s)|
|z − s|

)
ds

)
.

To bound the first term in (5.7), we first denote A = {∀k ∈ J1, NK, |yk − γk| < N−
2
3 +ξ(k̂)−

1
3 }. Thanks to

(5.2),

1

N

N∑
k=1

Eµ
λ

(
1Ac

∫ yk

γk

∂s

(
f ′(s)

z − s

)
ds

)
= O

(
e−N

c

|Z(λ)|η2
(‖f ′‖∞ + ‖f ′′‖∞)

)
.

In the event A, we have

1

N

N∑
k=1

Eµ
λ

(
1A

∫ yk

γk

∂s

(
f ′(s)

z − s

)
ds

)
= O

(
1

|Z(λ)|N

∫ ∣∣∣∣∂s f ′(s)z − s

∣∣∣∣ N∑
k=1

1s∈Ikds

)

where Ik = {s : |s − γk| 6 N−
2
3 +ξ(k̂)−

1
3 }. This concludes the proof of (5.3) by noting that for any fixed s

we have |{k : s ∈ Ik}| 6 Nξ.
The bounds (5.4), (5.5) and (5.6) can be proved the same way, by discussing the cases A and Ac. For

example, the considered variance can be written

Eµ
λ

( 1

N

∑
k

1

z − yk
− 1

z − γk

)2
−(Eµλ 1

N

∑
k

(
1

z − yk
− 1

z − γk

))2

.

The first term can be bounded as previously and yields an error of size N−2+2ξ

|Z(λ)|η2 (in A). The second one yields

the higher order error N−2+2ξ

|Z(λ)|2η2 , concluding the proof.
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For the following theorem, we need the notations

κ(s) := max{N−2/3,min(|s− 2|, |s+ 2|)},

dν(s) :=
1

2

(
δs−2 + δs+2 −

1

2π

ds√
4− s2

)
.

Theorem 5.4. Let f be a (N -dependent) real function of class C 2 such that, for any N , we have ‖f‖∞ < C,
‖f ′‖∞, ‖f ′′‖∞ 6 NC ,

∫
|f ′| < C. Let

σ(f)2 :=
1

2π2β

∫∫
(−2,2)2

(
f(x)− f(y)

x− y

)2
4− xy

√
4− x2

√
4− y2

dxdy,

δ(f) :=

(
2

β
− 1

)∫
f(s)dν(s),

ε(f) :=

(
1 +

∫
|f ′′(s)|κ(s)−

1
2 ds

)2

.

For any fixed ξ > 0, uniformly in the set{
λ : λ2σ(f)2 <

∣∣∣ log |N−1+3ξε(f)|
∣∣∣} ∩ {|λ| < Nξ} (5.8)

we have

Z(λ) = Eµ
(
eiλSN (f)

)
= e−

λ2

2 σ(f)2+iλδ(f) + O
(
N−1+3ξε(f)

)
.

Proof. The main tools for the proof of this theorem are the loop equation (5.9) and the Helffer-Sjöstrand
formula to go from the Stieltjes transform to any test function. To derive proper asymptotics in the loop
equation, an important input is the optimal rigidity and its consequences, Lemma 5.3.

We begin with d
dλ logZ(λ) = Eµλ (iSN (f)), and therefore want to estimate expectation of general linear

statistics for the measure µλ. We begin with the expectation of the Stieltjes transform.

First step: analysis of the loop equation. The loop equation is a well-known algebraic identity for the
expectation of the empirical measure. In our case it takes the following form:

(mN,λ(z)−m(z))2 −
√
z2 − 4 (mN,λ(z)−m(z)) + i

λ

βN

∫
R

f ′(s)

z − s
%

(N,λ)
1 (s)ds

− 1

N

(
2

β
− 1

)
m′N,λ(z)−Varµ

(λ)

(sN (z)) = 0. (5.9)

Note that, when compared to the loop equation initiated in [24] (written in a form closer to (5.9) in [4]
Section 6.2), we only consider the special case of quadratic external potential, hence extra simplifications
occur. From the estimates from Lemma 5.3 and our assumptions for the theorem, the loop equation (5.9)
implies that uniformly in η > N−1+ξ we have

XN (z)2 − b(z)XN (z) + cN (z) = O(ωN (z)), (5.10)

XN (z) = mN,λ(z)−m(z),

b(z) =
√
z2 − 4,

cN (z) = i
λ

βN

∫
R

f ′(s)

z − s
%(s)ds− 1

N

(
2

β
− 1

)
m′(z),

ωN (z) =
N−2+2ξ

|Z(λ)|2

(
1

η

∫
|f ′′|+ 1

η2

)
.
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Let
ΩN := {z = E + iη : Nξ min(N−2/3, N−1κ(E)−1/2) 6 |η| 6 3, |E| 6 4}.

A simple analysis exercise shows that

sup
s∈[−2,2]

%(s)

|z − s|
6 Cη−1 max(η, κ(E))1/2.

Using this estimate together with
∫
|f ′| < C and |λ| 6 Nξ, we have |b(z)|2 > cNξ|cN (z)| for any z ∈ ΩN .

We consider two cases to identify the relevant root of (5.10).

(i) If |b(z)|2 > NξωN (z), by monotonicity we also have |b(z′)|2 > NξωN (z′) for any z′ = E+ iη′, |η′| > |η|.

Moreover, using (5.4), together with |Z(λ)| > N−1+ 3ξ
2 (obtained from our assumption |b(z)|2 >

NξωN (z)), we have mN,λ(z)−m(z)→ 0 when |η| is of order 1.

All together, by continuity we proved that in this case, for any z ∈ ΩN ,

mN,λ(z)−m(z) = cN (z)/b(z) + O(ωN (z)/b(z)).

(ii) Assume |b(z)|2 6 NξωN (z) (in particular |ωN (z)| > |cN (z)|). Any solution of (5.10) satisfies

|XN (z)| 6 C max(|b(z)|,
√
|cN (z)|+ |ωN (z)|) 6 CNξ/2

√
ωN (z) 6 CNξ|ωN (z)/b(z)|.

In all cases, we therefore proved that uniformly in ΩN we have

mN,λ(z)−m(z) =
cN (z)

b(z)
+ O

(
Nξ ωN (z)

|b(z)|

)
. (5.11)

Second step, integration. Let f̃ coincide with f on (−3, 3), such that f̃(x) = 0 for |x| > 4 and ‖(f−f̃)(`)‖∞ <

C for ` = 0, 1, 2. From (5.2) we have

Eµ
λ

(iSN (f)) = Eµ
λ
(

iSN (f̃)
)

+ O

(
e−N

c

|Z(λ)|

)
.

Let χ : R→ R+ be a smooth symmetric function such that χ(x) = 1 for x ∈ (−1, 1) and χ(x) = 0 for |x| > 2.
By the Helffer-Sjöstrand formula [22] we have

Eµ
λ
(

iSN (f̃)
)

= − i

2π

∫∫
R2

(
iyf̃ ′′(x)χ(y) + i(f̃(x) + iyf̃ ′(x))χ′(y)

)
N(mN,λ(x+ iy)−m(x+ iy))dxdy.

We now bound some error terms.

(i) Using the estimate (5.4), we have (note that f̃(x)χ′(y) and f̃ ′(x))χ′(y) both vanish for z = x+iy 6∈ ΩN ,
and f ′′(x)χ(y) = f ′′(x) when z 6∈ ΩN )∫∫

Ωc
N

(
iyf̃ ′′(x)χ(y) + i(f̃(x) + iyf̃ ′(x))χ′(y)

)
N(mN,λ(x+ iy)−m(x+ iy))dxdy

=

∫∫
Ωc
N

iyf̃ ′′(x)χ(y)N(mN,λ(x+ iy)−m(x+ iy))dxdy = O

(
N2ξ

N |Z(λ)|

∫
|f̃ ′′(x)|κ(x)−1/2dx

)
.

(ii) A simple calculation yields (note that |b(x+ iy)| > c when χ′(y) 6= 0)∫∫
ΩN

(|f̃(x)|+ |yf̃ ′(x)|)|χ′(y)|N |ωN (z)|
|b(z)|

dxdy = O

(
N−1+2ξ

|Z(λ)|2

(
1 +

∫
|f ′′|

))
.

Moreover,∫∫
ΩN

|f̃ ′′(x)|yχ(y)N
ωN (z)

|b(z)|
dxdy = O

(
N−1+2ξ

|Z(λ)|2

(
1 +

∫
|f ′′|

)∫
|f̃ ′′(x)|κ(x)−1/2dx

)
.
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(iii) Finally, thanks to the easy estimate |cN (z)| 6 C(|λ|/(Ny) + 1/(Ny)), we have∫∫
Ωc
N

(
iyf̃ ′′(x)χ(y) + i(f̃(x) + iyf̃ ′(x))χ′(y)

)
N
cN (z)

b(z)
dxdy = N−1+ξ O

(∫
|f̃ ′′(x)|κ(x)−1/2dx

)
.

Let

σ̃(f)2 := − 1

2πβ

∫∫
R2

(
iyf̃ ′′(x)χ(y) + i(f̃(x) + iyf̃ ′(x))χ′(y)

)
b(z)−1

(∫
f ′(s)

z − s
%(s)ds

)
dxdy,

δ̃(f) :=

(
2

β
− 1

)
1

2π

∫∫
R2

(
iyf̃ ′′(x)χ(y) + i(f̃(x) + iyf̃ ′(x))χ′(y)

)
b(z)−1m′(z)dxdy.

Using (i), (ii) and (iii) all together, we proved that

Eµ
λ

(iSN (f)) = −λσ̃(f)2 + iδ̃(f) + O

(
N−1+2ξ

|Z(λ)|2
ε(f)

)
.

Let g(λ) = eλ
2σ̃(f)2−2iδ̃(f)λZ(λ)2. The above equation implies g′(λ) = eλ

2σ̃(f)2−2iδ̃(f)λ O(N−1+2ξε(f)), so

g(λ) = 1 + eλ
2σ̃(f)2 O(N−1+3ξε(f)). On our set (5.8), by continuity in λ this implies

Z(λ) = e−
λ2

2 σ̃(f)2+iλδ̃(f) + O
(
N−1+3ξε(f)

)
. (5.12)

We now want to prove σ̃(f)2 = σ(f)2 and δ̃(f) = δ(f). If f is fixed independent of N , (5.12) proves that

SN (f) converges to a Gaussian random variable with variance σ̃(f)2 and shift δ̃(f). Thanks to [24, Theorem
2.4] we can identify this shift: we know that SN (f) converges to a Gaussian with shift δ(f). Thanks
to [26, Theorem 2], we can identify the variance: for β = 1, SN (f) converges to a Gaussian with variance

σ(f)2. This implies the identity σ̃(f)2 = σ(f)2 and δ̃(f) = δ(f) for any f , and concludes the proof.

Remark 5.5. In the previous theorem, the error term ε(f) is quadratic in
∫
|f ′′|, which is sufficient for our

purpose, as we will apply it for f fluctuating at the mesoscopic scale N−τ for some small τ .
If one is interested in the mesoscopic statistics at scale N−1+ε for some small ε and the support of f

is of order 1, the above reasoning fails. On the other hand, if f is supported in the bulk, with support size
(
∫
|f ′′|)−1, then by taking in the previous reasoning χ a cutoff function on scale (

∫
|f ′′|)−1 one obtains an

error linear in
∫
|f ′′| instead of quadratic, which is sufficient to prove Gaussianity of SN (f) at this very

small mesoscopic scale.

Assuming ε(f) has size Nθ for some θ ∈ (0, 1), Theorem 5.4 gives a very accurate control of Z(λ) in the
regime |λ| 6 c(θ)(logN)1/2/σ(f). The purpose of the following lemma is to get a rough polynomial bound
on Z in the regime |λ| > c(θ)(logN)1/2/σ(f).

Lemma 5.6. Let f be a (N -dependent) real function of class C 2 such that, for any N , we have ‖f‖∞ < C,
‖f ′‖∞, ‖f ′′‖∞ 6 NC ,

∫
|f ′| < C.

Assume that ε(f) 6 N1/2, c 6 (logN)1/2/σ(f), and σ(f) > c. Then for any |λ| ∈ [(logN)1/2/σ(f), N1/10]
we have

|Z(λ)| 6 C N−1/100. (5.13)

Proof. Without loss of generality, we can assume λ > 0. Note that for λ = (logN)1/2/σ(f), from Theorem 5.4
we have |Z(λ)| 6 N−1/100, so we only need to prove the following statement: if λ ∈ [(logN)1/2/σ(f), N1/10]
and |Z(λ)| > N−1/100 then

d

dλ
< logZ(λ) < 0. (5.14)

To prove the above statement, we begin as in the proof of Theorem 5.4 with d
dλ< logZ(λ) = <Eµλ(iSN (f)).

If we repeat exactly the proof of Theorem 5.4 except that we substitute ΩN with

ΩN,λ := {z = E + iη : λmin(N−2/3, N−1κ(E)−1/2) 6 |η| 6 3, |E| 6 4}.
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Then the following variant of (5.11) holds uniformly in ΩN,λ:

mN,λ(z)−m(z) =
cN (z)

b(z)
+ O

(
λ
ωN (z)

|b(z)|

)
.

This allows us to reproduce all error estimates (i), (ii) and (iii) in the integration step, always replacing ΩN
with ΩN,λ. We end up with

<Eµ
λ

(iSN (f)) = −λσ̃(f) + O

(
N−1λ2

|Z(λ)|2
ε(f)

)
.

From our strong assumptions λ 6 N1/10, |Z(λ)| > N−1/100 and ε(f) < N1/2 the above term is positive for
large enough N . This conclues the proof of (5.14) and the lemma.

Appendix A Hölder regularity

We now explain the proof of Lemma 3.6, i.e., the Hölder regularity for (3.12). It directly follows from
Theorem 10.3 of [18] after checking the conditions. We recall that the setup of [18] was the discrete equation

∂sv(s) = −A(s)v(s), A(s) = B(s) +W(s), (A.1)

in a finite I ⊂ J1, NK of size |I| = K and in a time interval s ∈ [0, σ]. Here W(t) is an diagonal operator
given by (W(t)v)i = Wi(t)vi. We will apply this result for I = J1, NK, i.e. K = N . The time interval
is [0, σ] := [0, t]. The key assumption on the coefficients Bjk is the following strong regularity condition
(Definition 9.7 in [18]). We remind the reader that, compared with the scalings of this paper, the time in [18]
is rescaled by a factor N while the coefficient Bjk is rescaled by a factor 1/N . The microscopic coordinates
used in [18] are chosen so that the eigenvalue spacing is of order one and the time to equilibrium is of order
N . In this paper, all scalings are dictated by the original scalings of the DBM, so the following setup uses
the scaling convention in this paper.

Theorem 10.3 in [18] had two conditions, called (C1)ρ and (C2)ξ. The first condition is the following
concept of strong regularity:

Definition A.1. The equation
∂tv(t) = −B(t)v(t) (A.2)

is called regular at the space-time point (z, σ) with exponent ρ, if

sup
06s6σ

sup
16M6N

1

1/N + |s− σ|

∣∣∣ ∫ σ

s

1

M

∑
i∈I : |i−z|6M

∑
j∈I : |j−z|6M

Bij(s
′)ds′

∣∣∣ 6 N1+ρ. (A.3)

Furthermore, the equation is called strongly regular at the space-time point (z, σ) with exponent ρ if it is
regular at all points {z} × {σΞ + σ}, where

Ξ =
{
− 2−m(1 + 2−k) : 0 6 k,m 6 C logN

}
.

Strong regularity (A.3) at (z, t) with exponent 2ρ follows from (3.40) on a set Rz,t of probability at
least 1−CN−ρ(logN)4. Without the double supremum in (A.3) this would clearly follow from the Markov
inequality and the cardinality |Ξ| 6 C(logN)2. However, the suprema over all s and M can be replaced by
suprema over a dyadic choice of s = 2−aσ, M = 2b, with intgers a, b 6 C logN , explaining the additional
logarithmic factors.

The other condition, (C2)ξ, expresses various a priori bounds on Bij that follow from (3.38) and (3.39).
More precisely, we need for any 0 6 s 6 t

Bij(s) >
N−ξ

N |i− j|2
, for any i, j with î, ĵ > cN, (A.4)

1(min{̂i, ĵ} > cN)

CN |i− j|2
6 Bij(s) 6

C

N |i− j|2
, for any |i− j| > C ′Nξ (A.5)
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with some constants C,C ′, c, where recall that î = min{i,N + 1 − i} denotes the distance from the edge.
Finally, in [18] the diagonal operator is assumed to satisfy

Wi(s) 6
Nξ

Nî
, if î > Nξ, (A.6)

but in our application the diagonal operator is not present. Having verified these conditions (with a possible
modified value of ρ), Lemma 3.6 directly follows from Theorem 10.3 of [18].

Appendix B Level repulsion estimate

The following level repulsion estimate is adapted from [13]. The main differences are:

(i) it is given for symmetric matrices instead of Hermitian;

(ii) we consider the generalized Wigner class instead of Wigner;

(iii) the matrix entries are smooth on scale N−τ/2 instead of 1.

We closely follow the method from [13], where the Hermitian case was given in details. Since the adjustment
of the proof to the symmetric case requires technical changes, for the convenience of the reader, we will give
the main steps of the proof and explain the modifications.

Proposition B.1. Let HN be a symmetric generalized Wigner matrix satisfying (2.1), and GN a N × N
GOE matrix. For any t > 0 we denote µ1(t) 6 . . . 6 µN (t) the eigenvalues of

√
1− tHN +

√
tGN . Define

the set
Gξ =

{
|µi − γi| 6 N−2/3+ξ (̂i)−1/3 for all i ∈ J1, NK

}
. (B.1)

For any fixed κ there exists C1 > 0 such that for any k > 1, τ, ξ > 0, there exists C2 > 0 such that for
any N ∈ N, E ∈ (−2 + κ, 2− κ), t ∈ [N−τ , 1] and ε > 0 we have

P ({|{µi(t) ∈ [E,E + ε/N ]}| > k} ∩ Gξ) 6 C2N
2kξ+C1k

2τε
k(k+1)

2 .

Compared to [13, Theorem 3.5], the above Wegner estimate bound has extra Nξ factors, because our proof
does not use subgaussian decay of the matrix entries (we only assume condition (2.1) instead). The same
comment applies to the following corollary.

Corollary B.2. Assume the same conditions as Proposition B.1.
For any fixed α > 0 there exists C1 > 0 such that for any τ, ξ > 0, there exists C2 > 0 sucht that for any

N ∈ N, i ∈ JαN, (1− α)NK, t ∈ [N−τ , 1] and ε > 0 we have

P
({
|µi+1(t)− µi(t)| 6

ε

N

}
∩ Gξ

)
6 C2N

2kξ+C1τε2.

Proof. For any j ∈ Z, define Ej = γi + j εN . We then have the events inclusion{
|µi+1(t)− µi(t)| 6

ε

N

}
∩ Gξ ⊂

⋃
|j|6Nξ

ε +1

({∣∣∣∣{µ`(t) ∈ [Ej , Ej +
2ε

N

]}∣∣∣∣ > 2

}
∩ Gξ

)
.

The union bound together with Proposition B.1 applied with k = 2 allow to conclude.

The above Corollary B.2 actually holds for eigenvalues up to the edge (with the exponents εN−1 and

N−1+δ being replaced by εN−2/3(̂i)−1/3, N−2/3+δ (̂i)−1/3, respectively). The proof requiring just formal
changes, we will only present the bulk case here, for notational simplicity.

To prepare the proof of Proposition B.1, we need the following lemmas. In particular, Proposition B.1 will
require a regularity assumption of type (B.2) for the matrix entries. Note that this condition was weakened
in [27] to

∫
(f ′/f)4f <∞ (where f is the density of real and imaginary parts of the matrix entries), but we

will not need this improvement.
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Lemma B.3. Let H = (hij)16i,j6N be a symmetric generalized Wigner matrix satisfying (2.1) and τ > 0.

We denote f = e−g the probability density of
√

1− t
√
Nhij +

√
tN , where t ∈ [N−τ , 1] and N is a

standard Gaussian independent from H. Then there exists C > 0 such that for any a > 1 there exists ca > 0
such that uniformly in N, i, j, s ∈ R, we have

|f̂(s)| 6 ca
NCaτ

(1 + s2)a
, |f̂g′′(s)| 6 ca

NCaτ

(1 + s2)a
. (B.2)

Proof. The first inequality is elementary:∣∣∣∣∫ eisxf(x)dx

∣∣∣∣ = |E(eis
√

1−t
√
Nhij )||E(eis

√
tN )| 6 e−s

2 t
2 6 ca

t−a

(1 + s2)a
.

For the second one, we have fg′′ = f ′2/f − f ′′ and∣∣∣∣∫ eisxf ′′(x)dx

∣∣∣∣ 6 s2

∣∣∣∣∫ eisxf(x)dx

∣∣∣∣ 6 s2ca+1
t−(a+1)

(1 + s2)a+1
6 ca+1

t−2a

(1 + s2)a
,

so we only need to bound (without loss of generality we can assume a is an integer)∣∣∣∣∫ eisx f
′(x)2

f(x)
dx

∣∣∣∣ 6 2a

(1 + s2)a

∣∣∣∣∣
∫
eisx

(
d

dx

)2a
f ′(x)2

f(x)
dx

∣∣∣∣∣1|s|>1 +

∣∣∣∣∫ f ′(x)2

f(x)
dx

∣∣∣∣1|s|61. (B.3)

Let ν be the distribution of
√

1− t
√
Nhij . Then for any K > 0 we have

|f ′(x)| =
∣∣∣∣ 1√

2πt

∫
ν(du)

x− u
t

e−
(x−u)2

2t

∣∣∣∣ 6 C Kt−1|f(x)|+ C t−3/2e−
K2

2t

∫
ν(du)|x− u|

6 CxNCτ |f(x)|+ CNCτe−
x2

2t ,

where we chose K = x and used (2.1) so that ν has finite first moment. Moreover, we obviously have

|f(x)| > cN−Cτe−
x2

2t , so we can easily bound the second term on the right hand side of (B.3):∣∣∣∣∫ f ′(x)2

f(x)
dx

∣∣∣∣ 6 C

∣∣∣∣∫ |f ′(x)|(1 + |x|)NCτdx

∣∣∣∣ 6 CNCτ .

For the first term of the right hand side in (B.3), and expansion of the 2a-th derivative of this ratio and the
same cut argument by K = x yields ∫ ∣∣∣∣∣

(
d

dx

)2a
f ′(x)2

f(x)

∣∣∣∣∣ dx 6 CNCτa,

which concludes the proof.

Lemma B.4. Fix p ∈ N∗ and N > p + 3. Let u1, . . . ,uN−1be an orthonormal basis in RN , and set
ξα = |b · uα|2, where the components of b are independent centered real random variables with density
f = e−g satisfying Var bi ∼ 1, the decay (2.1) and the density smoothness assumption (B.2), uniformly in N
and i ∈ J1, N − 1K.

Let α1, . . . , αp, β1, β2, β3 be distinct indices in J1, N − 1K. Let cj > 0, j ∈ J1, pK, dα ∈ R for all 1 6 α 6
N − 1, dβ1

, dβ2
, dβ3

> 0.

(i) For any r ∈
(
1, p2 + 1

)
, there exists a constant Cr,p <∞ such that

Eb


 p∑
j=1

cjξαj

2

+

(
E −

N−1∑
α=1

dαξα

)2

− r2

6 Cr,p
N2C(r−1)τ(∏p

j=1 c
1/2
j

) 2(r−1)
p

min(dβ1
, dβ2

, dβ3
)

. (B.4)
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(ii) For any r ∈
(
p+1

2 , p2 + 1
)
, there exists a constant Cr,p <∞ such that

Eb


 p∑
j=1

cjξαj

2

+

(
E −

N−1∑
α=1

dαξα

)2

− r2

6 Cr,p
NCpτ(∏p−1

j=1 c
1/2
j

)
c
r− p+1

2
p min(dβ1

, dβ2
, dβ3

)
. (B.5)

(iii) For any r ∈
(
1, p2

)
, there exists a constant Cr,p <∞ such that

Eb

 p∑
j=1

cjξαj

−r 6 Cr,p
NC(r−1)τ

(minj c
1/2
j )r

. (B.6)

Proof. We closely follow the method of Lemma 8.2 in [13]. The main differences in the estimates (due to

considering real instead of complex random variables) are the exponents c
1/2
j in the upper bounds (instead of

cj when the bj ’s take complex values), and the fact that we need to consider 3 variables dβ1
ξβ1

, dβ2
ξβ2

, dβ3
ξβ3

for convergence purpose (instead of 2 when the bj ’s take complex values). Moreover, the extra error terms
NC(r−1)τ are of course due to our smoothness scale.

Let O be the orthogonal matrix with columns u1, . . . ,uN−1, x = O∗b, dµ(x) = e−Φ(x)
∏N−1
α=1 dxα, with

Φ(x) =
∑N−1
`=1 g((Ox)`), F (t) =

∫ t
−∞

(
(
∑p
j=1 cjx

2
αj )

2 + s2
)−r/2

and D = xβ1
∂xβ1 +xβ2

∂xβ2 +xβ3
∂xβ3 . Then

the analogue of [13, equation (8.20)] is

I := Eb


 p∑
j=1

cjξαj

2

+

(
E −

N−1∑
α=1

dαξα

)2

− r2

=
1

2

∫
dµ(x)

F (E −
∑N−1
α=1 dαx

2
α)

dβ1x
2
β1

+ dβ2x
2
β2

+ dβ3x
2
β3

(1−DΦ(x)).

We then can follow [13, equations (8.21), (8.23)] and bound I 6 (A1 +A2 +A3 + |B1|+ |B2|+ |B3|)/2 where

A1 :=

∫
dµ(x)

1∑p
j=1 cjx

2
αj

6κ

(
∑p
j=1 cjx

2
αj )

r−1
,

A2 :=
1

κr−1

∫
dµ(x)

1

x2
β1

+ x2
β2

+ x2
β3

,

A3 :=

∫
dµ(x)

1∑p
j=1 cjx

2
αj

6κ1x2
β1

+x2
β2

+x2
β3

61

(
∑p
j=1 cjx

2
αj )

r−1(x2
β1

+ x2
β2

+ x2
β3

)2
,

Bk :=

∫
dµ(x)

1

(
∑p
j=1 cjx

2
αj )

r−1
(∂xβkΦ)2, k = 1, 2, 3.

To prove (i), we first bound A3. For this, let

f̃(x) :=
1∑p

k=1 cjx
2
j6κ

1x2
p+1+x2

p+2+x2
p+361

(
∑p
j=1 cjx

2
j )
r−1(x2

p+1 + x2
p+2 + x2

p+3)
.

The integral of f̃ over xp+1, xp+2, xp+3 is finite (for this we need at least 3 such terms), and changing the

other variables c
1/2
j xj → xj and using r < p

2 + 1 we have ‖f‖1 6 Cr,pκ
p
2 +1−r/

∏p
j=1 c

1/2
j . The reasoning

of [13, equation (8.26)], with the first equation of (B.2) as an input, gives

A3 6 Cr,p‖f̃‖1NCpτ 6 Cr,p
κ
p
2 +1−r∏p
j=1 c

1/2
j

NCpτ .
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The terms A1 can be controlled in the same way and A2 6 Cκr−1. The bound on B1, B2, B3 amounts to the
same estimate as A1, A2, A3, thanks to the representation analogue to [13, equation (8.28)], and it requires
the second estimate in (B.2). We therefore obtained

I 6 Cr,p

(
κ
p
2 +1−r∏p
j=1 c

1/2
j

NCpτ +
1

κr−1

)
.

Optimization over κ concludes the proof of (i).
For (ii), we bound I 6 (A4 +A5 +A6 +A7 + |B1|+ |B2|+ |B3|)/2 where

A4 :=

∫
dµ(x)

1x2
αp

61

(
∑p−1
j=1 cjx

2
αj + cpx2

αp)r−1
,

A5 :=

∫
dµ(x)

1

(
∑p−1
j=1 cjx

2
αj + cp)r−1

,

A6 :=

∫
dµ(x)

1x2
β1

+x2
β2

+x2
β3

61

(
∑p−1
j=1 cjx

2
αj + cp)r−1(x2

β1
+ x2

β2
+ x2

β3
)
,

A7 :=

∫
dµ(x)

1x2
αp

611x2
β1

+x2
β2

+x2
β3

61

(
∑p−1
j=1 cjx

2
αj + cpx2

αp)r−1(x2
β1

+ x2
β2

+ x2
β3

)
.

To bound the term A7, we now introduce the function

f̃(x1, . . . , xp+2) :=
1x2

p611x2
p+1+x2

p+2+x2
p+361

(
∑p−1
j=1 cjx

2
j + cpx2

p)
r−1(x2

p+1 + x2
p+2 + x2

p+3)
.

Again, the integral of f̃ over xβ1 , xβ2 , xβ3 is finite. By changing the variable c
1/2
j xj → xj for j ∈ J1, p − 1K

we get

‖f‖1 6
1

(
∏p−1
j=1 c

1/2
j )c

r− p2−
1
2

p

∫
|xp|<1

1

(
∑p−1
j=1 x

2
i + x2

p)
r−1

dx1 . . . dxp 6 Cr,p
1

(
∏p−1
j=1 c

1/2
j )c

r− p2−
1
2

p

,

where we used that the above integral is finite when r ∈ (p+1
2 , p2 + 1): after changing variables, it is also of

order ∫
0<x<1,y>0

x−
1
2 y

p−1
2 −1

(y + x)r−1
dxdy 6

∫
0<x<1

x−
1
2

∫
a>x

a
p−1
2 −rdadx 6

∫ 1

0

x
p
2−rdx <∞.

Proceeding as in [13, equation (8.28)] we conclude that

A7 6 Cr,p
NCpτ

(
∏p−1
j=1 c

1/2
j )c

r− p2−
1
2

p

.

The terms A4, A5, A6 can be bounded in the same way. Similarly, B1, B2 and B3 can be bounded by the
previous reasoning after using the analogue of representation [13, equation (8.28)] in the real context. This
concludes the proof of (ii). Finally, the proof of (iii) is elementary.

Proof of Proposition B.1. We follow the method from [13, Sections 8 and 9]. The required preliminary results
from [13] are listed below, as well as their substitute used in our proof, so that we can accomodate the weaker
condition (2.1) instead of the subgaussian decay of the matrix entries.

(1) The localization result [13, Theorem 3.1] states in particular the following. Writing Nη(E) = NI the
number of eigenvalues in I = [E − η/2, E + η/2], then for any δ > 0 one has

P
(∣∣∣∣Nη∗(E)

Nη∗
− %(E)

∣∣∣∣ > δ

)
6 Ce−cδ

√
Nη∗ . (B.7)
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Equation (B.7) states that in windows of scale η the fluctuations of the number of eigenvalues is of order√
Nη. Instead, we will use the rigidity result (remember the notation (B.1)), for any (small) ξ > 0 and

(large) D > 0 we have
P (Gξ) > 1−N−D. (B.8)

The above rigidity estimate was proved in [21] assuming subexponential decay of the entries distribution,
but this is easily weakened to the finite moment assumption (2.1) (see remark 2.4 in [9]). Compared
to (B.7), the above bound on fluctuations of eigenvalues is better for mesoscopic scales (η ∼ N−1+c for
small fixed c) but it becomes worse at the microscopic scale (η ∼ N−1), explaining the final extra Nξ

factor in our statement of Proposition B.1.

(2) The tail distribution of the eigenvalue gap [13, Theorem 3.3]: denoting by µα the largest eigenvalue
greater than E, there are constants C, c > 0 such that uniformly in N,K > 0 and E in the bulk of the
spectrum we have

P
(
µα+1 − E >

K

N
,α 6 N − 1

)
6 Ce−c

√
K . (B.9)

Again, the above result assumes subgaussian decay of the entries, in this paper it will therefore be
substituted by (B.8).

(3) The analogue of [13, Theorem 3.4] requires smoothness of the entries. We therefore now assume the
µi(t)’s are as in Proposition B.1, so that they satisfy the density bounds (B.2). The average density of
states becomes, in our context: denoting I = [E − ε/(2N), E + ε/(2N)], there exists C > 0 such that
uniformly in 0 6 ε 6 1, we have

P({NI > 1} ∩ Gξ) 6 CNξ+Cτε. (B.10)

For the proof, we denote (λ
(j)
α )α for the eigenvalues of the minor obtained from H by removing the j-th

row and column, (u
(j)
α )α the eigenvectors, and ξ

(j)
α = |b(j) · u(j)

α |2 where b(j) =
√
N(hj2, . . . , hj,N ).

The proof of (B.10) is the same as [13, Theorem 3.4], except that: (i) one needs to replace the definition

[13, (8.3)] by ∆ = N(λ
(1)
γ+3−E) by N(λ

(1)
γ+4−E), because the analogue (B.4) of [13, (8.12)] requires three

indexes dβ in the real case instead of two for complex entries, for convergence reasons; (ii) the error term
has a factor NCτ due to the deteriorated smoothness (B.2) and its consequeces in (B.4), (B.6); (iii) the
rigidity input (B.7) and (B.9) used in [13] are replaced by (B.8), explaining the above extra Nξ factor
in the Wegner estimate (B.10).

Thanks to these preliminary results (1), (2), (3), the analogue of [13, Theorem 3.5], Proposition B.1, can
be proved as follows. First, the inequality [13, (9.2)] still holds:

NI 6
Cε

N

N∑
j=1

(η +
η

N

N−1∑
α=1

ξ
(j)
α

(λ
(j)
α − E)2 + η2

)2

+

(
E − hjj +

1

N

N−1∑
α=1

(λ
(j)
α − E)ξ

(j)
α

(λ
(j)
α − E)2 + η2

)2
− 1

2

. (B.11)

We follow [13] and denote

d(j)
α :=

N(λ
(j)
α − E)

N2(λ
(j)
α − E)2 + ε2

, c(j)α =
ε

N2(λ
(j)
α − E)2 + ε2

,

µγ(N) := min
{
µα : µα − E >

ε

N

}
, ∆

(µ)
d = N(µγ(N)+d−1 − E). (B.12)

In the following, ∆
(µ)
d is always well defined because we will always consider d = O(1) as N →∞: in the set

Gξ there are always many more than d− 1 eigenvalues above E + ε/N .
Note that the proof of (B.10) actually gives a bit more, i.e. the analogue of [13, Corollary 8.1], which is

the first step in the following induction (B.14): for any M,d > 1, we have

E
(
1NI>1(∆

(µ)
d )M1Gξ

)
6 CNMξ+Cτε. (B.13)
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To bound P(NI > k,Gξ), we introduce the more general quantity

I
(µ)
N (M,k, `) := E(1N (µ)

I >k
(∆

(µ)
` )M1Gξ).

We will prove that

I
(µ)
N (M,k, `) 6 CkN

Ckτεk max
16j6N

I
(j)
N−1(M + 2, k − 1, `+ 1). (B.14)

By induction over k, together with the initial condition (B.13), this will conclude the proof, noting that

1 +
∑k
j=2 j = k(k+1)

2 . To prove (B.14), thanks to (B.11) for any r > 1 we have

I
(µ)
N (M,k, `) 6 Ck,sε

r max
16j6N

E
1N (j)

I >k−1
(∆

(µ)
` )M1Gξ((∑N−1

α=1 c
(j)
α ξ

(j)
α

)2

+
(
E − hjj +

∑N−1
α=1 d

(j)
α ξ

(j)
α

)2
) r

2

6 Ck,sε
r max

16j6N
E

1N (j)
I >k−1

(∆
(λ(j))
`+1 )M1Gξ((∑N−1

α=1 c
(j)
α ξ

(j)
α

)2

+
(
E − hjj +

∑N−1
α=1 d

(j)
α ξ

(j)
α

)2
) r

2
,

where we used Markov’s inequality and convexity of x 7→ xr in the first inequality, and interlacing in the

second. We used the definition (B.12), applied to the eigenvalues of the minor, λ(j) = (λ
(j)
1 , . . . , λ

(j)
N−1),

instead of µ. Quantities of type ∆
(λ(j))
` are well defined becuse ` = O(1) as N →∞ and in the set Gξ there

are always many more than ` eigenvalues above E + ε/N , by interlacing.We therefore have IN (M,k, `) 6
Ck,s(max16j6N Aj + max16j6N Bj) where

Aj := εrE
1N (j)

I >k+2
(∆

(λ(j))
`+1 )M1Gξ((∑N−1

α=1 c
(j)
α ξ

(j)
α

)2

+
(
E − hjj +

∑N−1
α=1 d

(j)
α ξ

(j)
α

)2
) r

2
,

Bj := εrE
1
k−16N (j)

I 6k+1
(∆

(λ(j))
`+1 )M1Gξ((∑N−1

α=1 c
(j)
α ξ

(j)
α

)2

+
(
E − hjj +

∑N−1
α=1 d

(j)
α ξ

(j)
α

)2
) r

2
.

To bound Aj , denoting λ
(j)
α1 , . . . , λ

(j)
αk+2 the first k+ 2 eigenvalues in Iη, we have cαi > 1/(2ε), so (B.6) gives,

by a reasoning identical to [13, (9.8)], Aj 6 Ck,sε
2rI

(j)
N−1(M,k−1, `+ 1), provided r ∈ (1, k+2

2 ) (in particular

one can get the exponent εk).

To bound the main term Bj , let α1, . . . , αk−1 be indices so that λ
(j)
αi ∈ Iη, 1 6 j 6 k−1. As there are less

than k + 2 eigenvalues in Iη, we can assume that for N large enough there are four eigenvalues at distance
greater than ε/(2N) from E, on its right for example. Let λαk = min{λα : λα > E + ε

2N }. We also denote

λ
(j)
β1

6 λ
(j)
β2

6 λ
(j)
β3

the eigenvalues immediately on the right of λ
(j)
αk , and ∆ = ∆

(λ(j))
4 = N(λ

(j)
β3
− E). Then,

analogously to [13, (9.10)], we have

Bj 6 εrCk,sEλ(j),hjj

(
1N (j)

I >k−1
(∆

(λ(j))
`+1 )M1Gξ Eb(j)

(k−1∑
i=1

ξ
(j)
αi

ε
+

ε

∆2
ξ(j)
αk

)2

+

(
E − hjj +

N−1∑
α=1

d(j)
α ξ(j)

α

)2
− r2


We use (B.5) with p = k, cj = ε−1, 1 6 j 6 p−1, cp = ε∆−2, min(d

(j)
β1
, d

(j)
β2
, d

(j)
β3

) > 1/(2∆), r ∈ (k+1
2 , k2 +1):

Bj 6 Ck,rε
r 1

(
∏k−1
i=1 ε

−1/2)εr−
k+1
2

NCkτI
(j)
N−1(M + 2, k − 1, `+ 1) 6 εkNCkτI

(j)
N−1(M + 2, k − 1, `+ 1).

This concludes the proof.
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[23] M. Jimbo, T. Miwa, Y. Môri, and M. Sato, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent,
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