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Abstract

We prove the bulk universality of the β-ensembles with non-convex regular analytic po-
tentials for any β > 0. This removes the convexity assumption appeared in the earlier work
[6]. The convexity condition enabled us to use the logarithmic Sobolev inequality to estimate
events with small probability. The new idea is to introduce a “convexified measure” so that
the local statistics are preserved under this convexification.
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1 Introduction and the main results

The classical invariant ensembles of random matrices are given by probability measures of the
form e−NβTrV (H)/2 where N is the size of the matrix H and V is a real valued potential. The
parameter β = 1, 2, 4 is determined by the symmetry type of the matrix, corresponding respectively
to the classical orthogonal, unitary or symplectic ensemble. Let λ = (λ1, λ2, . . . , λN ) ∈ ΣN be
the eigenvalues of H in increasing order, where ΣN ⊂ RN denotes the simplex determined by
λ1 ≤ λ2 ≤ . . . ≤ λN . It is well-known that the probability distribution of the ordered eigenvalues
on ΣN is given by

µ
(N)
β,V = µ(N)(dλ) =

1

ZN
e−βNH(λ)dλ, H(λ) =

N∑
k=1

1

2
V (λk)− 1

N

∑
1≤i<j≤N

log(λj − λi). (1.1)

For non-classical values of β > 0, i.e., β 6∈ {1, 2, 4}, one can still consider the measure (1.1) on
ΣN , but in general there is no simple natural matrix model producing this measure except for
the Gaussian case, V (x) = x2, which corresponds to a tri-diagonal random matrix [13, 26]. We
will view µ = µ(N) as a Gibbs measure of particles in R with a logarithmic interaction, where the
parameter β > 0 is interpreted as the inverse temperature. We will refer to the variables λj as
particles or points and the system is called log-gas or general β-ensemble.

The universality conjecture asserts that the eigenvalue gap distributions in the bulk depend only
on β and are independent of the potential V . For classical ensembles, the eigenvalue correlation
functions can be explicitly expressed in terms of polynomials orthogonal to the measure e−βV (x)/2.
Thus the analysis of the correlation functions relies heavily on the asymptotic properties of the
corresponding orthogonal polynomials. This approach, initiated by Dyson, Gaudin and Mehta (see
[21] for a review) was the starting point for all results on classical universality. Precise analysis on
orthogonal polynomials for general class of weight functions was made possible by the Riemann-
Hilbert approach [5,11,12]. There are also methods independent of the Riemann-Hilbert approach,
see, e.g., [20,22,23]. The universality for β = 2 was proved for very general potential. For β = 1, 4
[10, 18, 25] it was proved for analytic V with some additional conditions. A summary of recent
developments can be found in [2, 9, 10,24].

For non-classical values of β, i.e., β 6∈ {1, 2, 4}, there is no simple expression of the correlation
functions in terms of orthogonal polynomials. In [6], we initiated a new approach to prove bulk
universality for all β > 0 and strictly convex V . The method was based on estimating correlation
functions by local Dirichlet form and the main ingredients consist of the following two steps:

Step 1. Rigidity of eigenvalues. This establishes that the location of the eigenvalues are not too
far from their classical locations determined by the equilibrium density ρ(s).

Step 2. Uniqueness of local Gibbs measures with logarithmic interactions. With the precision of
eigenvalue location estimates from Step 1 as an input, the eigenvalue gap distributions are shown to
be given by the corresponding Gaussian ones. (We will take the uniqueness of the gap distributions
as our definition of the uniqueness of Gibbs state.)

Our goal is to extend this result to the non-convex case. It was emphasized in [6] that the
convexity of the potential V was used only in Step 1. So in order to apply this method, it suffices
to prove the rigidity estimate which we now introduce.

We will assume that the potential V is real analytic function in R such that its second derivative
is bounded below, i.e. we have

inf
x∈R

V ′′(x) ≥ −2W (1.2)
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for some constant W ≥ 0, and
V (x) > (2 + α) ln(1 + |x|), (1.3)

for some α > 0, if |x| is large enough. It is known [7] that under these (in fact, even weaker)
conditions the measure is normalizable, ZN <∞. Moreover, the averaged density of the empirical
spectral measure, defined as

ρ
(N)
1 (λ) = ρ

(N,β,V )
1 (λ) := Eµ(N)

1

N

N∑
j=1

δ(λ− λj)

converges weakly to a continuous function ρ, the equilibrium density, with compact support. We
additionally assume that ρ(s) is supported on a single interval [A,B], and that V is regular in the
sense of [19]. We recall that V is regular if its equilibrium density ρ is positive on (A,B) and
vanishes like a square root at each of the endpoints of [A,B], that is

ρ(t) = sA
√
t−A (1 + O (t−A)) , t→ A+, (1.4)

ρ(t) = sB
√
B − t (1 + O (B − t)) , t→ B−,

for some constants sA, sB > 0.

Remark 1.1 This regularity assumption is not a strong constraint: [19] proves that the regular
potentials V are a dense and open subset of the potentials for the topology induced by the distance

d(V,W ) =

3∑
j=0

∞∑
k=1

2−k
‖V (j) −W (j)‖L∞[−k,k]

1 + ‖V (j) −W (j)‖L∞[−k,k]

+

∞∑
k=1

2−k
|Gk(V )−Gk(W )|

1 + |Gk(V )−Gk(W )|
,

where Gk(V ) = inf |x|>k V (x)/ log |x|.

In this paper, we are interested in the usual n-point correlation functions, generalizing ρ
(N)
1 ,

and defined by

ρ(N)
n (x1, . . . , xn) =

∫
RN−n

µ̃(x)dxn+1 . . . dxN , (1.5)

where µ̃ is the symmetrized version of µ given in (1.1) but defined on RN instead of the simplex
ΣN :

µ̃(N)(dλ) =
1

N !
µ(dλ(σ)),

where λ(σ) = (λσ(1), . . . , λσ(N)), with λσ(1) < · · · < λσ(N).

In the following, we omit the superscript N and we will write µ for µ(N). We will use Pµ and
Eµ to denote the probability and the expectation with respect to µ. Let the classical position γk
be defined by ∫ γk

−∞
ρ(s)ds =

k

N
. (1.6)

Finally, we introduce the notation Jp, qK = [p, q] ∩ Z for any real numbers p < q.
It is known that the particles are rigid, i.e. they cannot be far from their classical locations:

for any ε > 0 there are positive constants c1, c2 such that, for all N ≥ 1,

Pµ (∃k ∈ J1, NK | |λk − γk| ≥ ε) ≤ c1e−c2N . (1.7)
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For eigenvalues in the bulk, (1.7) follows from the large deviations for the empirical spectral measure
with speed N2 [2, 4], and for the extreme eigenvalues the large deviations principle with speed N
was proved in [2], Theorem 2.6.6, up to a condition on the partition function that follows from
Theorem 1 (iii) in [25].

The main technical result of this paper is to prove that rigidity holds for the measure µ at the
optimal scale 1/N in the bulk in the following sense. This theorem extends our rigidity result in
[6] to non-convex potential V .

Theorem 1.1 (Rigidity estimate in the bulk) Let V be real analytic, regular with equilibrium
density supported on a single interval [A,B], and satisfy (1.2), (1.3). Take any α > 0 and ε > 0.
Then there are constants δ, c1, c2 > 0 such that for any N ≥ 1 and k ∈ JαN, (1− α)NK,

Pµ
(
|λk − γk| > N−1+ε

)
≤ c1e−c2N

δ

. (1.8)

Our main result on the universality is the following theorem:

Theorem 1.2 (Bulk universality) Let V be real analytic, regular with equilibrium density sup-
ported on a single interval [A,B], and satisfy (1.2), (1.3). Then for any β > 0 the bulk universality
holds for the β-ensemble µ = µβ,V . More precisely, for any E ∈ (A,B) and |E′| < 2, for any
smooth test functions O with compact support and for any 0 < k ≤ 1

2 , we have, with s := N−1+k,
that

lim
N→∞

∫
dα1 · · · dαnO(α1, . . . , αn)

[∫ E+s

E−s

dx

2s

1

ρ(E)n
ρ(N)
n

(
x+

α1

Nρ(E)
, . . . , x+

αn
Nρ(E)

)
−
∫ E′+s

E′−s

dx

2s

1

ρsc(E′)n
ρ

(N)
Gauss,n

(
x+

α1

Nρsc(E′)
, . . . , x+

αn
Nρsc(E′)

)]
= 0 .

Here ρsc(E) = 1
2π

√
4− E2 is the Wigner semicircle law and ρ

(N)
Gauss,n are the correlation functions

of the Gaussian β-ensemble, i.e. with V (x) = x2.

Theorem 1.2 follows immediately from the rigidity estimates, (1.7), (1.8), and the uniqueness
of local Gibbs measure, i.e., Theorem 2.1 and Corollary 2.2 in [6]. We note that the proof of the
latter results in Section 4 of [6] uses only the rigidity estimate, given in Theorem 3.1 of [6], as an
input. Once the rigidity estimate is proven, the rest of the argument is identical and we will not
repeat it here.

The rest of this paper is devoted to the proof of Theorem 1.1. After some initial estimates
concerning the large deviations regime and global smooth linear statistics (Section 2), the proof
consists in the following steps. First we compare µ to some convexified measures ν (Section 3);
the Hamiltonian Hν of ν differs from that of µ mainly by some properly chosen linear statistics
of the λi’s, allowing Hν to be convex. Despite this change in convexity, we will prove that the
two measures µ and ν have the same subexponentially small probability events. This step is the
main extra ingredient allowing one to generalize the rigidity estimate obtained in [6]. Then by a
self-improving method, this measure ν (together with µ) is proved to have rigidity till the optimal
scale, thanks to comparisons with locally constrained versions of ν (Section 4).
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2 Preliminary results

2.1 Equilibrium measure, large deviations

For analytic potential V satisfying the asymptotic growth condition (1.3), the equilibrium measure
ρ(s)ds associated with (µ(N))N≥0 can be defined as the unique minimizer (in the set of probability
measures on R endowed with the weak topology) of the functional

I(ν) =

∫
V (t)dν(t)−

∫∫
log |t− s|dν(s)dν(t)

if
∫
V (t)dν(t) < ∞, and I(ν) = ∞ otherwise. Moreover, if one assumes that ρ is supported on a

single interval [A,B] and regular in the sense of the previous section, ρ has the following properties:

(a) This equilibrium measure satisfies

1

2
V ′(t) =

∫
ρ(s)ds

t− s
. (2.1)

for any t ∈ (A,B).

(b) For any t ∈ [A,B],

ρ(t) dt =
1

π
r(t)

√
(t−A)(B − t)1[A,B] dt, (2.2)

where r can be extended into an analytic function in C satisfying

r(z) =
1

2π

∫ B

A

V ′(z)− V ′(t)
z − t

dt√
(t−A)(B − t)

. (2.3)

In order to have the density supported strictly in a compact interval, for given κ > 0, define
the following variant of µ(N) conditioned to have all particles in [A− κ,B + κ]:

µ(N,κ)(dλ) =
1

ZN,κ

∏
1≤i<j≤N

|λi − λj |β
N∏
k=1

e−N
β
2 V (λk)1λk∈[A−κ,B+κ]dλ1 . . . dλN . (2.4)

In this paper we will choose κ to be small. This choice differs from [6] where, instead of
[A − κ,B + κ], we restricted the particles to [−R,R] for a very large R. The smaller interval is
needed here because we need r to be positive on the support of µ(N,κ) in the proof of Lemma 2.2.
Unlike in the case of convex V where r is known to have no real zero at all, for the non-convex
regular case we only know that r is nonzero in the interval [A,B]. By continuity, it is also nonzero
in [A− κ,B + κ] for some small κ.

Let ρ
(N,κ)
k denote the correlation functions of the measure µ(N,κ). Then Lemma 1 in [7] states

that under condition (1.3), for some large enough κ there exists some c > 0, depending only on V ,
such that for any x1, . . . , xk ∈ [A− κ,B + κ], we have∣∣∣ρ(N,κ)

k (x1, . . . , xk)− ρ(N)
k (x1, . . . , xk)

∣∣∣ ≤ ρ(N,κ)
k (x1, . . . , xk)e−cN , (2.5)

and for x1, . . . , xj 6∈ [A− κ,B + κ], xj+1, . . . , xk ∈ [A− κ,B + κ],

ρ
(N)
k (x1, . . . , xk) ≤ e−cN

∑j
i=1 log |xi|. (2.6)

The estimates (2.5) and (2.6) actually also hold for arbitrarily small fixed κ > 0 thanks to the
large deviations estimates (1.7).
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2.2 Linear statistics

The following lemma was essentially proven in [25] (for the variance of linear statistics).

Lemma 2.1 For any function φ with ‖φ‖∞ + ‖φ′‖∞ + ‖φ′′‖∞ < ∞, there is a constant c > 0
depending only on V and φ (one can choose c = O(‖φ‖∞ + ‖φ′‖∞ + ‖φ′′‖∞)) such that, for any
N ≥ 1 and s > 0,

Pµ

(∣∣∣∣∣
N∑
i=1

φ(λi)−N
∫
R
ρ(u)φ(u)du

∣∣∣∣∣ > s

)
≤ e−cs/ logN .

Proof. Without loss of generality, we can assume that φ is compactly supported (thanks to
large deviation estimates such as (2.6)). We know from Shcherbina, equation (2.22) in [25], that
for the Stieltjes transforms, i.e. g(u) = 1/(z − u), there is a constant c > 0 depending only on V
and g (one can choose c = O(‖g(4)‖∞)) such that, for any N ≥ 1,∣∣∣∣∣Eµh

(
N∑
i=1

g(λi)−N
∫
R
ρ(u)g(u)du

)∣∣∣∣∣ ≤ c logN, (2.7)

where µh is obtained by replacing V by V + h
N in the definition of µ, and h is for example any

N -independent smooth compactly supported function. We will now prove that this implies that
(2.7) actually holds when replacing g by any smooth compactly supported φ, for example by a
Helffer-Sjöstrand type argument, similar to Lemma 2.3. We can now apply formula (B.13) in [15]

for the signed measure ρ̃ = ρ
(N,µh)
1 − ρ, with Stieltjes transform S, where ρ

(N,µh)
1 is the one-point

correlation function of µh. We obtain∣∣∣∣∫ ∞
−∞

φ(λ)ρ̃(λ)dλ

∣∣∣∣ ≤C ∣∣∣∣∫∫ yφ′′(x)χ(y) ImS(x+ iy)dxdy

∣∣∣∣ (2.8)

+ C

∫∫
(|φ(x)|+ |y||φ′(x)|) |χ′(y)| |S(x+ iy)|dxdy, (2.9)

for some universal C > 0, and where χ is a smooth cutoff function with support in [−1, 1], with
χ(y) = 1 for |y| ≤ 1/2 and with bounded derivatives. Note that χ′ is supported on 1/2 < |y| < 1

and φ, φ′ on compact sets, and that S is uniformly O
(

logN
N

)
on this compact integration domain,

by (2.7), so the term (2.9) is easily bounded by O(‖φ‖∞ + ‖φ′‖∞) logN
N . Concerning the term

(2.8), an easy calculation yields the bound d
dy (y ImS) = O(1/y), so integrating from 1 to y we

get |y ImS(x + iy)| = O(| log y|) logN
N , which is integrable, so (2.8) is O(logN/N) as well, finally

proving that (2.7) holds when replacing g by φ.
Following now Lemma 1 in [25], consider

ZN (t) = Eµ

(
exp

(
t

logN

(
N∑
i=1

φ(λi)−N
∫
R
ρ(s)φ(s)ds

)))
.

Then obviously d2

dt2 logZN (t) ≥ 0, so

logZN (t) = logZN (t)− logZN (0) ≤ |t| d
dt

logZN (t)

=
|t|

logN
Eµtφ/ logN

(
N∑
i=1

φ(λi)−N
∫
R
ρ(s)φ(s)ds

)
,
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so using (2.7) we get that ZN (t) ≤ ec|t|, from which Lemma 2.1 easily follows.

2.3 Analysis of the loop equation

This section analyzes the loop equation (2.10) in the following Lemma 2.2. Its proof is very similar
to [6] except that, instead of the logarithmic Sobolev inequality which was valid only for convex
V , we will use Lemma 2.1. Furthermore, since the support of the restricted measure µ(N,κ) has
changed, the integration contours in (2.16) are chosen slightly differently from those in [6].

In the form presented here, we follow closely the proof in [25]. We now introduce some notations
needed in the proof.

• mN is the Stieltjes transform of ρ
(N)
1 (s)ds, evaluated at some z with Im(z) > 0, and m its

limit:

mN (z) = Eµ

(
1

N

N∑
k=1

1

z − λi

)
=

∫
R

1

z − t
ρ

(N)
1 (t)dt, m(z) =

∫
R

1

z − t
ρ(t)dt.

• s(z) = −2r(z)
√

(A− z)(B − z), where the square root is defined such that

f(z) =
√

(A− z)(B − z) ∼ z as z →∞;

• bN (z) is defined by

bN (z) =

∫
R

V ′(z)− V ′(t)
z − t

(ρ
(N)
1 − ρ)(t) dt;

• finally, cN (z) = 1
N2 kN (z) + 1

N

(
2
β − 1

)
m′N (z), where

kN (z) = varµ

(
N∑
k=1

1

z − λi

)
.

Here the var of a complex random variable denotes var(X) = E(X2) − E(X)2, i.e. without
absolute value unlike the usual variance. Note that |var(X)| ≤ E(|X − E(X)|2).

The loop equation (see [16,17,25] for various proofs) is

(mN −m)2 + s(mN −m) + bN = cN . (2.10)

In the regime where |mN −m| is small, we can neglect the quadratic term. The term bN is the
same order as |mN − m| and is difficult to treat. As observed in [1, 25], for analytic V (hence
analytic bN ), this term vanishes when we perform a contour integration. So we have roughly the
relation

(mN −m) ∼ 1

N2
varµ

(
N∑
k=1

1

z − λk

)
, (2.11)

where we dropped the less important error involving m′N (z)/N due to the extra 1/N factor. With
no convexity assumption on V , the difficulty will be to estimate the above variance to immediately
obtain an estimate on mN −m; this is the reason why we will introduce a convexified version of
the measure µ in the next Section 3. To quantify more precisely (2.11) we will use the following
result, already proved in [6] for convex V .
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Lemma 2.2 Let δ > 0. For z = E + iη with A+ δ < E < B − δ assume that

1

N2
kN (z)→ 0 (2.12)

as N → ∞ uniformly in η ≥ N−1+a for some 0 < a < 1. Then there are constants c, κ > 0 such
that for any N−1+a ≤ η ≤ κ, A+ δ < E < B − δ,

|mN (z)−m(z)| ≤ c
(

1

Nη
+

1

N2
kN (z)

)
. (2.13)

Proof. First, for technical contour integration reasons, it will be easier to consider the measure
(2.4) instead of µ(N) here. More precisely, define

m
(κ)
N (z) = Eµ(N,κ)

(
1

N

N∑
k=1

1

z − λi

)
=

∫
R

1

z − t
ρ

(N,κ)
1 (t)dt,

k
(κ)
N (z) = varµ(N,κ)

(
N∑
k=1

1

z − λi

)
,

c
(κ)
N (z) =

1

N2
k

(κ)
N (z) +

1

N

(
2

β
− 1

)
m

(κ)
N

′
(z).

Then it is a direct consequence of (2.5) and (2.6) that for any κ > 0 there is a constant c > 0 such
that uniformly on η ≥ N−10 (or any power of N),

|m(κ)
N −mN | = O

(
e−cN

)
, |k(κ)

N − kN | = O(e−cN ). (2.14)

From now, we choose a fixed κ > 0 such that all the zeros of r are at distance at least 10κ
from [A,B] (this is possible because V is regular). Consider the rectangle with vertices B + 5κ+
iN−10, A− 5κ+ iN−10, A− 5κ− iN−10, B+ 5κ− iN−10, call L the corresponding clockwise closed
contour and L′ the one consisting only in the horizontal pieces, with the same orientation. From
(2.10), we obviously have, for z 6∈ L′,

1

2πi

∫
L′

(mN (ξ)−m(ξ))2 + s(ξ)(mN (ξ)−m(ξ)) + bN (ξ)− cN (ξ)

r(ξ)(z − ξ)
dξ = 0.

Note that the above expression makes sense for large enough N , because then r has no zero on L.
Using (2.14), this implies, for η ≥ N−1,

1

2πi

∫
L′

(m
(κ)
N (ξ)−m(ξ))2 + s(ξ)(m

(κ)
N (ξ)−m(ξ)) + bN (ξ)− c(κ)

N (ξ)

r(ξ)(z − ξ)
dξ = O(e−cN ).

Now, as ρ
(N,κ)
1 and ρ are supported on [A−κ,B+κ], m

(κ)
N −m and c

(κ)
N are uniformly O(1) in the

vertical segments of L. Consequently, from the above equation

1

2πi

∫
L

(m
(κ)
N (ξ)−m(ξ))2 + s(ξ)(m

(κ)
N (ξ)−m(ξ)) + bN (ξ)− c(κ)

N (ξ)

r(ξ)(z − ξ)
dξ = O(N−10).

As bN and r are analytic inside L, for z outside L we get

1

2πi

∫
L

(m
(κ)
N (ξ)−m(ξ))2 + s(ξ)(m

(κ)
N (ξ)−m(ξ))− c(κ)

N (ξ)

r(ξ)(z − ξ)
dξ = O(N−10).
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Remember we define f(z) =
√

(A− z)(B − z) uniquely by f(z) ∼ z as z → ∞. Moreover,

|m(κ)
N −m|(z) = O(z−2) as |z| → ∞ because ρ and ρ

(N,κ)
1 are compactly supported:

|m(κ)
N (z)−m(z)| =

∣∣∣∣∣
∫ B+κ

A−κ

ρ(t)− ρ(N,κ)(t)

z − t
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ B+κ

A−κ
(ρ(t)− ρ(N,κ)(t))

(
1

z
+ O

(
1

z2

))
dt

∣∣∣∣∣ = O
(
z−2
)
.

Consequently, the function s(m
(κ)
N −m)/r = −2f(m

(κ)
N −m) is O(z−1) as |z| → ∞. Moreover, it

is analytic outside L, so the Cauchy integral formula yields

1

2πi

∫
L

s(ξ)(m
(κ)
N (ξ)−m(ξ))

r(ξ)(z − ξ)
dξ = −2f(z)(m

(κ)
N −m)(z),

proving

−2f(z)(m
(κ)
N (z)−m(z)) = − 1

2πi

∫
L

(m
(κ)
N (ξ)−m(ξ))2 − c(κ)

N (ξ)

r(ξ)(z − ξ)
dξ + O(N−10). (2.15)

Consider now the following rectangular contours, defined by their vertices:

L1 : B + 3κ+ i3κ,A− 3κ+ i3κ,A− 3κ− i3κ,B + 3κ− i3κ,

L2 : B + 4κ+ i4κ,A− 4κ+ i4κ,A− 4κ− i4κ,B + 4κ− i4κ. (2.16)

In particular, note that all the zeros of r are strictly outside L2. For z inside L2 and Im(z) ≥ N−1,
by the Cauchy formula, equation (2.15) implies that

− 2s(z)(m
(κ)
N (z)−m(z))

= −(m
(κ)
N (z)−m(z))2 + c

(κ)
N (z)− r(z)

2πi

∫
L2

(m
(κ)
N (ξ)−m(ξ))2 − c(κ)

N (ξ)

r(ξ)(z − ξ)
dξ + O(N−10). (2.17)

In the above expression, if now z is on L1, |z − ξ| ≥ κ, and on L2 |r| is separated away from zero

by a positive universal constant. Moreover, c
(κ)
N (ξ) can be bounded in the following way. For any

ξ ∈ L2, there is a smooth function gξ supported on [A− 2κ,B + 2κ] which coincides with 1
ξ−λk on

[A − κ,B + κ], Moreover, this choice can be made such that ‖gξ‖∞, ‖g′ξ‖∞, ‖g′′ξ ‖∞ are uniformly
bounded in ξ ∈ L2. Then

1

N2

∣∣∣∣∣varµ(N,κ)

(
N∑
k=1

1

ξ − λk

)∣∣∣∣∣ =
1

N2

∣∣∣∣∣varµ(N,κ)

(
N∑
k=1

gξ(λk)

)∣∣∣∣∣
=

1

N2

∣∣∣∣∣varµ(N)

(
N∑
k=1

gξ(λk)

)∣∣∣∣∣ (1 + o(1)),

where the last equality follows from (2.5). Now, from Lemma 2.1, this last variance is uniformly

bounded by c (logN)2, with c uniformly bounded in ξ. This proves that k
(κ)
N (ξ) is O((logN)2/N2),
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uniformly on the contour L2. Moreover, 1
Nm

(κ)
N

′
= O(N−1), so finally c

(κ)
N (ξ) is uniformly O(N−1)

on L2 and (2.17) implies

−2s(z)(m
(κ)
N (z)−m(z)) = −(m

(κ)
N (z)−m(z))2(z) + O

(
sup
L2

|m(κ)
N −m|

2

)
+ O(N−1).

Moreover, from the maximum principle for analytic functions, supL2
|m(κ)

N −m| ≤ supL1
|m(κ)

N −m|,
so the previous equation implies

sup
L1

|m(κ)
N −m| = O

(
sup
L1

|m(κ)
N −m|

2 +
1

N

)
.

We know that ρ
(N)
1 (s)ds converges weakly to ρ(s)ds (see [2]), so by (2.5) and (2.6) ρ

(N,κ)
1 (s)ds

converges weakly to ρ(s)ds. On L1, z is at distance at least κ from the support of both ρ
(N,κ)
1 (s)ds

and ρ(s)ds so, on L1, m
(κ)
N −m converges uniformly to 0. Together with the above equation, this

implies that

sup
L1

|m(κ)
N −m| = O

(
1

N

)
.

By the maximum principle the same estimate holds outside L1, in particular on L2, so equation
(2.17) implies that for z inside L1

−2s(z)(m
(κ)
N (z)−m(z)) = −(m

(κ)
N (z)−m(z))2 + c

(κ)
N (z) + O

(
1

N

)
. (2.18)

Moreover,

1

N
|m(κ)

N

′
(z)| = 1

N2

∣∣∣∣∣∣Eµ(N,κ)

∑
j

1

(z − λj)2

∣∣∣∣∣∣
≤ 1

Nη
Im m

(κ)
N (z) ≤ 1

Nη
|m(κ)

N (z)−m(z)|+ 1

Nη
| Im m(z)| ≤ 1

Nη
|m(κ)

N (z)−m(z)|+ c

Nη
(2.19)

for some constant c. We used the well-known fact that Im m is uniformly bounded on the upper
half plane (this follows for example from properties of the Cauchy operator, see p 183 in [9]). On
the set A+ δ < E < B − δ and |η| < κ, we have inf |s| > 0. Therefore (2.18) takes the form(

1 + O

(
1

Nη

))
(m

(κ)
N (z)−m(z)) = O

(
|m(κ)

N (z)−m(z)|2 +
1

N2
k

(κ)
N (z) +

1

Nη

)
. (2.20)

From the hypothesis (2.12), if N−1+a ≤ η ≤ κ and A+ δ < E < B − δ, then

|m(κ)
N −m| ≤ c|m

(κ)
N −m|

2 + εN , (2.21)

for some c > 0 and εN → 0 as N → ∞. For large N , (2.21) implies that |m(κ)
N −m| ≤ 2εN or

|m(κ)
N −m| ≥ 1/c− 2εN . Together with |m(κ)

N −m|(E+ iκ)→ 0 and the continuity of |m(κ)
N −m| in

the upper half plane, this implies that |m(κ)
N −m| ≤ 2εN and therefore |m(κ)

N −m| → 0 uniformly
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on N−1+a ≤ η ≤ κ, A + δ < E < B − δ. Consequently, using (2.20), this proves that there is a
constant c > 0 such that for any η ≥ N−1+a, A+ δ < E < B − δ,

|m(κ)
N (z)−m(z)| ≤ c

(
1

Nη
+

1

N2
k

(κ)
N (z)

)
.

The same conclusion remains when substituting m
(κ)
N (resp. k

(κ)
N ) by mN (resp. kN ) thanks to

(2.5) and (2.6).

To prove rigidity results for µ, the above Lemma 2.2 will be combined with the following
Helffer-Sjöstrand estimate, already proved in the following form in [6].

Lemma 2.3 Let δ < (B−A)/2 and E ∈ [A+δ,B−δ] and 0 < η < δ/2. Define a function f = fE,η:
R → R such that f(x) = 1 for x ∈ (−∞, E − η], f(x) vanishes for x ∈ [E + η,∞), moreover
|f ′(x)| ≤ cη−1 and |f ′′(x)| ≤ cη−2, for some constant c. Let ρ̃ be an arbitrary signed measure and
let S(z) =

∫
(z−x)−1ρ̃(x)dx be its Stieltjes transform. Assume that, for any x ∈ [A+δ/2, B−δ/2],

|S(x+ iy)| ≤ U

Ny
for η < y < 1, and | Im S(x+ iy)| ≤ U

Ny
for 0 < y < η. (2.22)

Assume moreover that
∫
R ρ̃(λ)dλ = 0 and that there is a real constant T such that∫

[−T ,T ]c
|λρ̃(λ)|dλ ≤ U

N
. (2.23)

Then for some constant C > 0, independent of N and E ∈ [A+ δ,B − δ], we have∣∣∣∣∫ fE(λ)ρ̃(λ)dλ

∣∣∣∣ ≤ CU | log η|
N

.

3 Convexification

3.1 Outline of the main ideas

The Hamiltonian H = HN of the measure µ ∼ exp(−βNH) is given by

H =
1

2

N∑
k=1

V (λk)− 1

N

∑
1≤i<j≤N

log(λj − λi).

H is not convex, but its Hessian is bounded from below, ∇2H ≥ −W . We will modify this
Hamiltonian by an additional term

H̃ := H+M
∑̀
α=1

X2
α, Xα = N−1/2

N∑
j=1

(gα(λj)− gα(γ̃j)) , (3.1)

where the real functions gα, α = 1, 2, . . . , `, will be determined later and will be independent of N .
Here we denoted by γ̃j a slightly modified version of the classical location of the points, defined by
the relation ∫ γ̃j

A

ρ(s)ds =
j − 1

2

N
, j = 1, 2, . . . , N. (3.2)

11



Compared with γj defined in (1.6), there is a small shift in the definition which makes a technical
step (Lemma 3.3) easier in this section. In all estimates involving γj this small shift plays no role
since maxj |γj − γ̃j | ≤ CN−2/3. In particular the crude large deviation bound (1.7) holds for γ̃’s
as well:

Pµ (∃k ∈ J1, NK | |λk − γ̃k| ≥ ε) ≤ c1e−c2N . (3.3)

The N−1/2 normalization in the definition of Xα is chosen such that the vector

Gα := N−1/2
(
g′α(γ̃1), g′α(γ̃2), . . . , g′α(γ̃N )

)
∈ RN

is `2-normalized.
Define the random variables

∆ := max

 1

N

∑
j

|λj − γ̃j |,
1

N

∑
j

(λj − γ̃j)2

 ≤ ∆(δ) := δ +
1

Nδ

∑
j

(λj − γ̃j)2

for any 0 < δ < 1. Clearly
|Xα| ≤ N1/2‖g′α‖∞∆.

We then have, for any vector v ∈ RN , that

〈v, (∇2H̃)v〉 =
1

N

∑
i<j

(vi − vj)2

(λi − λj)2
+

1

2

∑
j

V ′′(λj)v
2
j

+ 2M
∑̀
α=1

[( 1√
N

∑
j

g′α(λj)vj

)2

+Xα

∑
j

1√
N
g′′α(λj)v

2
j

]

≥ 1

N

∑
i<j

(vi − vj)2

(λi − λj)2
+M

∑̀
α=1

|〈Gα,v〉|2

−
[
W + 2∆M

∑̀
α=1

(
‖g′′α‖2∞ + ‖g′α‖∞‖g′′α‖∞

)]
‖v‖2 (3.4)

where we used a simple Schwarz inequality

2
(∑

j

g′α(λj)vj

)2

≥
(∑

j

g′α(γ̃j)vj

)2

− 2
(∑

j

[
g′α(λj)− g′α(γ̃j)

]
vj

)2

≥
(∑

j

g′α(γ̃j)vj

)2

− 2
∑
j

[
g′α(λj)− g′α(γ̃j)

]2‖v‖2
in the last step.

We will define below a nonnegative symmetric operator Q on CN via a quadratic form

〈v,Qv〉 =

N∑
i,j=1

Qij(vi − vj)2 (3.5)
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such that for typical point configuration λ = (λ1, λ2, . . . , λN ) we have

1

N

∑
i<j

(vi − vj)2

(λi − λj)2
≥

N∑
i,j=1

Qij(vi − vj)2. (3.6)

In our applications, we will then choose ` to be a large but N -independent number, we will let Gα,
α = 1, 2, . . . , ` be the eigenfunctions corresponding to the lowest ` eigenvalues µ1 ≤ µ2 ≤ . . . ≤ µ`
of the nonnegative operator Q. Thus we will have the operator inequality

Q+M
∑̀
α=1

|Gα〉〈Gα| ≥ min{M,µ`+1}. (3.7)

In Section 3.2 we will show that for ` sufficiently large, independent of N , we have µ`+1 > M .
Setting

C(`) := 2M
∑̀
α=1

(
‖g′′α‖2∞ + ‖g′α‖∞‖g′′α‖∞

)
,

we will obtain from (3.4) that

〈v, (∇2H̃)v〉 ≥
(
M −W − C(`)∆(δ)

)
‖v‖2 ≥ 0 (3.8)

as long as ∆(δ) ≤ 1/C(`). From now, we choose δ = 1/(2C(`)) and as N → ∞, we have ∆(δ) ≤
1/C(`) with very high probability, thanks to the large deviation estimates (3.3). To summarize,
for given W we first chose M large enough, then ` so that (3.7) and µ`+1 > M hold, and then

δ = 1/(2C(`)), and we obtain 〈v, (∇2H̃)v〉 ≥ 0.
To prove that µ`+1 ≥M , we only need to estimate the low lying eigenvalues of Q and we need

to understand the low lying eigenfunctions Gα. Since the only requirement for Qi,j is to satisfy
the bound (3.6), we have a substantial freedom in choosing Qi,j conveniently. There are many
ways to choose Qi,j ; we will give one possible approach that relies on enlarging the space by a
reflection principle in the next section. Roughly speaking, we will construct an operator R with
periodic boundary conditions on the set consisting of the original set and its “reflection”. We then
choose Q to be the restriction of R to the symmetric (under the reflection) sector. The operator R
is translation invariant, hence it can be diagonalized via Fourier transform and the eigenfunctions
are explicit. The reader may skip the next section on first reading as it contains fairly elementary
arguments that are independent of the rest of the paper.

3.2 Slow modes analysis

Let I := J1, NK be the index set of the vectors v. The original operator Q is defined on the space

`2(I). We enlarge this space to `2(Ĩ), where Ĩ := J−N + 1, NK. We extend any vector v ∈ `2(I)

by reflection to a vector ṽ ∈ `2(Ĩ) as follows

ṽj =vj , j = 1, 2, . . . , N ; (3.9)

ṽj =v1−j , j = 0, . . . ,−N + 1. (3.10)

We will often view the set Ĩ modulo 2N periodic, i.e. we consider it as 2N points on a circle and
identify −N with N . We can thus also view `2(Ĩ) as the space of vectors with periodic boundary
condition ṽ−N = ṽN . The algebraic operations on the indices will be considered modulo 2N .
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We consider the natural translation invariant distance on Ĩ. Define the function m(n) for n ∈ Z
such that m(n) ∈ J−N + 1, NK and m(n) ≡ n mod(2N). Then the distance between k, ` ∈ Ĩ is
defined as d(k, `) := |m(k − `)| which ranges from 0 to N .

Lemma 3.1 Let ε > 0 be sufficiently small, depending only on V . Define

R
(ε)
k,` =Rk,` :=

1

N

ε2/3

d(k,`)2

N2 + ε2
, k, ` ∈ Ĩ = J−N + 1, NK, (3.11)

and
Q

(ε)
i,j =Qi,j := Ri,j +R1−i,j +Ri,1−j +R1−i,1−j , i, j ∈ I = J1, NK. (3.12)

Then there is a constant c1 > 0 depending only on V such that for any ε > 0 there is a constant
c2 > 0 (depending on V and ε) such that for any N and i, j ∈ J1, NK

Pµ
(

1

N

1

(λi − λj)2
≤ c1 Qi,j

)
≤ e−c2N .

The relation between Qi,j and Ri,j is dictated by the requirement that

〈v,Qv〉`2(I) = 〈ṽ,Rṽ〉`2(Ĩ) :=
∑
i,j∈Ĩ

Ri,j(ṽi − ṽj)2, ∀v ∈ `2(I),

which can be easily checked from (3.9).

Proof. Recall that [A,B] is the support of ρ, ρ > 0 on (A,B) and ρ has a square-root singularity
at the two endpoints, i.e. it vanishes as ρ(x) ∼ sA

√
x−A as x → A+ and ρ(x) ∼ sB

√
B − x as

x→ B− with some positive sA, sB .
From the large deviations of the extreme eigenvalues (included in (1.7)), we know that for any

κ > 0 there is a c(κ) > 0 such that

Pµ
(
λ1 ≤ A− κ

)
+ Pµ

(
λN ≥ B + κ

)
≤ e−c(κ)N . (3.13)

Fix a positive number s < min(sA, sB). Then there is a κ0 > 0, depending only on V , such
that

ρ(x) ≥ s
√
x−A · 1x∈[A,A+κ0] + s

√
κ0 · 1x∈[A+κ0,B−κ0] + s

√
B − x · 1x∈[B−κ0,A]. (3.14)

Let ε ≤ cκ3/2
0 with a small positive constant c. Suppose that k ≤ N/2; if k is near the upper edge,

the argument is similar. Since∫ γ̃k

−∞
ρ =

k − 1
2

N
=

∫ λk

−∞

1

N

∑
m

δλm −
1

2N
,

from the first relation we get

c(k/N)2/3 ≤ γ̃k −A ≤ C(k/N)2/3 (3.15)

with some positive constants c, C, depending only on V . Subtracting the first and second relations
and using (3.3), we obtain that for any fixed K∣∣∣ ∫ λk

γ̃k

ρ
∣∣∣ ≤ ε

K
(3.16)
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apart from an event of exponentially small probability (i.e. of type exp(−c(ε/K)N)).
Additionally, assume now that k ≥ Nε. Under (3.16) we easily see that λk ∈ (γ̃k/2, γ̃3k/2),

since both
∫ γ̃k
γ̃k/2

ρ and
∫ γ̃3k/2
γ̃k

ρ are of the order k/N which is larger than ε/K if K is large enough

(depending only on V ). Then (3.14) and (3.16) imply

|λk − γ̃k| ≤ Cε(γ̃k −A)−1/2 ≤ Cε(k/N)−1/3, Nε ≤ k ≤ N/2

with exponentially high probability and with a constant C depending only on V .
Now we consider the k ≤ Nε case. Using (3.13) with κ = ε2/3 and (3.15), we have (apart from

an event of exponentially small probability)

γ̃k − λk ≤ C(k/N)2/3 + κ ≤ Cε2/3.

Finally, still when k ≤ Nε, i.e. γ̃k ≤ A + Cε2/3 then (3.16) implies that λk ≤ A + C1ε
2/3 with a

large C1, i.e.
λk − γ̃k ≤ Cε2/3, k ≤ Nε,

still apart from an event of exponentially small probability. Summarizing all cases, we obtain that

|λk − γ̃k| ≤
Cε

(k/N)1/3 + ε1/3
, k ≤ N/2. (3.17)

holds with overwhelming probability.
Now let |i− j| ≥ Nε, then

|i− j|
N

=
∣∣∣ ∫ γ̃j

γ̃i

ρ
∣∣∣ ≥ c|γ̃i − γ̃j |ε1/3

since either i or j is larger than Nε and smaller than N(1− ε), say Nε ≤ i ≤ N(1− ε), and then ρ
is at least of order ε1/3 in the neighborhood of γ̃i. If |i− j| ≤ Nε, then we have the trivial bound
|γ̃i − γ̃j | ≤ Cε2/3. Combining these,

|γ̃i − γ̃j | ≤
C|i− j|
Nε1/3

+ Cε2/3

holds for any i, j. Furthermore, clearly |λi − γ̃i| ≤ Cε2/3 from (3.17), so we have proved that

|λi − λj | ≤
C|i− j|
Nε1/3

+ Cε2/3

with overwhelming probability and for any i, j. In other words, there is a constant C (depending
only on V ) such that for any sufficiently small ε and for some c(ε) > 0 we have for any N and
i, j ∈ J1, NK

P

(
1

(λi − λj)2
<

Cε2/3

ε2 + |i−j|2
N2

)
< e−c(ε)N . (3.18)

The proof of Lemma 3.1 will therefore be complete if we can prove that

|i− j| ≤ min
{
d(i, j), d(1− i, j), d(i, 1− j), d(1− i, 1− j)

}
, i, j ∈ I.
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Note that we can assume i > j and then |i− j| = |m(i− j)| = d(i, j) is obvious. Moreover, as d is

symmetric to the reflection i→ 1− i on Ĩ, i.e. d(k, `) = d(1− k, 1− `), we just need to prove that
|i− j| ≤ d(1− i, j). If i+ j ≤ N + 1, then d(1− i, j) = i+ j − 1 > |i− j|. If N + 2 ≤ i+ j ≤ 2N ,
then d(1 − i, j) = |m(i + j − 1)| = |i + j − 1 − 2N | = 2N + 1 − i − j > i − j because i ≤ N ,
completing the proof.

We use the matrix Q in the previous lemma instead of bounds of type (3.18) because it is
related to R, a circulant matrix, allowing to derive its eigenvalues and eigenvectors in an explicit
way.

Lemma 3.2 Let R = R(ε) be the matrix (Ri,j)(i,j)∈Ĩ2 , where the matrix elements Ri,j are defined

in (3.11). Then the eigenvalues ν1, . . . , ν2N of R are

νk =

2N−1∑
j=0

ei2πj k
2NR0,j

and the associated normalized eigenvector is u∗k = (2N)−1/2(ei2πj k
2N )j=−N+1,...,N .

In particular, for any given W > 0 there is a sufficiently small ε such that for large enough N
we have ν2N > W . Moreover, for any given ε > 0 and s > 0 there is some a > 0 depending only
on ε and s such that for any N

{k : |νk| > s} ⊂ J1, aK ∪ J2N + 1− a, 2NK.

We remark that the matrix R defines a symmetric operator w → Rw and a quadratic form
〈w, Rw〉 =

∑
Ri,jwiwj in `2(Ĩ). It is related to the quadratic form R via

〈w,Rw〉 =
∑
i,j

Ri,j(w
2
i + w2

j )− 2
∑
i,j

Ri,jwiwj = 2ν2N‖w‖2 − 2〈w, Rw〉, (3.19)

i.e. we have R = 2ν2N − 2R on `2(Ĩ).

Proof. The first assertions, about the eigenvalues and eigenvectors, is a general fact about
circulant matrices and can be obtained by Fourier transform in

{
0, 1

2N , . . . ,
2N−1

2N

}
.

Concerning the distribution of eigenvalues, note that

ν2N =
1

N

2N−1∑
j=1

ε2/3

m(j)2

N2 + ε2
−→
N→∞

ε2/3

∫ 1

−1

dx

x2 + ε2
= ε−1/3

∫ 1/ε

−1/ε

dx

x2 + 1
.

We therefore have, for sufficiently small ε > 0, ν2N > W for large enough N . We now write

aj =

j∑
`=0

ei2π` k
2N , bj =

1

N

ε2/3

m(j)2

N2 + ε2
, 0 ≤ j ≤ 2N − 1,

with the convention b2N = 0. Then note that |aj | < 2|1−ei2π k
2N |−1, and write νk =

∑2N−1
j=0 aj(bj−

bj+1) to obtain

|νk| ≤ 4ε2/3 1

N |1− ei2π k
2N |

N∑
j=0

∣∣∣∣∣ 1

ε2 +
(
j
N

)2 − 1

ε2 +
(
j+1
N

)2
∣∣∣∣∣ ≤ c(ε)

N |1− ei2π k
2N |

.
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Consequently, if |νk| > s then |1 − ei2π k
2N | < c(ε, s)/N , which only happens for indices k whose

distance to 0 or 2N is uniformly bounded.

Lemma 3.3 For a fixed α ∈ N, there exists an N -independent function gα with ‖gα‖∞+‖g′α‖∞+
‖g′′α‖∞ <∞ such that

g′α(γ̃k) =
√

2 cos

(
2π(k − 1

2
)
α

2N

)
.

Define

Gα = N−1/2(g′α(γ̃1), . . . , g′α(γ̃N )) =
√

2N−1/2
(

cos
(
π(2j − 1)

α

2N

))
j=1,...,N

,

it is easy to see that ‖Gα‖ = 1. For any M > 0 there is ε > 0 and ` > 0 such that, for large
enough N we have, as an inequality between positive operators on `2(I),

Q+M
∑̀
α=0

|Gα〉〈Gα| ≥M,

where Q = Q(ε) was defined in (3.5) with coefficients Qi,j = Q
(ε)
i,j defined in (3.12).

Proof. The existence of gα follows easily from the fact that the density ρ has a square-
root singularity near the edges, see (1.4). In fact, we can choose the functions gα such that

g′α(x) =
√

2 cos
(

2
3πsAα(x−A)

3/2
+

)
for x near A, and a similar relation holds near the upper edge.

As 〈ṽ,Rṽ〉 = 〈v,Qv〉, ‖ṽ‖2 = 2‖v‖2 and

|〈v,Gα〉|2 = |〈ṽ, uα〉|2 = |〈ṽ, u2N−α〉|2,

we just need to prove that the operator inequality

2R+M
∑

k∈J0,`K∪J2N−`,2NK

|uk〉〈uk| ≥M

holds in `2(Ĩ) for some fixed constant ` and for large enough N . This is equivalent to the statement

R+
M

4
≤ ν2N +

M

4

∑
k∈J0,`K∪J2N−`,2NK

|uk〉〈uk|, (3.20)

since R = 2ν2N − 2R, see (3.19). Recalling that νk are the eigenvalues of R = R(ε), we need to
check that for some fixed ε > 0 and ` we have

νk +
M

4
≤ ν2N +

M

4
1k∈J0,`K∪J2N−`,2NK

for any k. Since ν2N is the top eigenvalue, this inequality is obvious if k ∈ J0, `K ∪ J2N − `, 2NK.
Moreover, Lemma 3.2 proves the existence of some fixed ε > 0 and `, such that ν2N > M and
{k : |νk| ≤ 3

4M} ⊂ J0, `K∪ J2N − `, 2NK hold for large enough N (depending on M as well as ε and
`). This concludes the proof.
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3.3 The locally constrained measures

In this section some arbitrary ε, α > 0 are fixed. Let θ be a continuous nonnegative function with
θ = 0 on [−1, 1] and θ′′ ≥ 1 for |x| > 1. We can take for example θ(x) = (x−1)21x>1+(x+1)21x<−1

in the following.

Definition 3.4 For any s, ` > 0, define the probability measure

dν(s,`) = e−βNHν :=
1

Z(s,`)
e−βNψ

(s)−βN
∑
i,j ψi,j−βN(W+1)

∑`
α=0X

2
αdµ, (3.21)

where

• the function gα was defined in Lemma 3.3;

• Xα = N−1/2
∑
j (gα(λj)− gα(γ̃j));

• ψ(s)(λ) = Nθ
(
s
N

∑N
i=1(λi − γ̃i)2

)
;

• ψi,j(λ) = 1
N θ
(√

c1N Qi,j(λi − λj)
)
, where c1 was defined in Lemma 3.1.

Lemma 3.5 There are constants c, `, s > 0 depending only on V , such that for N large enough
ν(s,`) satisfies, for any v ∈ RN ,

〈v, (∇2Hν)v〉 ≥ c‖v‖2.

Proof. Using the notation (3.1), we have Hν = H̃+ψ(s) +
∑
i,j ψi,j up to an additive constant,

so

〈v, (∇2Hν)v〉 =〈v(∇2H̃),v〉+ c1
∑
i,j

Qi,jθ
′′
(√

c1N Qi,j(λi − λj)
)

(vi − vj)2

+
(2s)2

N
θ′′

(
s

N

N∑
i=1

(λi − γ̃i)2

)(
N∑
i=1

(λi − γ̃i)vi

)2

+ 2s θ′

(
s

N

N∑
i=1

(λi − γ̃i)2

)
‖v‖2.

(3.22)

We now use (3.4) to get a lower bound for 〈v(∇2H̃),v〉. Note that the second θ′′ term is positive
and that for x > 0, θ′(x) ≥ 2(x− 1)1x>1; we therefore get the following lower estimate of (3.22):

1

N

∑
i,j

(
1

(λi − λj)2
+ c1N Qi,j1

( 1

(λi − λj)2
< c1N Qi,j

))
(vi − vj)2 + (W + 1)

∑̀
α=1

|〈Gα,v〉|2

−
(
W + C(`)∆(δ)

)
‖v‖2 + 4s (s∆− 1)1s∆−1>0‖v‖2,

which is greater than〈
v, (c1Q+ (W + 1)

∑̀
α=1

|Gα〉〈Gα| − (W + 1))v
〉

+ (1−C(`)∆(δ))‖v‖2 + 4s(s∆− 1)1s∆−1>0‖v‖2.

Choosing M = (W + 1)/c1 in Lemma 3.3, for ε small enough and ` large enough the above scalar
product term is positive for any v and large enough N (note that c1 does not depend on ε). For this
choice of `, taking s = C(`) makes the other terms all together positive (without loss of generality
we can assume C(`) > 1/4), concluding the proof.

From now, we abbreviate ν for ν(s,`), where s and ` are fixed such that the conclusion of Lemma
3.5 holds.
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3.4 Equivalence of the measures ν and µ

We say that a sequence of events (AN )N≥1 is exponentially small for a sequence of probability
measures (mN )N≥1 if there are constants δ, c1, c2 > 0 such that for any N we have

mN (AN ) ≤ c1e−c2N
δ

.

Lemma 3.6 For any s, ` > 0, the measures (µ(N))N≥1 and (ν(s,`,N))N≥1 have the same exponen-
tially small events.

Proof. First note that Hν ≥ Hµ, so Zν ≤ Zµ. We claim that the following inequality holds:

logZµ ≤ logZν + Eµ(βN(Hν −Hµ)).

To prove it, by Jensen’s inequality we have

log

∫
eβN(Hµ−Hν) e−βNHµ∫

e−βNHµdλ
dλ ≥

∫
βN(Hµ −Hν)

e−βNHµ∫
e−βNHµdλ

dλ.

We now bound
Eµ(N(Hν −Hµ)) = Eµ(NX2

α) + Eµ(Nψi,j) + Eµ(Nψ(s)) (3.23)

in the following way. By Lemma 2.1, Eµ(NX2
α) < cα(logN)2; by Lemma 3.1 (together to (2.6)),

Eµ(Nψi,j) is subexponentially small for any indices i and j; finally Eµ(Nψ(s)) is also subexponen-
tially small by (3.3) (together to (2.6)). Altogether, we get that there is a constant c > 0 such that
for any N ≥ 2

logZν ≤ logZµ ≤ logZν + c(logN)2. (3.24)

Let (AN )N≥1 be now a sequence of events exponentially small for µ. By (3.24) we have

Pν(AN ) ≤ ec(logN)2Pµ(AN ),

so (AN )N≥1 is also exponentially small for ν.
Assume now that (AN )N≥1 is exponentially small for ν: there are constants δ, c1, c2 > 0 such

that for any N we have

Pν (AN ) ≤ c1e−c2N
δ

.

Then for any t we have

Pµ(AN ) = Pµ(AN ∩ {βN(Hν −Hµ) > t}) + Pµ(AN ∩ {βN(Hν −Hµ) < t})
≤ Pµ({βN(Hν −Hµ) > t}) + etPν(AN ),

where we used Zν < Zµ. Choosing t = Nδ/2 makes the second term exponentially small, and the
first one as well by using as previously Lemma 2.1, Lemma 3.1 and (3.3).

From the previously proved equivalence of the measures µ and ν, we can easily obtain rigidity
of the particles at scale N−1/2,

Proposition 3.7 For any α, ε > 0, there are constants δ, c1, c2 > 0 such that for any N ≥ 1 and
k ∈ JαN, (1− α)NK,

Pµ
(
|λk − γk| > N−

1
2 +ε
)
≤ c1e−c2N

δ

.
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Proof. From Lemma 3.5 about the convexity of Hν , we get by the classical Bakry-Émery
criterion [3] that ν satisfies a logarithmic Sobolev inequality with constant of order 1/N , so by
Herbst’s lemma concentration at scale N−1/2 holds for individual particles for ν: there is a constant
c > 0 such that for any N ≥ 1, k ∈ J1, NK and x > 0,

Pν
(
|λk − Eν(λk)| > xN−

1
2

)
≤ e−cx.

By Lemma 3.6, this implies that for some constants δ, c1, c2 > 0,

Pµ
(
|λk − Eν(λk)| > N−

1
2 +ε
)
≤ c1e−c2N

δ

. (3.25)

From the above equation we get |Eν(λk) − Eµ(λk)| is of order at most N−1/2+ε, so (3.25) holds
when replacing Eν(λk) by Eµ(λk), proving concentration at scale N−1/2 for µ.

Define γ
(N)
k by ∫ γ

(N)
k

−∞
ρ

(N)
1 =

k

N
. (3.26)

The proof will be complete if we can prove that for any ε > 0 and k ∈ JαN, (1 − α)NK, for large
enough N we have

|γ(N)
k − γk| < N−1/2+ε, (3.27)

By Lemma 2.2, |mN −m| → 0 for η > N−1/2+ε, because on this domain 1
N2 kN → 0, as concen-

tration at scale N−1/2 holds for µ. So using Lemma 2.3 we finally get that (3.27) holds, finishing
the proof.

4 The multiscale analysis

The purpose of this paragraph is to prove the following proposition: if rigidity holds at scale
N−1+a, it holds also at scale N−1+ 3

4a. The argument very closely follows Section 3.3 of [6] and we
will just explain the modifications.

Proposition 4.1 Assume that for some a ∈ (0, 1) the following property holds: for any α, ε > 0,
there are constants δ, c1, c2 > 0 such that for any N ≥ 1 and k ∈ JαN, (1− α)NK,

Pµ
(
|λk − γk| > N−1+a+ε

)
≤ c1e−c2N

δ

. (4.1)

Then the same property holds also replacing a by 3a/4: for any α, ε > 0, there are constants
δ, c1, c2 > 0 such that for any N ≥ 1 and k ∈ JαN, (1− α)NK, we have

Pµ
(
|λk − γk| > N−1+ 3

4a+ε
)
≤ c1e−c2N

δ

.

Proof of Theorem 1.1. This is an immediate consequence of the initial estimate, Proposition
3.7, and iterations of Proposition 4.1.

As in Section 3.3 of [6], two steps are required in the proof of the above Proposition 4.1. First
we will prove that concentration holds at the smaller scale N−1+ a

2 .
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Proposition 4.2 Assume that (4.1) holds. Then for any α > 0 and ε > 0, there are constants
c1, c2, δ > 0 such that for any N ≥ 1 and k ∈ JαN, (1− α)NK,

Pµ
(
|λk − Eµ(λk)| > N

a
2 +ε

N

)
≤ c1e−c2N

δ

. (4.2)

After the better concentration from this proposition, the rigidity can be improved to the scale
N−1+ 3a

4 .

Proposition 4.3 Assume that (4.1) holds. Then for any α > 0 and ε > 0, there is a constant
c > 0 such that for any N ≥ 1 and k ∈ JαN, (1− α)NK,∣∣∣γ(N)

k − γk
∣∣∣ ≤ cN 3a

4 +ε

N

where γ
(N)
k is defined in (3.26).

Propositions 4.2 and 4.3 are the equivalent versions of Propositions 3.12 and 3.13 of [6] with no
convexity assumption on V . Proposition 4.1 can be proved exactly in the same way as Proposition
3.11 [6] by using Propositions 4.2 and 4.3. Notice that this argument does not use the convexity
of V . We now explain the proof of Propositions 4.2 and 4.3.

The convexity of V is used critically in the proof of Proposition 3.12 of [6]. Our measure µ is
not convex, but thanks to Lemma 3.6, it has the same exponentially small events as the measure
ν(s,`) for any fixed s, ` > 0. Hence it suffices to prove (4.2) with µ replaced by ν(s,`). Choose an
appropriate s, ` such that the Hamiltonian of ν = ν(s,`) is convex (Lemma 3.5). Then the proof of
(4.2) with µ replaced by ν is identical to the proof of Proposition 3.12 of [6] since the measure ν
is now convex.

For the proof of Proposition 4.3, we can follow the proof of Proposition 3.13 in [6] line by line.
At a single place, in estimating the second term on the r.h.s. of (3.51) in [6], the spectral gap
inequality for µ (Eq. (3.12) in [6]) was used, but the necessary estimate immediately follows from
Proposition 3.7.
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