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This is the second part of a three part series abut delocalization for band matrices. In this paper, we
consider a general class of N x N random band matrices H = (H;;) whose entries are centered random
variables, independent up to a symmetry constraint. We assume that the variances E|H;;|? form a
band matrix with typical band width 1 « W < N. We consider the generalized resolvent of H defined
as G(Z) = (H—Zz)~!, where Z is a deterministic diagonal matrix such that Z;; = (:11<;<w + ZLi>w) 65,
with two distinct spectral parameters » € C+ := {# € C: Imz > 0} and z € C4y UR. In this paper, we
prove a sharp bound for the local law of the generalized resolvent G for W > N3/4. This bound is a
key input for the proof of delocalization and bulk universality of random band matrices in [2]. Our
proof depends on a fluctuations averaging bound on certain averages of polynomials in the resolvent
entries, which will be proved in [10].
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1 THE MODEL AND THE RESULTS.

1.1 The model. Our goal in this paper is to establish estimates on Green’s functions which were used in
the proof of delocalization conjecture and bulk universality for random band matrices. All results in this
paper apply to both real and complex band matrices. For simplicity of notations, we consider only the real
symmetric case. Random band matrices are characterized by the property that the matrix element H;;
becomes negligible if dist(4, j) exceeds the band width W. We shall restrict ourselves to the convention that
i,j € Zy = ZN(—N/2,N/2], and i — j is defined modular N. More precisely, we consider the following
matrix ensembles.

Definition 1.1 (Band matrix Hy with bandwidth Wy). Let Hy be an N x N matriz with real centered
entries (Hy;: i,j € Zn) which are independent up to the condition H;; = Hj;. We say that Hy is a random
band matriz with (typical) bandwidth W = Wy if

sij = E[Hy;|*> = f(i — j) (1.1)
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for some non-negative symmetric function f: Zy — Ry satisfying

> fa) =1, (1.2)

TELN

and there exist some (small) positive constant cs and (large) positive constant Cs such that
Cs W_l']lkr‘gw <f(x) SC’S W_l']l|:z:\§CSWa ’L,j GZN. (13)

The method in this paper alsg) a1120ws to treat cases with exponentially small mass away from the band
width (e.g. f(z) < C;W—te=c2"/W") We work under the hypothesis (1.3) mainly for simplicity.

We assume that the random variables H;; have arbitrarily high moments, in the sense that for any fixed
p € N, there is a constant g, > 0 such that

max (E|Hy;[P)"/? < p, Var (Hi;)'? (1.4)
]

uniformly in N.

In this paper, we will not need the following moment condition assumed in Part I of this series [2]: there is
fixed e, > 0 such that for [i — j| < W, min;_jj<w (B, — (EE5)* —1) > N, where &;; := H;j(si;)~Y/?
is the normalized random variable with mean zero and variance one.

All the results in this paper will depend on the parameters ¢, Cs in (1.3) and p, in (1.4). But we will
not track the dependence on ¢, Cs and p, in the proof.

Denote the eigenvalues of Hy by A1 < ... < Ay. It is well-known that the empirical spectral measure
% Zszl 0, converges almost surely to the Wigner semicircle law with density

prele) = /A= 275

T o

The aim of this paper is to estimate “the generalized resolvent” G(z,z) of Hy defined by

—1
~ ZIWXW 0 ~ +
G(2,%) = (Hy — _ , 2z, ZeCTUR, 15
(%) ( N ( 0 ZRNW)x(NW))) o (15)

where C* denotes the upper half complex plane C* := {z € C : Tm 2z > 0}. The generalized resolvent is an
important quantity used in Part I of this series [2]. The key point of this generalization, compared with the
usual resolvent, is the freedom to choose different z and z. To the best of our knowledge, the local law for
this type of generalized resolvent has only been studied in the preceding paper [1], where it was assumed
that W > ¢N for some constant ¢ > 0.

To understand the role of the generalized resolvent, we block-decompose the band matrix Hy and its

eigenvectors as
_ (A B (Wi
=5 ) v (3)

where A is a W x W Wigner matrix. From the eigenvector equation Hp; = \;9;, we get
. 1
QWi =A\jw;, Qe:=A-B D7—63.

Thus w; is an eigenvector of Q. := A — B*(D — e) "' B with eigenvalue \; when e = );. A key input to
the proof of universality and QUE for random band matrices is an estimate on the Green’s function of Q..
Since some eigenvalues of D can be very close to e, the matrix (D — e)~! can be very singular. It is thus
very difficult (if possible) to estimate the Green’s function of Q. directly. On the other hand, the Green’s
function of Q. is just the W x W minor of the generalized resolvent G(z,e) of Hy, which we find to be
relatively more doable.

Due to the need in Part I, we will consider generalized resolvent for a general class of band matrices.
More precisely, we introduce the following Definition 1.2. Here and throughout the rest of this paper, we
will use the notation that for any a,b € Z,

[a,b] := [a,b] N Z.



Definition 1.2 (Definition of Hg) For any sufficiently small ¢ > 0 and any g = (91,92, -+ ,gn) € RN, H¢
and HCg will denote N x N real symmetric matrices satisfying the following properties. The entries (H¢);;
are centered and independent up to the symmetry condition, satisfy (1.4), and have variances

C(1+4;5)
E|(H¢)is? = (s¢)ij == sij — Tmli,je[u,mp

where 54, 1,] € Zn, satisfy the conditions in Definition 1.1. Then the matriz H? is defined by

(HE)ij = (H¢)ij — 9i0i;-

We denote by So and ¥ the matrices with entries (So)i; = si; and X;; = ng”)li’je[l’w]], respectively. Then

the matriz of variances is
S¢ =80 —¢%, (S¢)ij = (s¢)ij-

1.2 The results. The generalized resolvent G%(z, Z)of H ? is defined similarly as in (1.5) by

1
G%(z2,2) == (Hg — (ZIWXW ~ 0 )) :
¢\ ¢ 0 ZIiN—wyx (N—w)

Define ((Mg)i(z, Z))j\[:l as the solution vector to the system of self-consistent equations
-1
((Mg)i(z,2)> = —z2licpiwy — Zligpwy — 9i — Z(sg)ij(Mgg)j(Zaa, (1.6)
J
for 2,7 € C* UR and i € Zy, with the constraint that
(M)i(Z,Z) = mee(Z +i0T),
where mg. denotes the Stieltjes transform of the semicircle law

—z+vz2 -4

5 z€CT. (1.7)

Mge(2) :=

(The existence, uniqueness and continuity of the solution is given by Lemma 1.3 below.) For simplicity of
notations, we denote by M Cg(z, Z) the diagonal matrix with entries

E)ij = (ME)ids;.

We will show that M 4g(z, Z) is the asymptotic limit of the generalized resolvent G%(z, Z). We now list some
properties of M g needed for the proof of local law stated in Theorem 1.4. Its proof is delayed to Section 4.

Lemma 1.3. Assume |Rez| < 2 — k and |Z| < k=1 for some (small) constant k > 0. Then there exist
constants ¢,C > 0 such that the following statements hold.

o (Existence and Lipschitz continuity) If
C+llgllee +12 =2 <c (1.8)

then there exist (M2

0)i(#,2), i € Zn, which satisfy (1.6) and

max | (M§)i(2,2) — mse(Z+107)| < C (¢ + llgllo + ]2 — 2]) - (1.9)
If, in addition, we have (' + ||g||co + |2/ — 2’| < ¢, then

max (ME)i(+/,2') = (ME)i(2,2)| < C (llg — &lloe + 12" = 2| + |2/ = 2| +|¢' = C]). (1.10)



e (Uniqueness) The solution vector ((Mcg)l(z,%))jvzl to (1.6) is unique under (1.8) and the constraint
max ‘(Mf)i(z, %) — mee( +101)] < e

We now state our results on the generalized resolvent of HE. In this paper, we will always use 7 to
denote an arbitrarily small positive constant independent of N, and D to denote an arbitrarily large positive
constant independent of N. Define for any matrix X the max norm

[ X | max == H}Z}X | X5
The notations 7., n* and r in next theorem were used in Assumptions 2.3 and 2.4 of Part I of this series [2].

Their meanings are not important for this paper and the reader can simply view them as some parameters.
In this paper, all the statements hold for sufficiently large N and we will not repeat it everywhere.

Theorem 1.4 (Local law). Define a set of parameters with some constants €,,e* > 0:

Ne:=N"%, p*:=N"¢ r: =N T.= Nt (< <e,/20. (1.11)
Fiz any |e| < 2 — k for some constant k > 0. Then for any deterministic z, {, g satisfying
|Rez—ef<r, me<Imz<y’, 0<CST, gle W4 (1.12)
and W, ., € satisfying
6 . 3 3 .
logy W > max ?—1—5,1—1—15*4—8 , (1.13)
we have that for any fized 7 > 0 and D > 0,
1 N1/2
P ||G8(z,e) — ME(z,e m.X>NT< + ))gN—D. 1.14
(168 :16) = MG > V7 (e + T (114
In fact, the last estimate holds under the weaker assumption
3 * 1 *
logy W > max Z+5, §+5*+€ . (1.15)

We will refer to the first statement, i.e., (1.14) under the assumption (1.13), as the weak form of this
theorem, and the statement (1.14) under assumption (1.15) as the strong form. This paper gives a full and
self-contained proof for the weak form, which helps the reader understand the basic strategy of our proof.
On the other hand, the proof for the strong form is much more involved, and we include a substantial part
into a separate paper [10]. Only the strong form of Theorem 1.4 was used in part I of this series [2], where
we took logy W > 3/4, e, < 1/4 and &* to be a sufficiently small constant.

The main purpose of this part and part III [10] of this series is to prove the above Theorem 1.4. In fact,
the bound (1.14) is almost optimal under our setting in the sense that it (at least) gives the correct size of
E\(G%)UP for i # j up to an N7 factor. This sharp bound is very important for the proof of the complete
delocalization of eigenvectors and the bulk universality of random band matrices in part I [2]. As explained
there, the bound must be of order o(W/N) to allow the application of the so-called mean field reduction
method, which was introduced in [1] and is the starting point of this series. Compared with the local law
for regular resolvents, the main difficulty in proving the local law for the generalized resolvents is due to the
small and even vanishing imaginary part of Z. As a result, some key inputs, such as Ward’s identity (see
(3.2)) for the regular resolvents estimates are missing. In fact, as discussed before, the case |G(z, Z)|lmax = 00
could occur when z = e is real. This difficulty has already appeared in the case W > ¢N in [1], where some
”uncertainty principle” was introduced to solve this problem. Unfortunately, this method seems difficult to
apply in the W <« N case. Instead, in this paper, we shall use a totally different strategy, i.e, the T-equation
method, which was introduced in [4]. Moreover, we have to improve the induction (bootstrap) argument
used in [4], as explained below. We remark that the proofs of the weak form and strong form of Theorem
1.4 are completely parallel, except that we will apply a stronger T-equation estimate (Lemma 2.14) than the
one (Lemma 2.8) used in the proof of the weak form. We shall give a simple proof of the weak T-equation
estimate using the standard fluctuation averaging mechanism as in the previous proof of local semicircle
law [5,8]. The proof of the strong T-equation estimate is based on an improved (and substantially more
involved) fluctuation averaging result, whose proof is delayed to part IIT of this series [10].



1.3 Sketch of proof. In the following discussion, for two random variables X and Y, we shall use the
notation X <Y if for any fixed 7 > 0, |X| < N7|Y| with high probability for large enough N.
We define the T' matrix with entries

Ty = SilGisl>, G=G%, S = (S)in, (1.16)
k

With a standard self-consistent equation estimate (see Lemma 2.1), one can show that

2
1G = M pax < T Imax, M = ME. (1.17)

max

Our proof of Theorem 1.4 is based on an induction argument combined with a self-consistent T-equation
estimate as explained below. We introduce the following notation:

IGI%(2,2) = max D |Gij(=2)°, Alz,2) = |G = M|l o (2, 2). (1.18)

1<i<N

Fix z and Rez = e. We perform the induction with respect to the imaginary part of z. Define a sequence
of z, such that
Imz,=N"""Imz, Rez,=c¢,

for small enough constant € > 0. In the n = 0 case with Im 2y = Im 2, using the methods in [5, 8], we can
obtain the local law (1.14) for G(z,Zy). Suppose we has proved the local law for G(z, Z,,—1):

1 N1/2
+ .
VW In z w

Then with Im 2, = N~Im z,_; and a simple (but quite sharp up to an N? factor) L2-estimate, we get a
bound on the n-th level:

A(Zygn—1> =< q)goala (I)goal = (119)

IGIIP (2, %) < N®?, ®% := N*¢2 (1.20)

goal

which gives a rough bound ®© by the self-consistent equation estimate (1.17):

~ Cs - ~ N ~
IT e (2 0) < T2GIP (2 50) < (@O = A7) < @0, 8=\ [28, (1.21)

where Cj is the constant from (1.3). Note that d is very close to ®gqa1, While &) is not. Now with the
strong T-equation estimate (see Lemma 2.14), one can get an improved bound (<I>(1))2 on T as follows:

N N? ~
=~ 1)\2 =~ 1 1) . 52 2 —1/2 0)\2
(7| mmax (2, 20 ) < (q)( )) = A(2,%,) < ol )7 M .— Doar + <W1mz + W2) ((I) + NV ) (<I>( )) ,
(1.22)

where we used (1.17) to get a better bound A(z,%,) < ®1). With (1.15), one can verify that ®(1) <
Bgoat + N~ @) for some constant ¢’ > 0. After at most [ := 1/¢ many iterations with (1.22) and (1.17),
ie. 0 — &M ... 5 ®D we can obtain the local law (1.19) for G(z,2,), which is used as the input
for the next induction. The key point of this induction argument is that one has a good L2-bound (1.20)
inherited from the local law on the upper level, and this L?-bound can be used in the T-equation estimate
(1.22) to give an improved bound for A(z,z,) on this level. Finally, after finitely many inductions in n, we
can obtain the local law (1.14) for, say, G(z,e+iN~1%). Then with a continuity argument, we can prove the
local law (1.14) for G(z,e). In Fig. 1, we illustrate the flow of the induction argument with a diagram.

We remark that the above induction argument is not a continuity argument, as used e.g. in the works
[5,7,8] on local semicircle law of regular resolvents. The multiplicative steps Imz,, — N~°Imz, that we
made are far too large for a continuity argument to work. The main reason for choosing this multiplicative
step is that the T-equation estimate can only be applied for O(1) number of times due to the degrade of the
probability set (see Remark 2.9).

The main difficulty of our proof lies in establishing the T-equation estimate (1.22). The starting point is
a self-consistent equation for the 7" matrix, i.e. the T-equation, see (2.14) below. In this paper, we focus on
proving the stability of the T-equation, i.e. bounding || (1 — S|M|2)_1 S||max in (2.14), where we abbreviate
S = S¢. For regular resolvent of generalized Wigner matrices (i.e. Z = 2z, ( = 0 and g = 0), we have
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Figure 1: The diagram for the induction argument with respect to n. At each level n — 1, we obtain the
local law (1.19), which gives the rough bound ®© on level n through (1.20) and (1.21). Applying (1.22)
and (1.17) iteratively, one can improve the initial bound ®(®) to the sharp bound ®g,1. In the diagram, (S)
stands for an application of the self-consistent equation estimate (1.17), and (T+S) stands for an application
of the T-equation estimate (1.22) followed by a self-consistent equation estimate (1.17).

|M| < 1—cImz for some constant ¢ > 0. However, in our general setting and in particular when Im 2 is
small, we actually have || M|/, > 1 and ||S|M|?||;c ;= > 1. Therefore, the usual Taylor expansion approach
cannot be used (in fact, it is not even easy to see that 1 is outside the spectrum of |M|2S). In this paper,
we will establish the following bound

. 1 N
1= S1M17) 7S] e = O (Wlmz + Wz) :

One important component for the proof is the estimate Y, (|M;|? — 1) < —cW Im z for some constant ¢ > 0.
To see this bound is useful, we can intuitively view (|M|>S)™ as an n-step inhomogeneous random walk on
Zy with annihilation, where the average annihilation rate is —W Im z/N by the above bound. This shows
that we can explore some decay properties of (|[M|2S9)™ as n increase, which may give some useful bounds on
the Taylor expansion of (1 — S|M|?)~. However, our proof actually will not follow this heuristic argument,
see Section 4.

Finally, to finish the proof of the strong version of the T-equation estimate (Lemma 2.14), we need a
fluctuation averaging results for a quantity of the form N~ 3", &, where &,’s are some polynomials of the
generalized resolvent entries. The proof involves a new graphical method and we include it in part III of this
series [10].

2 ToOOLS FOR THE PROOF OF THEOREM 1.4

The basic strategy to prove Theorem 1.4 is to apply the self-consistent equation estimate: Lemma 2.1, and
the T-equation estimate: Lemma 2.8 or 2.14, in turns. We collect these results in this section, and use them
to prove Theorem 1.4 in next section.
For simplicity, we will often drop the superscripts ( and g from our notations. In particular, G and M
are always understood as G? and M g, while H and S are understood as H¢ and S¢ in the rest of this paper.
In the proof, for quantities Ay and By, we will use the notations Ay = O(By) and Ay =< By to mean
that |[Ay| < C|By| and C7}|By| < |An| < C|By|, respectively, for some constant C' > 0.



2.1 The self-consistent equation estimate. The self-consistent equation estimate is the starting point
of almost every proof of the local law of the (generalized) resolvents of random matrices. We now state the
self-consistent equation estimate for our model.

Lemma 2.1 (Self-consistent equation estimate). Suppose that |ReZ| < 2 — k for some constant k > 0.
Then there exists constant co > 0 such that if

(+ lglloo + 12 = 2] < co,

then the following statement holds. If there exist some fired § > 0 and some deterministic parameter ® >
W12 such that

1G(2,2) = M(2,2)llmax < N7°, ([T |lmax < %, (2.1)
in a subset ) of the sample space of the random matrices, then for any fited 7 > 0 and D > 0,
P (10]|G(2,2) = M(2,2)max = N"®) < N~P. (2.2)

Note that by the definition of T-matrix in (1.16), we have
1T lmax < IG(2, 2) = M (2, 2) |70 + O(W ).

max

Hence we can always choose ® = O(N~%) in (2.1). The proof of Lemma 2.1 follows the standard idea of
using a vector-level self consistent equation method [5,8]. In preparation for the proof, we recall the following
definition of minors.

Definition 2.2 (Minors). For any N x N matrizc A and T C {1,..., N}, we define the minor of the first
kind A" as the (N — |T|) x (N — |T|) matriz with

(AM);; == Ay, i,j¢T.
For any N x N invertible matriz B, we define the minor of the second kind B™) as the (N — |T|) x (N —|T|)

matrixz with
(BM)y; = (B7H)

whenever (B~ is invertible. Note that we keep the names of indices when defining the minors. By
definition, for any sets U, T C {1,..., N}, we have

(AIT)[0) — AT (p(M)(U) — BTUD),

i ) Zvj ¢ T7
9
(T]

For convenience, we shall also adopt the convention that fori € T or j € T,
(AM); =0, (BM); =o0.
For T = {a} or T = {a,b}, we shall abbreviate ({a}) = (a) and ({a,b}) = (ab).

Remark 2.3. In previous works, e.g. [6,8], we have used the notation (-) for both the minor of the first kind
and the minor of the second kind. Here we try to distinguish between (-) and [] in order to be more rigorous.

The following identities were proved in Lemma 4.2 of [8] and Lemma 6.10 of [6].

Lemma 2.4 (Resolvent identities). For an invertible matriz B € CN*N and k ¢ {i, j}, we have

B;. By 1 1 Bk Br;
Bkk Bii Bii Bn‘ Biink
and
1 () )
— = (B Ny =Y (B hYuBy (B 2.4
B, (B™) ;( )ik By (B~ )i (2.4)
Moreover, for i # j we have
(4) o (4) o)
Bij = =By » (B "By} = —Bj; > By (B~ ). (2.5)
k k

The above equalities are understood to hold whenever the expressions in them make sense.



Since the N7 factor and the N~ bound for small probability event appear very often in our proof, we
introduce the following notations.

Definition 2.5. For any non-negative A, we denote
0,(A) := O(N° 4).
We shall say an event En holds with high probability (w.h.p.) if for any fized D > 0,
P(Ex)>1—- NP
for sufficiently large N. Moreover, we say En holds with high probability in Q if for any fized D > 0,
P(Q\En) < NP
for sufficiently large N.

The following lemma gives standard large deviation bounds that will be used in the proof of Lemma 2.1.

Lemma 2.6 (Lemma 3.5 of [9]). Let (X;) be a family of independent random variables and (b;), (B;;) be
deterministic families of complexr numbers, where i,57 = 1,...,N. Suppose the entries X; satisfy EX; = 0,
E|X;|?> =1 and the bound(1.4). Then for any fived T > 0, we have

1/2

1/2
T 2 e T 2
<N (Z |b;] ) : ZXiBinj SN Z\Bm :
(3 2,7 (2%]

Z b: X;

with high probability.

The following lemma provides estimates on the entries of (1 — M25)~! and (1 — S|M|2)_1 S. Tt will be
used in the proof of Lemma 2.1 and Theorem 1.4, and its proof is delayed until Section 4.

Lemma 2.7. Suppose that the assumptions for the strong form of Theorem 1.4, i.e., (1.11), (1.12) and
(1.15), hold. If Z satisfies
Rez=¢, 0<Imz<Imz,

then we have for M = Mgfg(z,%') and S =S¢,

i -1 if |i—j| < (logN)?
[(1 _ MQS)—I] = 51] +70(W )a 1 |Z .7| (Og ) w , (26)
w O(N—clos Ny, if |i—j|> (logN)*W
and . N
-~ 2\ 1 _ =

Now we can give the proof of Lemma 2.1.

Proof of Lemma 2.1. The following proof is fairly standard in random matrix theory and we will omit some
details. For simplicity, we drop ¢ and g in superscripts. Using (2.5), we have G;; = —Gy; Eg) HmGEC’J) for
i # j. Since the elements in {H;}1_, are independent of G by the standard large deviations estimates
in Lemma 2.6, we have that for any fixed 7 > 0 and D > 0,

P <|G,»j|2 < N7|Gisl? Zsik|G§c?|2> >1-ND i+j (2.8)
3
Since G;; < 1 in Q, (2.8) implies that

P <1Q|Gz‘j|2 =0 (Z Sik|Gl(cij)|2>> >1-N"", i#j
k



By (2.3), the definition of T in (1.16), and the bound for T in (2.1), we have

Gl ? .
ZSZ GY) 2ZSm|GkJ|2+2ZS | ‘Z |; =0(®?) inQ.

Therefore, we obtain (2.2) for the ¢ # j case.
For the diagonal case, we define

(i)
Z; = Qi ZHikHilG](;l) — Hy;.
kl

Using (2.4), (2.3), the off-diagonal case for (2.2) we just proved, and the standard large deviations estimates
in Lemma 2.6, we can get that for any fixed 7 > 0,

1 - .
— = —zliepwy — 2ligpwy — 9 — Z Si;Gjj — Zi + 0-(®%), with Z; = O, (@),

i 7
holds with high probability in €. With the definition of M; in (1.6), we have

Gyl =M =— ZSij (Gj; — M;)+0,(®), w.hp. inQ,

which implies

Mi — Gii = — ZMESU (G]] - Mj) + O-,—(‘b) + O (mlax |Gii - Mz|2) , ’LUhp in Q.

We rewrite the above estimate as

> (1= M28)i; (Gys — My) = 0r(®) + O (max|Gis — Mi?).
J
Then with (2.6) and the first bound in (2.1), we can get (2.2) for the diagonal entries and complete the proof
of Lemma 2.1 O

2.2 The T-equation estimate. A key component for the proof of Theorem 1.4 is the self-consistent
equation for the T variables. It leads to a self-improved bound on |G — M||max. This kind of approach was
also used in [4] to prove a weak type delocalization result for random band matrices. To help the reader
understand the proof, we first prove a weak T-equation estimate, i.e. Lemma 2.8, which will give the weak
form of Theorem 1.4. The stronger T-equation estimate will be stated in Lemma 2.14, and its proof is put
in the companion paper [10].

Lemma 2.8 (Weak T-equation estimate). Under the assumptions of Theorem 1.4 (i.e., (1.11), (1.12), (1.15)
and the assumption on e), the following statements hold provided e, > 0 is a sufficiently small constant. Let
Z satisfy

ReZ=e¢, N 0<ImZ<Imz, (2.9)

and ® be any deterministic parameter satisfying
W—l < @2 < N—5

for some fized 6 > 0. Fiz some z and Z (which can depend on N ). If for any constants v/ > 0 and D’ > 0,

P (I1G(2.9) ~ M(2,2)we > N72) < NP .10
then for any fixed (small) 7 > 0 and (large) D > 0, we have

N N?
T w\2 —D w\2 .__ 3 —1
P (|T(2,2) max = N7(24)%) < N7P,  (2%)? := ( —+ 2) (@ + N1, (2.11)



Furthermore, if the parameter ® satisfies

. w w2
D < mln{N1+€*+E* ' Nt } 5 (2.12)
then for any fized T > 0 and D > 0 we have
L 1 N1/2
G — M(2,2)||lmax < PN 3¢ + N7 2.13
16,5 - MG ) = (e ) 21)

with probability at least 1 — N~P.

Remark 2.9. The above statements should be understood as follows. For any small constant T > 0 and large
constant D > 0, (2.11) and (2.18) hold if (2.10) holds for some constants 7/, D" that depend on T and D. In
general, we need to take 7/ < T to be sufficiently small and D' > D to be sufficiently large. Compared with
Lemma 2.1, we lose a much “larger” portion of the probability set. Hence Lemma 2.8 can only be iterated
for O(1) number of times, while Lemma 2.1 can be applied for O(NC) times for any fized C' > 0.

Proof of Lemma 2.8. From the defining equation (1.16) of T, we add and subtract >, S| My|*Ty; so that

Ty =Y Skl M|’ Tis + Y Sir (1Gis* = [Mi[*Ts) -
k k

Therefore, we have
—1
Ty =Y [(1-SIMP) TS| (16wl — 1M Thy) (2.14)
k
Isolating the diagonal terms, we can write the T-equation as

Ty =T9+ > [(1=8IM*)7'S],, (1G> = [M*Thy) . T3 = [(1— S|M*)~"S] o (1G5 = 1M, Ty5) -
Py
(2.15)
By the definition of T', the assumption (2.10) and the estimate (1.9) on M;, we can get the simple bounds
Gj; = O(1) and Tj; = O (®?). Applying these bounds to the definition of T}, we get

T9=0 ([(1 - S\M|2)_1S]ij), (2.16)

which will be shown to be the main term of T;; up to an N7 factor. By (2.7) and the condition (1.12) on
Im 2, we have

WiImz W2

Definition 2.10 (Ey, Py and Q). We define Ey, as the partial expectation with respect to the k-th row and
column of H, i.e. By(-) := E(-|H ). For simplicity, we will also use the notations

[(1-SIMP*)~'S],, =0 ( L N > : (2.17)

Pk = Ek, Qk =1 Ek. (2.18)

Using this definition and the bound (2.17), we rewrite the off-diagonal terms in (2.15) into two parts:

o[ =81MP) 7S], (1K1 — MR T)
k#j

N N2 2 2 2
= (VVIHIZ + VV2> ;ck (Ek|ij| — |Mk| Tkj) + §cka\ij\ y
J °7J

(2.19)

where ¢, is a sequence of deterministic numbers satisfying

N N2>_1

- - — -1
W Imz + W2 OV

ok = [(1=S|M*)71S],, (

The following two lemmas provide estimates for the two parts in (2.19), where Lemma 2.12 is a standard
fluctuation averaging lemma.
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Lemma 2.11. Suppose that by, k € Zy, are deterministic coefficients satisfying maxy, |bx| = O(N~1). Then
under the assumptions of Lemma 2.8, we have that for any fized (small) T >0,

> bk (Bi|Grj” = [My*Ty;) = O, (%), j € Zy, (2.20)
k£
with high probability.
Proof. By (2.5) and (2.10), we have — l(k) Hlel(f) = G /Grr = O-(P®) and G — My, = O-(®) (w.h.p.).
Then we can obtain that for k # j,
() ?

(k) ,
Ei|Grj|? = Er| My |? ZHMG;(;) +0-(D%) = [Mi[* ) s ‘Gl(f) +0,(9%) (2.21)
I I

with high probability. Using (2.3), we have
Gl = Gy + 0-(1GuIGyl) = Gy + O-(®), Lj #k,
with high probability. Inserting it into (2.21) and using the definition (1.16), we can obtain (2.20). O

Lemma 2.12. Suppose that by, k € Zx are deterministic coefficients satisfying maxy |bx| = O(N~1). Then
under the assumptions of Lemma 2.8, we have for any fized (large) p € 2N and (small) T > 0,

p

E > okQulGril?| < (N7®*)", jeZy. (2.22)
=y

Proof. Our proof follows the arguments in [5, Appendix B]. We consider the decomposition of the space
of random variables using Py and @ defined in (2.18). It is evident that P, and @ are projections,
P+ Qr =1, PQr = 0, and all of these projections commute with each other. For a set A C Zy, we denote
Py :=Tlpea Pr and Qa := [],c4 Q. Now fix any j € Zy, we set Xj, := Qi|Gp;|*>. Then for p € 2N, we
can write

EN beXi] = Y aB[[Xw =Y aE]] (H (Py, +Qk,.)st>
r=1

kot kika,ookp  s=1 K s=1
* p

= E Ck g E H (PacQa, Xk,),
kK  Ap..A,Clk] s=1

where k := (k1,ka,...,kp), (kK] :== {k1,ka,...,kp}, D" means summation with indices not equal to j, and
¢k are deterministic coefficients satisfying c¢x = O(N~P). Then with the same arguments as in [5] (more
specifically, the ones between (B.21)-(B.24)), we see that to conclude (2.22), it suffices to prove that for
ke ACZn\{j} and any fixed 7 > 0,

QX4 = O, (@\A\“) w.h.p. (2.23)

We first recall the following simple bound for partial expectations, which is proved in Lemma B.1 of [5].
Given a nonnegative random variable X and a deterministic control parameter ¥ such that X < U with
high probability. Suppose ¥ > N~¢ and X < N¢ almost surely for some constant C' > 0. Then for any
fixed 7 > 0, we have

max P, X = 0,(0) w.h.p. (2.24)

In fact, (2.24) follows from Markov’s inequality, using high-moments estimates combined with the definition

of high probability events in Definition 2.5 and Jensen’s inequality for partial expectations. In the application
to resolvent entries, the deterministic bound follows from [|G|| < (Im2)~! < N0 by (2.9).

11



Now the bound (2.23) in the case |A| = 1 follows from (2.24) directly. For the case |A] = n > 2, we
assume without loss of generality that j =1, k =2 and A ={2,...,n + 1}. It suffices to prove that

Qni1- - Q3G |* = O (@"1). (2.25)

Using the identity (2.3), we can write
2)

GasG: GasG —3) GasG: GasG- GasG:
i = () + £ ) (ot + B0 - (G Do 4 iy T |G
2
Note that the leading term Q3 ’Gg‘?‘ vanishes since GS) is independent of the 3rd row and column of H,

Gas Gas Gss3 G

and the rest of the three terms have at least three off-diagonal resolvent entries. We now act Q4 on these
terms, apply (2.3) with k = 4 to each resolvent entry, and multiply everything out. This gives a sum of
fractions, where all the entries in the numerator are off-diagonal and all the entries in the denominator are
diagonal. Moreover, the leading order terms vanish,

7G(4)G(4) G(4)G:(4)
Q403 Gé?rl) 23(4)31 +ngi4) 23(4)31 -0,
Gis3 Gyq

and each of the surviving term has at least four off-diagonal resolvent entries. We then continue in this
manner, and at each step the number of off-diagonal resolvent entries in the numerator increases at least by
one. Finally, Q.41 - Q3]G |? is a sum of fractions where each of them contains at least n + 1 off-diagonal
entries in the numerator. Together with (2.24), this gives the estimate (2.25), which further proves (2.23). O

Remark 2.13. Lemma 2.12 asserts that the Qy, operation yields an improvement by a factor ®. In fact, for
the regular resolvents of band matrices, a stronger version of averaging fluctuation results was proved in [3].
We believe that following the methods there, the bounds in Lemma 2.11 and Lemma 2.12 can be improved to

0. (<I>4 + W*Wqﬂ) . (2.26)

In this paper, however, we will skip the discussion on the strategy in [3], since its proof is rather involved,
and more importantly, we will prove an even stronger bound, i.e., (2.30) below, in Part III of this series [10].
With (2.26), the @} in (2.11) can be improved to

w2 N N? 4 —1/22 —1
((ID#) = m‘i‘ﬁ (CD + W P+ N ),
and the condition (2.12) becomnes
w w2
2 .
®° < min { NiTere’ Norer } (2.27)
Using this estimate, the conditions (1.13) can be weaken to
4 2 2
logNW>max{5+s*, 3+35*+5*}. (2.28)

Now we finish the proof of Lemma 2.8. Using (2.19), Lemma 2.11, Lemma 2.12 and Markov’s inequality,
we can get that

_ 2y—1 2 2\ _ N ]\/'72 3
;[(1 SIM[*) 7S], (IGrs? = My [*Tig) = O ((WlszrW?)q)

with high probability. Note that it only includes the off-diagonal terms, i.e. k # j terms. Now plugging it
into the T-equation (2.15) and using (2.16), we obtain (2.11).

Finally, we need to prove (2.13). Clearly, if (2.12) holds, then ® < N~% and (@;‘4)2 < N~2° for some
constant 6 > 0. Thus (2.1) is satisfied, and then (2.13) follows from an application of (2.11) and Lemma 2.1.
This completes the proof of Lemma 2.8. O
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The following lemma gives a stronger form of Lemma 2.8. It will be proved in the companion paper [10].
Here we recall the notation in (1.18).

Lemma 2.14 (Strong T-equation estimate). Suppose the assumptions of Theorem 1.4 (i.e., (1.11), (1.12),
(1.15) and the assumption on e¢) and (2.9) hold. Let ® and ® be deterministic parameters satisfying

W< <P?<DLKN? (2.29)

for some constant § > 0. Fix some z and Z (which can depend on N ). If for any constants 7/ > 0 and
D' >0,

P(IG(22) = M(2,2) lmax > N7 @) + P (IGII*(2,2) > N**7'82) < N2,

then for any fized (small) 7 > 0 and (large) D > 0, we have

N N? ~
P(|T(2,2) lmax = NT®%) < NP, &3 = (Whnz + W2> (@%2 + ®2N"V2 4 N*l) : (2.30)
Furthermore, if the parameter ® satisfies
~ w w?
2 .
®° < min { Niteder’ Norer } , (2.31)
then for any fized 7 > 0 and D > 0 we have
. 1 N1/2
G(z,z) — M(z,z mxg@N*%8 —|—NT( + ) 2.32
1G22 = M2, St 7 (2:32)

with probability at least 1 — NP,

The Remark 2.9 also applies to this lemma. Note that (2.13) or (2.32) gives a self-improved bound on
|G — M]||max, which explains how we can improve the estimate on G (from ® to ®4) via T equations. As
long as we have an initial estimate such that (2.12) or (2.31) holds, we can then iterate the proof and improve

the estimate on G to ®goa = (m + %) in (1.14).

Proof of Lemma 2.14. See the proof of Theorem 2.7 in part III of this series [10]. O

3 PRroor or THEOREM 1.4

Fix a parameter 0 < gg < €, /5. We define
Zn = Rez + 1IN0 1Im 2,

so that ImZz,,,1 = N7 Im z,,. The basic idea in proving Theorem 1.4 is to use mathematical induction on
n € N.

The proofs of the weak form and strong form of Theorem 1.4 are completely parallel. In the following
proof, we will only remark on the minor differences between them.

Step 0: The special case with Z = z and ( =0, g = 0 (i.e. G(H, z) is the ordinary resolvent of a generalized
Wigner matrix) was proved in [5]. The proof given there can be carried over to our case without changes
under the assumptions of Theorem 1.4 when Z = z and Im z > W19 for some fixed & > 0.

This gives that

NT
P GZ,Z —MZ,Z max)i <N_D,
(” (2 = M2 m)

for any fixed 7 > 0. This bound is clearly stronger than the one in (1.14).
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Step 1: Consider the case n =0, i.e., G(z,Z2p), where we have
Rezg =Rez, Imzy=Imz.

We claim that for any w,w € Cy,

1

w < — .
1G(w, )22 < min(Im w, Im w)

(3.1)

To prove it, we first assume that Imw = a + Im w with a > 0. We write
G(w,0) = (A—iaJ —ilm®) ™",  Ju = Lyep,widu,
where A is a symmetric matrix. Then
(A—iaJ —ilm@)* (A —iaJ —ilmw@) = (A —iaJ)*(A —iaJ) + 2a(Im@)J + (Im@)? > (Imw)?.
Obviously, we have a similar estimate with Im w replaced by Im w when Imw < Imw. This proves the claim
(3.1121.0w by the definition of T and (1.3), we know
(2,201 € D16 20 = )
where in the second step we used the so-called Ward identity that for any symmetric matrix A and n > 0,

) ImR;;(A,in . o
5 s ()P = A i) = (4 - ) (32)
k
Obviously, the same argument gives that

CS max, Im ij (Z7 zo(t))

1T (2, Z0(t)) || max < T T 2 . 20(t) :=(1—=t)z+1tz, te]0,1]. (3.3)
Now we claim that for any small enough 7 > 0,
~ ~ NT _D
sup P [ |G(z,20(t)) — M(2,20(t))||max = ——= ) < N™". (3.4)
s€[0,1] Wlmz
To prove (3.4), we first note that for any w,w’ € C,
G(z,w) = G(z,w') + G(z,w)(w — w)JG(z,w'),  Ju = Lpgp widn- (3.5)

This implies that

VN

10:G(2,7)llmax < VNIG(2,2) [l 12— 12 1G(2,7) [ max < WIIGHm-
In particular, in this step we have
105G (2, Z0(1)) llmax < CNY24e0 |z = 5| |G (2, Z0(1)) [l max- (3.6)

This provides some continuity estimate on G(z,Zy(t)), which shows that (3.4) can be obtained from the
following estimate:

NT
P ||G(z,Z0(EN7?)) — M(z,Zo (kN5 >) < NP, 3.7
kerﬁf%ﬂ] (H (22 ) (2,2 ))Hmax Wlm z (8.7)

From Step 0, this estimate holds for £ = 0. By induction, we assume that (3.7) holds for k¥ = kg. Then
using (3.6) and (1.10), we know that the first estimate of (2.1) holds for G(z,Zo(t)) with t = (ko + 1)N~°.
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Then by (3.3) and applying Lemma 2.1, we obtain (3.7) for & = kg + 1. This completes the proof of (3.7)
and (3.4). Note that the estimate (3.4) applied to G(z,Zp(1)) is the result we want for this step

Step 2: Suppose that for some n € N with Im 2, > N~19) (1.14) holds for G(z,%,) and M(z,%,) for any
large D > 0. We first prove the following estimate for G(z, Zp+1) — M (2, Zn+1), which is weaker than (1.14):

_ _ N1/2+€0 N1+€0 D
P (166 Zut) — MCes el > N7 (S + 2 ) ) < (38)

for any fixed 7 > 0.
For any w,w’ € CT satisfying

Rew =Rew’, N ®Imw < Imw < Imw’, (3.9)

using (3.9) and (3.5), we have

32 1Gyzw) <2(1+w—w'P GG, w>||LzﬁLz)Z|Gu (2,0

(Im

<2(1 vmw )
* (Imw)2

)3 Gt ) < SN )

where we have used (3.1) to bound ||G(z, w)H?ﬂ_)LQ. We apply this inequality with w’ = Z,, and w satisfying
(3.9). Using (1.14) and the definition (1.18), we can bound ||G(z,%,)||* as

C 9 N1+250 N2+250
su T(z,w < su —||G(z, w =0 3.10
Rew:FI{)eZ“ || ( ’ )Hmax h Rew:lgezn, Wm ( 7 )Hl ! (Wzlmz - w3 ) ( )
ImZzZ,+1<Imw<ImZz, ImZzZ,+1<Imw<ImZz,

with high probability for any fixed 7 > 0.
We now consider interpolation between z, and Z,41:

Znm = Zn —1(ImZ, — ImEn_,_l)mN*‘r’o, m € [0, NE’O]].

We would like to use Lemma 2.1 and induction to prove that (3.8) holds for G(z, Zn,m) — M (2, Zp,m) for all
m. First, we know (3.8) holds for G(z,Z,). Then suppose (3.8) holds for G(z,%, ;) for all j < m —1. We
now verify that (2.1) holds for G(z,%,,,) with ®2 = N7®3 for any fixed 7 > 0, where

N1+250 N2+250

W2Imz + ws

<I>3 =

To this end, we note that (3.10) already verifies the bound on ||T(z, Zn,m)|/max in (2.1) for all m € [0, N°°].
By using ||0z G|lmax < N||G||max (which follows from (3.5)), (1.10), |Zn.m—1 — Zn,m| < N7°, and (3.10) (to
bound ||G|12,... by lIGII?), we note that for sufficiently small constant & > 0,

||G(szn,mfl> - M(zazn,mfl)”max < N_26 — ||G(z7gn,m) - M(Z, gn,m)”max < N_(S-

This proves the first bound in (2.1) for G(z,Z,,m). Then Lemma 2.1 asserts that (2.2) holds for G(z, Z,,m)
with N7® for any fixed 7 > 0. This proves (3.8) (i.e. the m = N°° case) by induction.

Step 3: Suppose that for some n € N with Imz,, > N~ (1.14) holds for G(z,%,) and M(z,%,) for any
large D > 0. We have proved that (3.8) and (3.10) hold for G(z,z,+1). We now apply Lemma 2.8 to prove

the weak form of Theorem 1.4. First, the condition (2.10) holds with ® = i/vvl\//i,% + % In order for the

condition (2.12) to hold, we need

N1/2+50 N1+50 %74 W2
< min { } (3.11)

W\/i W3/2 N1tester ! N2+e*

which is satisfied if
642, 42.% 8.3 1. 1=
W > 2max (N7+7€0+75  Nit+ietieotie )

15



If we take g < €*, (2.10) implies (2.13) under the condition (1.13). We then apply Lemma 2.8 again, and
after at most 3/&* iterations we obtain that

(3.12)

1 N1/2
+
vVWImz w )

By induction on n (with the number of inductions < 10/¢¢), the main estimate (3.12) for G(z, Z,) holds for
all n as long as Im z,, > N—19.

1G(2 Zur1) = M2 Zns) e < N7 (

Similarly, we can apply Lemma 2.14 to prove the strong form of Theorem 1.4. As in the previous
argument, (3.8) and (3.10) hold for G(z, Z,4+1) assuming (1.14) for G(z,%,) and Imz, > N!0, Therefore,
we can choose ® and ® as

N1/2+€0 N1+60 . NEU N1/2+Eo

o = + - + ,
W+v/Imz  W3/2 VW Imz w

where the choice of ® follows from using (3.10). It is easy to see that (2.29) holds. In order to apply Lemma
2.14, we need (2.31), i.e.,

N= N1/2teo 2< . w W2
\/m + w S min N1lte.+e* ’ N2+e* 5

which is satisfied if

W > 2max (N%%EO*%E*,N%m“ﬁés*) .

Clearly, the assumption (1.15) guarantees this condition if we choose 9 < £*/2. Again, we can apply Lemma
2.14 iteratively until we get (3.12) for G(z,Zn+1). The rest of the proof for the strong form of Theorem 1.4
is the same as the proof for the weak form.

Step 4: We now prove (1.14) for G(z,%) with Imz = 0 by using continuity from the estimate for G(z,z)
with ImZ = N!0 established in Step 3. It is easy to see that

0z [1G(2, Z)llmax < 105 G(2, %) llmax < NG (2,2)]3 (3.13)

max-*

With (3.13) and using (3.12) for G(z,Rez +iN~19), we can obtain that

sup HG(ZvRngf_in)”max = O(l)v w~h~p~
0N 10

Then using (1.10), (3.5) and (3.12) for G(z,ReZz +iN~19), we obtain that (1.14) holds for G(z, Re?Z).

Remark 3.1. If we use the bound in Remark 2.13 and the condition (2.27) instead of (2.12), then the
restriction (3.11) becomes

N1/2+50 N1+80 2 o %% W2
W/Im 2 T yyee ) SMN Vi e Nore

which gives restriction in (2.28). So we get a result in between the weak and strong forms of Theorem 1.4.

4 PROPERTIES OF M

The main goal of this section is to derive some deterministic estimates related to (M, Cg )i, & € Zn. In particular,
we will finish the proof of Lemma 1.3 and Lemma 2.7.
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4.1 The stability. The system of self-consistent equations (1.6) is a perturbation of the standard self-

consistent equation
71 ~
Mg, = —Z — Mg

for mg.(Z). Thus our basic strategy is to use the standard perturbation theory (see (4.13) below) combined
with a stability estimate for the self-consistent equation (i.e. the operator bound (4.4)). We first recall the
following elementary properties of mg., which can be proved directly using (1.7).

Lemma 4.1. We have for all z = E + in with n > 0 that
IMse(2)] = [mse(z) + Z|71 <1

Furthermore, there is a constant ¢ > 0 such that for E € [—10,10] and n € (0,10] we have

c < mge(2)] < 1—cn, 4.1
n
|azms'3(z)‘ < C_l(’f+77)_1/27 (4.2)
[1—mZ(2)] = VE+mn,
as well as
VEF+n if |E[<2
Immg.(2) < " B> 9
7 MBI

where K := ||E| — 2‘ denotes the distance of E to the spectral edges.

The following lemma will be used in the proof of Lemma 1.3 and Lemma 2.7. Recall that Sy is the matrix
with entries s;;, which is defined in Definition 1.2.

Lemma 4.2. Assume |ReZz| < 2 — & for some constant k > 0 and denote m = mg.(z +10"). Then for any
fixed T > 0, there exist constants c1,C1 > 0 such that

250 + 7'
1—oc. 4.
H 1tr < Cc1 ( 3)
Lo — L
Furthermore,
(1 =m?S0) ™| e foe < Ch. (4.4)

Proof. For some small constant 7 > 0 we write

o) k
9 1 1 m250 + 7
(1=m?8o) ™" = —— — Z ) (4.5)

Assuming (4.3), we get that

29 > 29 2
(1 — m280) | oo s o < <1+Hm°+T )Z moo T <0,
1+7 IT+7 oo = 1+7 ||peespoe
which proves (4.4).
We now prove (4.3). Suppose that there is a vector v € C so that ||v|| = 1 and
[(m?So + 7)*v];
L0 R DA L) [
(1+7)2
for some i € Zy and € = ey — 0. Hence
(1+2r+7H(1—¢) = }m4b + 2rm2a + 7'21)1'| < || + 27]a| + T3 |vs) < 1427 + 72, (4.6)

where a := (Sov);, b := (Sgv); and we have used the bounds |m| < 1, |a| < 1and |b] < 1 (since ||So|| =~ r~ =
1). It will be clear that the |m| =1 case is most difficult and we will assume this condition in the following
proof. Moreover, we assume with loss of generality that v; > 0 (by changing the global phase of v). Now m,
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a and b are complex numbers, and the inequality (4.6) implies that m*b, m?a and v; have almost the same
phases. Since |v;] < 1, || < 1 and |a| < 1, (4.6) implies that for some constant C' > 0 independent of ¢,

v; 21-Ce, |[b—m™*<Ce |a—m 2 <Ce. (4.7
Since m is a unit modulus complex number with imaginary part of order 1, we have that 6 := [m~2 — m™%|
is a number of order 1 and
la —b] > d/2.

Fix the index i and denote ¢; := (S0)ij, dj := (S3)i;. Then >.;¢j=1=3,d;. Hence (4.7) implies
—0(e) =Re(aa) = Y _ c;Re(v;a), 1—O(e) = Re(bb) = Zd Re(v;b)
J

where O(e) denote a positive number bounded by Ce for some constant C' > 0 independent of €. For any

0 <r <1, denote by A, := {j : Re(vja) > 1—r} and let a; 1=}, , ¢;. Then we have

Q= Z c;jRe(vja) =1—-0(e) — Z ¢;Re(w;a) 21-0() —(1—ap)(1 —7) = + 7 — a,r — O(e),
JEA, JEAr

which implies that

Z cj=a,>1-0(@)r ", Z cj =O0(e)r . (4.8)

JEA, ngr
Similarly, if we define B, := {j : Re(v;b) > 1 — r}, then
> dj=0(e)r . (4.9)
j¢B,

We claim that if r > Ce for some large enough constant C' > 0, then A, N B, # 0. To see this, we define
U:={j:|i—j| < W} By (1.3) and the definition of ¢;, we have ¢; > ¢,WW ™! for j € U. Clearly, we also
have d; > %CSW*1 for j € U. Then with (4.8) and (4.9), we have

#{jeU\AY=0(E)reg'W, #{jcU\B,}=0()r tc,'W.

If we choose r = Ce for some large enough constant C > 0, then the above two inequalities imply A, N B, # (,
since |U| = W. Thus there is an index j such that

Re(v;a) > 1—r, Re(vjb) >1—r. (4.10)

Since |a] < 1, |b] < 1, |vj] < 1 and |a — b > 6/2, (4.10) is possible only if r 2 ¢, which contradicts the fact
that 7 — 0 when € — 0. This proves (4.3). O

4.2 Proof of Lemma 1.3. With Lemma 4.2, we can now give the proof of Lemma 1.3.

Proof of Lemma 1.3. We first prove the existence and continuity of the solutions to (1.6). The proof is
a standard application of the contraction principle. Denote by z := (z1,...,2n), X := (21,...,2x) and
M = ((Mgg)l, e (Mcg)N) with N

zi = 2lieq,wy) + 2 Ligp,wys

and
zi = (28)i(2,2) :== (M§)i(2,2) =m, M=x+me;, m:=me(Z+i07), e =(1,1,---,1). (4.11)
Using the above notations and recalling Definition 1.2, we can rewrite (1.6) into the following form
(mA4z;) ™ = Mt = —2;—gi— (SoM); +((EM); = —z;—gi — (Sox)i —m(Spe1)i +C(Bx); +¢m(Sey );. (4.12)

1

Subtracting m~" = —Z — m from the last equation and using Spe; = e, we get that

m™t—(m+a;)"t =g + (2 — 2) + (Sox) — (m(Zey); — C(Ex);.
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Then (4.12) is equivalent to

1 1 €Z;

m+x; m  m2

[(1 — mQSo)x]i = m2(gz + (ZZ - E)) + m2 ( ) — Cmg(Eel)i - CmZ(ZX)Z (413)

Define iteratively a sequence of vectors x* € CV such that x° =0 € CV and

Xk i
[(1 = m?So)x" 1] o= m? (g + (2 = ) +m? (erl(X’“)z - % * (mQ)Z

) —(m?(Zey); — (m?(Ex%);. (4.14)
In other words, (4.14) defines a mapping h : [*°(Zy) — I°°(Zn):

K= h(x), hi(x) =D (1= m?So);; [m*(g; + (25 — 2)) + ala;) — (m*(Ser); — (m?(5x¥);], (4.15)

where

Note by the assumptions of Lemma 1.3, ¢, < m < 1 for some constant ¢, > 0 depending only on x. Then
with (4.4), it is easy to see that there exists a sufficiently small constant 0 < a < ¢,/2, such that h is a
self-mapping

h: B, (I®(Zy)) = By (I®(Zn)), B, (I®(Zy)) = {x € 1®°(Zy) : |x]loc <7},

as long as r < a and
Ctlglle +1z =2 < e (4.16)

for some constant ¢, > 0 depending on r. Now it suffices to prove that h restricted to B, (I*°(Zy)) is a
contraction, which then implies that x := limy,_,», X* exists and is a unique solution to (4.13) subject to the
condition ||x[|e < 7.

From the iteration relation (4.15), we obtain that

¢m?

1
k k k k—1
X+17X 7[(](X )fq(x )]*m

_ k_ k-1
= T s, ST —-x"T), (4.17)

where g(x) denotes a vector with components ¢(x;). Using |¢'(0)] = 0 and (4.4), we get from (4.17) that

" = x| < o (€ 1" loo 4 113 Hloo) - 1" = x|

for some constant C; > 0 depending only on x. Thus we can first choose a sufficiently small constant
0 < r < o and then the constant ¢, > 0 such that C, (¢, +2r) < 1, and h is a self-mapping on B, (I°°(Zy))
under the condition (4.16). In other words, h is indeed a contraction, which proves the existence and
uniqueness of the solution.

Note that with (4.4) and x° = 0, we get from (4.15) that

1! oo = O (12 = 2] + ¢ + lIglloo) -

With the contraction mapping, we have the bound

.- ¢ oo <
oo < D2 5" =% loo < 1 =0(z =2+ ¢+ llgllo)-
k=0

C,Lc (C + 27")

This gives the bound (1.9).
We now prove (1.10). We have proved above that both (Mg);(2,Z) and (M§ )i(z',Z") exist and satisfy

’

(1.9). Denote by m’ := my(Z' +10") and ] := (Mg );(¢',Z') — m/. By (4.2), we have

im’ —m| = O(|Z — 7)) (4.18)
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Then using (4.13) we can obtain that

1" = xlloo SCII(1 = m?S0) " Hlzwooroe - {12 = 2] - [I[¥lloo + 18 lloc + [z = 2| + XI5 + ¢'(1 + [|x]| )]
+llg—gllo+lz—2+17- | ¢ = A+ X loo) + (€ + 1xlloo + X lloo) - lIx" = xloc]}
SO (C+ Il + ¥ lloc) - %" = Xlloc + C (g = &'lloc + |2 = 2'[ + [ = 2" + ¢ = {']).-

Applying (1.9) to both (Mg);(2,?) and (MCg,/)i(z’, z’), we see that for small enough ¢,

%' = %[loo < C(lg = &llc + |2 =2 [+ =2+ ¢ = {]).
Together with (4.18), we obtain (1.10) as desired. O

4.3 Proof of Lemma 2.7. To prove Lemma 2.7, it suffices to prove the result for the case g = 0, and we
will describe how to relax to the condition g = O(W~3/4) by using the Lipschitz continuity estimate (1.10)
at the end of the proof. In preparation for the proof, we first prove the following lemma.

Lemma 4.3. Suppose that g = 0 and the assumptions (1.11), (1.12) and (1.15) hold. Then there exist
constants ¢ > 0 and C > 0 such that

(M)l = mf?| < C (|12 =2+ Q) e™F, nezy, (4.19)

and
% Z (|m|2|(Mé’)n|*2 -1 >2c(Imz—-Imz)-¢+0 (Nfgs* +N—¢ ImE) , (4.20)

neLN
where m := mg.(Z +10T).

Proof of Lemma 4.3. First with (4.5) and the fact that (Sp);; = 0 if |i — j| > CsW, we get that

m2S0 + 7 k

[(1—=m280)ij — 65 = [m*(1 — m®S0) " Soli; = O(W 1) Y Trr

k> €5

Leo Lo

Therefore with (4.3), we obtain immediately that

li—jl

|[(1 — mZSo)il]ij — 5ij| < OWﬁleic w (421)
for some constants ¢, C' > 0. As in the proof of Lemma 1.3, with x* defined in (4.14), we know that
T =My —m =g}, + Y (2t —ak), M, = (MP),. (4.22)

k>1

(Recall that we have proved that x, = limy_, fo in the proof of Lemma 1.3 above.) In particular, according
o (4.14), x! is given by
[(1 —m?Sp)x']; = m?(z; — Z) — (m>(Seq);. (4.23)

Then with (4.21) and (4.23), one can show that

<Ce W (|2 —Z|+(), nely. (4.24)

|

By (4.17) and (4.21), we have

‘x;c+1 k|<02< —1 7c

By induction, it is easy to prove that there are constants ¢, C' > 0 such that

k k—1 k k 1 k k—1
+ Jij) {(|xj| + |2 |) |25 — |+ CLjeqwy /5[1%[/]] |25 — 3 |

ekt — 2k | < CemW (|2 — 2|+ O (4.25)
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Together with (4.24) and (4.22), this implies
(@nl = [Mn —m| < C (|2 —Z|+() e W, neZy. (4.26)

This proves (4.19) since ||M,|* — [m[?| < |M2 — m?|.
We now prove (4.20). Using (4.19), we have

1 _ 1 ~
7 2 (ImPLI™ = 1) = s 3 (Iml? = M) +0 (|2 = 27+ ¢7). (4.27)

nELN neLN

By definition (4.11),
|M, > = |m|? + 2Re(mx,) + |za|?

Then with (4.26) we get that

i 2 (100 = ) = 3 37 [2Re(man) + o] = 3 Re(man) +O(f = 5+ €7,

n

By (1.11) and (1.12), we have
CH+ Re(z=2)PP<T?+r2 < N3/2 0<ImZ<Imz< N ¢,
which implies that
CHz-2PP <+ Re(z—2)P+Im(z —2)2 < N7/2 4 N~ Im(z — 2).

Then using (4.22) and (4.25), we obtain that
S (M mf?) = 2 37 Re(ma,) + O (N73 4 N~ (= - 7))
= % Z Re (ma,) + O (N_%E* + N~ Im(z — %’)) . (4.28)

Summing (4.23) over i, we get that (recall that we take g = 0)
Zx = mzz m? (W +1) = m?*W(z — 2) — (m®*W 4+ 0(1),

where we used that >_,(Sp);; = 1 and (Ye1); = 1+ W' for i € [1,W]. Thus for the second term in the
second line of (4.28), we have

ZRe (imal) = |m|*W Re (W) +0(1)

Imz—Imz .
g (S o dmemE (N‘E Imz) +0(1), (4.29)
2 /4—|Rez|?
where we have used the following special properties of m(Z + i0™) when Z is a real number, in which case
m(Z +i0™) has unit modulus:
m(a™) 1 m2(a™)

m(@”) 0, Im Re L la] <2, a™ :=a+i0"
— = = =—= =a+i0".
1—m2(at) 1—m2(at) 4—a2’ 1 —m?2(at) 2’ ’

(4.30)

Here the error O (N~ Im?Z) in (4.29) is due to |m(2) — m(ReZz +i0%)| < CImZ. Inserting (4.29) into
(4.28), we obtain that for some constant ¢ > 0,

Re

WZ IM,[% = [m)?) < fc(Imszm2)+<|m|2+O( "6*+N*E*Imz),

which, together with (4.27), proves (4.20). O
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With Lemma 4.3, we now finish the proof of Lemma 2.7.

Proof of Lemma 2.7. We first assume that g = 0. With (4.3) and a perturbation argument, we can show

that
M2S +1\°
1+7
for some constant ¢ > 0. Then (2.6) can be proved as in (4.21). Our main task is to prove (2.7). Assume
that

<l-c

Loe— Lee

(1—|M]2S)u’ =v° (4.31)

for some vectors u’, v? € RY. Multiplying (4.31) with u®|M|~2 from the left and using the definition of S,
we obtain that

> (M2 -1 + ) ca+w! Zsm W —uf)? = (u, | M[3V0). (4.32)

i 1<i<W
We define a symmetric operator H : L?(T) — L?(T), where T := [—(log N)*W, (log N)*W] and
H := Ho+ Hy,
with
Hy: (u,Hpv) = Z Sij (a ) (vi—v;), u,veL*T),
szT

and
Hi: (Hi)ij =0y [(IMi] 72 = 1)+ licacw (L + W]

For any vector u, we denote by u|t the restriction of u to L?(T). Then with (4.19) and the fact that |m| < 1
we can rewrite (4.32) as

1
(0’fr, Hu|1) + 1 > S (uf - ud)” < (u, [M|72v0) + O(N 1) [u2. (4.33)

First we claim that

H > cImz(logN)™* (4.34)
for some constant ¢ > 0. With Temple’s inequality, we have the following estimate on the ground state
energy of H:

H)?)y — (H)?
H > Ey(H) > (H), — e e (4.35)

E\(H)—(H)y

for any ¢ € L?(T) such that ||¢|l2 = 1 and (H)y < E1(H), where Eq(H) and E;(H) are the lowest two
eigenvalues of H. Applying min-max principle to H > Hy — ||H1||12_ 12, we obtain that

E\(H) > Ei(Ho) — [[Hill2— 2. (4.36)
By (4.19), we have ||Hy| 22 = O (J]z — Z| + ¢+ ImZ). We then claim that
Ey(Hp) = c(log N)™'3 (4.37)

for some constant ¢ > 0. Recall that S = S¢ = Sy — (X with

1
4 2: S (W —u;)? <1, vue LX(T), [lulls=1.
1,J€T

Then again by min-max principle, it suffices to prove the following lemma.

Lemma 4.4. For s;; satisfying (1.1)-(1.3), there exists a constant ¢ > 0 such that

72 s (i —uy)* > clogN)™%, vue LA(T), ufa=1, uwl (L1 .1).
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We postpone its proof until we finish the proof of Lemma 2.7. We now choose the trial state ¢ as a

constant vector in (4.35), i.e
1

44447(1717"'71)‘

VIT|

Then by definition, Hogo = 0 and (H)g, < |[|H1| 212 < E1(H) by (4.36) and (4.37). Then by (4.35) and
(4.36), we have

po =

H > (H), _ I e (Hy)g — VT e (4.38)
* Ei(H) — (Hi)g, * Ei(Ho) = 2[[Hil[2— 12

By the definition of H;y, we have

¢0 |T‘ Z ‘M| 2 - +C1n€[[1 W]](1+W )]

neT
W +1)
(1 —|m|*)| M| 7% + — m|?|M,| 72 — (7
= REET [m|?)| M, |~ ] REETI P M7 = 1) + 0
C(W+1)
>clmz+ O(N (lm 2\M,| 72— (7

neLn

> cImz(logN)™* + 0O (N*%E* + N~ Imz) ,

where we used (4.19) and |m|? < 1—cImZ (by (4.1)) in the third step, and (4.20) in the last step. Together
with (4.38), |H1 %2 ;. = O(N~—%%* 4+ N=="Imz) and (4.37), this proves (4.34).
With (4.34), (4.33) gives that for some ¢ > 0,

T (log N)~ S [udf + 3785 (uf — u)? < (o, [M]72°) + O(N ).
ieT i\
Now for some fixed ig € Zy, we choose v = Se;,. Then the above inequality becomes
cIm z(log N)~* Z [u?|? + i ZSU (ugJ - u?)2 < (S|M|~2u);, + O(N 1) ||u|)3. (4.39)
i€T i,j
In the following, we suppose ||u®||o, > W =1 otherwise the proof is done. Since for any i € Zy,
(u® — [M]2Su’); = (Se;,); = O(W™1), (4.40)

we must have
[0°[|oe =[S0 -

Now we decompose u® as follows:

u?:u—i—ﬁi, with © = — Z Zuﬁo

ZEZN

Suppose |u| = 10][U]| s, then we have
max|u | < 2m1n|u l.

Together with (4.39), it implies that if |u| > 10|/, then
oo < 2Ju| < C(WImz)™t (4.41)
On the other hand, if |u| < 10[|0||oo, with (4.31), (4.19) and the definition of S in Definition 1.2, we get that
u— [MPSu=0 (W "+ (C+|z—2)|ul). (4.42)
Then in this case, with (4.40) and (4.42) it is easy to see that

[0°loo = [[S0°lo = [8lloc = [1STloo =[S0t cc- (4.43)
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By (1.2), we have

> (Sot1); =0,

J
which implies

IS0l < max|(Soi); — (Sot ). (1.44)
Using (1.2), for fixed i < j € Zn we have

2
|(Sou); — (Sou )i|* = Z(So)ix(so)jy(ﬁx -u,)| < Z(So)ix(so)jy|ﬁx —u,% (4.45)

x,y z,y

The lower bound in (1.3) shows that Sy has a core, i.e., there is a constant ¢; > 0 such that (Sp)gy >
csW™Lif |z — y| < W. Then for any fixed i < j € Zy, we choose g, 21,22, ,z, for some n = O(N/W)
such that

t=x0< 2 <2< <xp_1 <y, =4, with W/3 < |og — zp41| < W/2, VE.
Furthermore, set (, = « and =), = y. Clearly for any choices of x},, 1 < k < n — 1, we have
CN <& 2

n
u, —u, = 0, — U, ;>|ﬁ7ﬁ|2< U — T
Y x T Ty, T4 Y X X W Ty, Ty _ 1
k=1

o

=1
For our goal, we will choose z}’s such that

z) € [z — W/, zp + W/4], 1<k<n—1.
Taking averaging over all z}, 1 < k < n — 1, in the above regions, we get that
n 2

AR LFE

k=1

N
S =2
[a, —ug|” < W (Avemgegg/1

’
s3Loy T

Note that by our choices, we always have |z}, — 2z} _;| < W and S%I;%1 > %CSW_l for 2 < k < n—1, which
gives that

~ ~ 2 4 ~ - 2
Averagey, o1 |Us —Uay | < 3 ) ‘ux; ~ U,
@)%y Elwn—1—W/4,2,+W/4]
8¢t _ ~ 2
< > Sapag,_y |Uog, = Uap_,| -
x,x)_ Elzg—1—W/4,xx+W/4]
Together with (4.45), we get that for some constant C' > 0,
CN n—1 2
~ ~\ 2 ~ ~
(S0t ); = (Sot )il* <> (S0)ia (S0) iy i > Sotal | [Uay — Uy
T,y k=2 i @) €[xpr_1-W/4xr+W/4]
CN | 2 ~ ~ 2 2 ~ ~ 2
+ Z(So)m(so)ij W > [uer — ug|” + W > [ay —uy
T,y o'z’ —x1 | <KW /4 Y|y —xp—1|<W/4

For the first term on the right-hand side, we have

n—1 2

~ ~ ~ ~\2
> > Supar,_, |Bay, =Ty | SC Y S (@ — )"
k=2 z/

xh,xh_ 1 €lxr—1—W/4,x+W/4] k,JELN

For the terms in the second line, we notice that

|2" — 2| < |2’ — x| + oy —i| + )i —2] K CIWV + W
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for all 2’ such that |2’ — 21| < W/4, where Cj is the constant appeared in (1.3). Then we can subdivide the
interval [z, z'] or [/, z] into subintervals with lengths < W/2, and proceed as above to get

2 ~ ~ -~
DCHINE SN AT DI A
z o’ —a1 |[<W/4 1<k, ISN
for some constant C' > 0 that is independent of the choice of z’. In sum, we have obtained that
~ ~ 2 CN ~ ~ \2 CN 2
|(5011)j—(5011)i\ < W Z Skl (uk—ul) :W Z Sk (ug—u?) .
1<k ISN 1<k, ISN
Then from (4.43) and (4.44), we obtain that
C

2
(2, < — Sk (up —uy)”.

1<k ISN
Plugging it into (4.39), we get that if |u| < 10|[0]|co, then
CN

2 _
2 <C > Su(uf —u))” < Cu’flo + ON )03 = ]l < We (4.46)
1<k, IKN

W2
‘N

In sum, by our choice of v¥ = Se;, and (4.31), we obtain from (4.41) and (4.46) that

<C ; + ﬁ
max\ Wlmz VV2 ’

which completes the proof of (2.7) in the case with g = 0.
Given any g € RV such that ||g|lec < W™3/%, we can write

(1= siar2)~ 5]

ME = M + €,

where £ is a diagonal matrix with max; || = O(||g|le) = O(W3/4) by the Lipschitz continuity estimate
(1.10). Then (2.6) can be obtained by combing (2.6) in the case g = 0 with a standard perturbation
argument. For (2.7), we write

-1 _ _ —1
(175|Mg|2) S = (1 SIM2P) "5 + (1 - S|IMO?) " S(ME? — M) (175|M<g|2> S (4.47)
Using (2.7) in the case g = 0 and the bound

sy, vl -swers]

Lo — L

we get from (4.47) that

H<1—5|Mg|2)_15 < H(1—5|M8|2)_1 SHmax+0 (( N -|—N2> W3/4> .H<1—5|M<g|2)_1 SH

Wimz W2

max max

Together with (1.15), this implies (2.7) for any g such that ||g. < W=3/4. O

Proof of Lemma 4.4. Since the matrix Sy = (s;;) has a core by (1.3), it suffices to prove that

> s (wi—uy)? > c(log N)™8, vue LX(T), Jfula=1, ul (1,1, 1), (4.48)
i,j€T
where
X 1
Sij i = gy Li—il<w
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Then we define the following two symmetric operators Fp 1 : L?(T) — L?(T) such that for any u,v € L*(T),

1
(quOV):W, 4 Z (Wi — ) (vi —vj),
4,§€T,[i—jlr<W

where | - |7 denotes the periodic distance on T, and

1

(W Fv) = Y & (w—wy) (vi—vy), 8= 8y — Wﬂli—mgw
i,j€T
We first show that for some constant ¢ > 0,
E1(Fp) > c(log N)~13, (4.49)

where E;(Fp) denotes the second lowest eigenvalue of Fy. Without loss of generality, we can regard F as
an operator on L?(T,C) consisting of complez L? vectors. Since Fy is a periodic operator on L?(T,C), its
eigenvectors are the unit complex vectors with Fourier components:

2mn

1
Pk LeT, with p=-"—-, neT.

(Wp)g = ﬁe , ]’

Wp
Then for any p # 0, we have

1 1
(Wp, Fowyp) = W Z |(Wp)i — (Wp)l|2 = W Z (2 = 2cos(p(k —1))]

[k—llr<W [k=llr<W
1 c w3
- 2~ 2cos(pn)] = —— > ¢(log N)~13,
W(log N)? Z:W[ cosn)] 2 o e T = cUoe V)

This proves (4.49).
We now show that Fy defines a positive operator. For simplicity of notations, we let L = |T| and shift T
to T :=[1, L]. Then §,;; can be written as

1

R = (1= 108 M) ™) 8~ s

Licicw,L-wii<t + Ligisw,o-wji<i) - (4.50)

Fix any u € L?(T). The following proof is very similar to the one below (4.45), so we shall omit some details.
For any fixed 1 <i < W and L — W < j < L, we choose xq, 1, -+ ,x, for some n = O((log N)*) such that
i:.QSO < T < X2 < < Tpn—1 < In :j, With W/3 < ‘l‘k _$k+1| < W/2, Vk

Moreover, we set x, = i and z,, = j. Then we can get as before that

2

)

lu; —u;])? < C(log N)* (Averagemll%,m 7%71) Z
k=1

U, — U,
T, Tr—1

where we took average over all x}, € [z — W/4,z, + W/4], 1 < k < n — 1. Note that by our choices, we
always have |z}, — 2}, _,| < W and gt ar | = W1 for 1 < k < n, which gives that

1 2
Wioe Ny 2wl
W(log N) 1<i<W,L-W<5<L
1 C(log N)* &= A 2
< W (log N)® w Z Sajap _y |Way — Uag
1<i<W,L-W<G<L k=2 2| @) €[ei_1—W/4a,+W/4]
1 . 2 . 2
T W log V) > ClegN)'| D Swifue—wl Y Sy fuy —
8 1<ISW,L—W<5<L zi|—zq |<W/4 yily—an_1|<W/4
<C(log N)™" >~ dp (up —wy)?.
k,lET
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Then by (4.50), it is easy to see that F is a positive operator. Thus by min-max principle we have

E\(Fo + F1) > Ey(Fo),

which proves (4.48) together with (4.49). O

(1]
2]
3]

(4]

[9]

(10]
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