

Review

Optimization-Based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16

Carlos Fernandez-Granda

5/9/2016

How to deal with a data-analysis problem

- 1. Define the problem
- 2. Establish assumptions on signal structure
- 3. Design an efficient algorithm
- 4. Understand under what conditions the problem is well posed
- 5. Derive theoretical guarantees

Data-analysis problems

Signal structure

Methods

General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality reduction Clustering

When is the problem well posed?

Theoretical analysis

Aim: Extracting information (signal) from data in the presence of uninformative perturbations (noise)

Additive noise model

data = signal + noise y = x + z

Signal ñ H ü i I

Data

Signal recovery

- Compressed sensing
- Deconvolution / super-resolution
- Matrix completion

Aim: Estimate signal x from measurements y

$$y = Ax$$

Linear underdetermined system where dimension (y) < dimension(x)

Compressed sensing

Compressed sensing

Signal

Spectrum

Data

Super-resolution

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems

Super-resolution

Spatial Super-resolution

Spectrum

Spectral Super-resolution

Spectrum

Seismology

Reflection seismology

Deconvolution

Data \approx convolution of pulse and reflection coefficients

Deconvolution

Matrix completion

:

			Anna Linearas	SHUESSEUE IN LOTE	A MIND	•••
	?	*****	?	?	?	••••
?	***	?	?	****	?	•••
?	?	?	****	***	?	•••
?	******	ትስትስትስት	?	?	ትትትትትት ት	•••
	•	:	•	•	•	•

Matrix completion

Aim: Decompose the data into two (or more) signals

$$y = x_1 + x_2$$

Electrocardiogram

Electrocardiogram

Temperature data

Temperature data

Sines

Sines

 $\mathcal{F}_{c} x + s$

 $\mathcal{F}_{c} x$ s Collaborative filtering with outliers

Background subtraction

Regression

Aim: Predict the value of a response $y \in \mathbb{R}$ from p predictors $X_1, X_2, \ldots, X_p \in \mathbb{R}$

Methodology:

1. Fit a model with using *n* training examples y_1, y_2, \ldots, y_n

$$y_i \approx f(X_{i1}, X_{i2}, \dots, X_{ip}) \quad 1 \leq i \leq n$$

2. Use learned model f to predict from new data

Assumption: Response only depends on a subset S of $s \ll p$ predictors

Model-selection problem: Determine what predictors are relevant

Classification

Aim: Predict the value of a binary response $y \in \{0, 1\}$ from p predictors $X_1, X_2, \ldots, X_p \in \mathbb{R}$

Methodology:

1. Fit a model with using *n* training examples y_1, y_2, \ldots, y_n

$$y_i \approx f(X_{i1}, X_{i2}, \dots, X_{ip}) \quad 1 \leq i \leq n$$

2. Use learned model f to predict from new data

Arrhythmia prediction

Predict whether patient has arrhythmia from n = 271 examples and p = 182 predictors

- Age, sex, height, weight
- Features obtained from electrocardiogram recordings

Aim: Map a signal $x \in \mathbb{R}^n$ to a lower-dimensional space

 $y \approx f(x)$

such that we can recover x from y with minimal loss of information

Compression

Compression

Projection of data onto lower-dimensional space

- Decreases computational cost of processing the data
- Allows to visualize (2D, 3D)

Difference with compression: Not necessarily reversible

Dimensionality reduction

Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Dimensions:

- Area
- Perimeter
- Compactness
- Length of kernel
- Width of kernel
- Asymmetry coefficient
- Length of kernel groove

Clustering

Aim: Separate signals $x_1, \ldots, x_n \in \mathbb{R}^d$ into different classes

Clustering

Collaborative filtering

Topic modeling

Data-analysis problems

Signal structure

Methods

General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality reduction Clustering

When is the problem well posed?

Theoretical analysis

Models

- Sparse models
- ► Group sparse models
- Low-rank models

Sparsity

$$x = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 3 \\ 0 \end{bmatrix}$$

Group sparsity

Entries are partitioned into m groups $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_m$

$$x = \begin{bmatrix} x_{\mathcal{G}_1} \\ x_{\mathcal{G}_2} \\ \dots \\ x_{\mathcal{G}_m} \end{bmatrix}$$

Assumption: Most groups are zero

Sparse models

Let D be a dictionary of atoms

1. Synthesis sparse model

x = Dc where c is sparse

2. Analysis sparse model:

 $D^T x$ is sparse

Low-rank model

Signal is structured as a matrix that presents significant correlations

Collaborative filtering

 SVD

$$A - \bar{A} = U \Sigma V^{T} = U \begin{bmatrix} 7.79 & 0 & 0 & 0 \\ 0 & 1.62 & 0 & 0 \\ 0 & 0 & 1.55 & 0 \\ 0 & 0 & 0 & 0.62 \end{bmatrix} V^{T}$$

Topic modeling

 SVD

$$A = U \Sigma V^{T} = U \begin{bmatrix} 23.64 & 0 & 0 & 0 & \\ 0 & 18.82 & 0 & 0 & 0 & 0 \\ 0 & 0 & 14.23 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3.63 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2.03 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1.36 \end{bmatrix} V^{T}$$

Designing signal representations

- Frequency representation
- Short-time Fourier transform
- Wavelets
- Finite differences

Frequency representation

Discrete cosine transform

Electrocardiogram

Electrocardiogram (spectrum)

Electrocardiogram (spectrum)

Short-time Fourier transform

Speech signal

Spectrogram (log magnitude of STFT coefficients)

Frequency

Wavelets

Scaling function Mother wavelet

Electrocardiogram

Signal Haar transform

Contribution

Contribution

Scale 2^7

Contribution

Contribution

Scale 2^5

Contribution

Scale 2^4

÷

Contribution

Contribution

Contribution

Scale 2^1

Contribution Approximation

Contribution

2D wavelet transform

2D wavelet transform

Finite differences

Learning signal representations

Aim: Learn representation from a set of n signals

$$X := \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

For each signal

$$x_j pprox \sum_{i=1}^k \Phi_i \ A_{ij}, \quad 1 \le j \le n, \quad ext{for } k \ll n$$

• $\Phi_1, \ldots, \Phi_k \in \mathbb{R}^d$ are atoms

• $A_1, \ldots, A_n \in \mathbb{R}^k$ are coefficient vectors

Learning signal representations

Equivalent formulation

$$X \approx \begin{bmatrix} \Phi_1 & \Phi_2 & \cdots & \Phi_k \end{bmatrix} \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} = \Phi A$$

 $\Phi \in \mathbb{R}^{d \times k}$, $A \in \mathbb{R}^{k \times n}$

Learning signal representations

▶ k means

- Principal-component analysis
- Nonnegative matrix factorization
- Sparse principal-component analysis
- Dictionary learning

k means

Aim: Divide $x_1, \ldots x_n$ into k classes

Learn Φ_1, \ldots, Φ_k that minimize

$$\sum_{i=1}^{n} ||x_i - \Phi_{c(i)}||_2^2$$

$$c(i) := \arg\min_{1 \le j \le k} ||x_i - \Phi_j||_2$$

k means

Principal-component analysis

Best rank-k approximation

$$\Phi A = U_{1:k} \Sigma_{1:k} V_{1:k}^{T} = \arg \min_{\substack{\{\tilde{M} \mid \operatorname{rank}(\tilde{M}) = k\}}} \left| \left| X - \tilde{M} \right| \right|_{\mathsf{F}}^{2}$$

The atoms Φ_1, \ldots, Φ_k are orthogonal

Principal-component analysis

$$\frac{\sigma_1}{\sqrt{n}} = 1.3490$$
 $\frac{\sigma_2}{\sqrt{n}} = 0.1438$

Nonnegative matrix factorization

Nonnegative atoms/coefficients

$$X \approx \Phi A$$
, $\Phi_{i,j} \ge 0$, $A_{i,j} \ge 0$, for all i, j

Faces dataset

Sparse atoms

 $X \approx \Phi A$, Φ sparse

Faces dataset

Dictionary learning

Sparse coefficients

 $X \approx \Phi A$, A sparse

Dictionary learning

Data-analysis problems

Signal structure

Methods

General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality reduction Clustering

When is the problem well posed?

Theoretical analysis

Data-analysis problems

Signal structure

Methods

General techniques

Denoising Signal recovery Signal separation Regression Compression / dimensionality reduction Clustering

When is the problem well posed?

Theoretical analysis

Promoting sparsity

Find sparse x such that $x \approx y$

Hard thresholding

$$\mathcal{H}_{\eta}\left(y
ight)_{i}:=egin{cases} y_{i} & ext{if } |y_{i}|>\eta \ 0 & ext{otherwise} \end{cases}$$

Promoting group sparsity

Find group sparse x such that $x \approx y$

Block thresholding

$$\mathcal{B}_{\eta}(x)_{i} := \begin{cases} x_{i} & \text{if } i \in \mathcal{G}_{j} \text{ such that } \left| \left| x_{\mathcal{G}_{j}} \right| \right|_{2} > \eta \\ 0 & \text{otherwise} \end{cases}$$

Promoting low-rank structure

Find low rank M such that $M \approx Y \in \mathbb{R}^{m \times n}$

• Truncate singular-value decomposition $Y = U \Sigma V^T$

$$M = U_{1:k} \Sigma_{1:k} V_{1:k}^{T}$$

Solves PCA problem

► Fit M = AB, $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n}$, by solving minimize $\left\| Y - \tilde{A}\tilde{B} \right\|_{F}$

Promoting additional structure in low-rank models

Nonnegative factors

minimize
$$\left| \left| Y - \tilde{A} \tilde{B} \right| \right|_{\mathsf{F}}$$
 subject to $\tilde{A}_{i,j} \ge 0$
 $\tilde{B}_{i,j} \ge 0$ for all i, j

Sparse factors

$$\begin{array}{ll} \text{minimize} & \left\| Y - \tilde{A} \, \tilde{B} \right\|_{\mathsf{F}} + \lambda \sum_{i=1}^{k} \left\| \tilde{A}_{i} \right\|_{1} \\ \text{subject to} & \left\| \tilde{A}_{i} \right\|_{2} = 1, \qquad 1 \leq i \leq k \\ \\ \text{minimize} & \left\| Y - \tilde{A} \, \tilde{B} \right\|_{\mathsf{F}} + \lambda \sum_{i=1}^{k} \left\| \tilde{B}_{i} \right\|_{1} \\ \\ \text{subject to} & \left\| \tilde{A}_{i} \right\|_{2} = 1, \qquad 1 \leq i \leq k \end{array}$$

Signal representation

x = D c

Columns of D are designed/learned atoms

Inverse problems

y = A x

Linear models

Linear regression

 $y = X \beta$

► X contains the predictors

Find x such that $Ax \approx y$

minimize
$$||y - A\tilde{x}||_2$$

Alternatives: Logistic loss for classification

Promoting sparsity

Find sparse x such that $Ax \approx y$

- Greedy methods: Choose entries of x sequentially to minimize residual (matching pursuit, orthogonal m. p., forward stepwise regression)
- Penalize ℓ_1 norm of x

minimize
$$||y - A\tilde{x}||_2^2 + \lambda ||\tilde{x}||_1$$

Implementation:

gradient descent + soft-thresholding / coordinate descent
Promoting group sparsity

Find group sparse x such that $Ax \approx y$

• Penalize ℓ_1/ℓ_2 norm of x

minimize
$$||y - A\tilde{x}||_2^2 + \lambda ||\tilde{x}||_{1,2}$$

Implementation:

gradient descent + block soft-thresholding / coordinate descent

Promoting low-rank structure

Find low rank M such that $M_\Omega \approx Y_\Omega \in \mathbb{R}^{m \times n}$ for a set of entries Ω

Penalize nuclear norm of x

minimize
$$\left\| Y_{\Omega} - \tilde{M}_{\Omega} \right\|_{2}^{2} + \lambda \left\| \tilde{M} \right\|_{*}$$

Implementation: gradient descent + soft-thresholding of singular values

▶ Fit M = AB, $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n}$, by solving

minimize
$$\left\| Y_{\Omega} - \left(\tilde{A} \, \tilde{B} \right)_{\Omega} \right\|_{F}$$

Data-analysis problems

Signal structure

Methods General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality reduction Clustering

When is the problem well posed?

Theoretical analysis

Denoising

Denoising via thresholding

Denoising

DCT coefficients

Denoising via thresholding in DCT basis

Denoising

Denoising

2D wavelet coefficients

Original coefficients

Thresholded coefficients

Denoising via thresholding in a wavelet basis

Denoising via thresholding in a wavelet basis

Denoising via thresholding in a wavelet basis

Original

Noisy

Estimate

Speech denoising

Time thresholding

Spectrum

Frequency thresholding

Frequency thresholding

Spectrogram (STFT)

Frequency

STFT thresholding

Frequency

Time

STFT thresholding

STFT block thresholding

Time

STFT block thresholding

Sines and spikes

Denoising

Denoising via $\ell_1\text{-norm}$ regularized least squares

Denoising via $\ell_1\text{-norm}$ regularized least squares

Denoising

Signal ñ H ü i I

Data

Small λ

Small λ

${\rm Medium}\ \lambda$

${\rm Medium}\ \lambda$

Large λ

Large λ

Denoising via TV regularization

Original

Noisy

Estimate

Data-analysis problems

Signal structure

Methods General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality reductio Clustering

When is the problem well posed?

Theoretical analysis

Compressed sensing

Signal

Spectrum

Data

$\ell_1\text{-norm}$ minimization

x2 undersampling

$\ell_1\text{-norm}$ minimization

Regular

Random

Super-resolution

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems

Super-resolution

Super-resolution: ℓ_1 -norm regularization

Spectral Super-resolution

Spectrum

Spectral super-resolution: Pseudospectrum from low-rank model (MUSIC)

Deconvolution

Deconvolution with the ℓ_1 norm (Taylor, Banks, McCoy '79)

Matrix completion

Matrix completion via nuclear-norm minimization

Data-analysis problems

Signal structure

Methods

General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality redu

When is the problem well posed?

Theoretical analysis

Electrocardiogram

Spectrum

Temperature data

Temperature data

Model fitted by least squares

Model fitted by least squares

Model fitted by least squares

Trend: Increase of 0.75 $^\circ\text{C}$ / 100 years (1.35 $^\circ\text{F})$

Demixing of sines and spikes

 $\mathcal{F}_{c} x$ s

Demixing of sines and spikes

Spikes

Sines (spectrum)

Background subtraction

Low-rank component

Sparse component

Data-analysis problems

Signal structure

Methods

General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality r

When is the problem well posed?

Theoretical analysis

Assumption: Response only depends on a subset S of $s \ll p$ predictors

Model-selection problem: Determine what predictors are relevant

Lasso

Arrhythmia prediction

- Predict whether patient has arrhythmia from n = 271 examples and p = 182 predictors
- Age, sex, height, weight
- Features obtained from electrocardiogram recordings

Best sparse model uses around 60 predictors

Lasso (logistic regression)

Correlated predictors: Lasso path

Correlated predictors: Ridge-regression path

Correlated predictors: Elastic net path

Several responses y_1, y_2, \ldots, y_k modeled with the same predictors

Assumption: Responses depend on the same subset of predictors

Aim: Learn a group-sparse model

Multitask learning

Lasso

Data-analysis problems

Signal structure

Methods

General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality reduction Clustering

When is the problem well posed?

Theoretical analysis

Compression

Original

Compression via frequency representation

10 % largest DCT coeffs

Compression via frequency representation

2% largest DCT coeffs

Dimensionality reduction

Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Dimensions:

- Area
- Perimeter
- Compactness
- Length of kernel
- Width of kernel
- Asymmetry coefficient
- Length of kernel groove

PCA: Projection onto two first PCs

•

PCA: Projection onto two last PCs

Random projections

•

Data-analysis problems

Signal structure

Methods

General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality reduction Clustering

When is the problem well posed?

Theoretical analysis

Clustering

k means using Lloyd's algorithm

Collaborative filtering

First left singular vector clusters movies

D. Knight Sp. 3 Love Act. B.J.'s Diary P. Woman Sup. 2 $U_1 = \begin{pmatrix} -0.45 & -0.39 & 0.39 & 0.39 & 0.39 & -0.45 \end{pmatrix}$

First right singular vector clusters users

Bob Molly Mary Larry
$$V_1=egin{pmatrix} 0.48 & 0.52 & -0.48 & -0.52 \end{pmatrix}$$

Topic modeling

singer	GDP	senate	election	vote	stock	bass	market	band	Articles
/ 6	1	1	0	0	1	9	0	8 \	а
1	0	9	5	8	1	0	1	0	b
8	1	0	1	0	0	9	1	7	с
0	7	1	0	0	9	1	7	0	d
0	5	6	7	5	6	0	7	2	е
$\setminus 1$	0	8	5	9	2	0	0	1 /	f

Right nonnegative factors cluster words

singer GDP senate election vote stock bass market band $H_1 = (0.34 \quad 0 \quad 3.73 \quad 2.54$ 0.35)3.67 0.52 0 0.35 $H_2 = (0 \quad 2.21 \quad 0.21 \quad 0.45)$ 0.22)0 2.64 0.21 2.43 $H_3 = (3.22)$ 0.37 0.19 0.2 0 0.12 4.13 0.13 3.43) Left nonnegative factors cluster documents

Data-analysis problems

Signal structure

Methods

General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality reduction Clustering

When is the problem well posed?

Theoretical analysis

Denoising based on sparsity

Signal is sparse in the chosen representation

Noise is not sparse in the chosen representation

Signal recovery

MeasurementsClass of signalsCompressed
sensingGaussian, random
Fourier coeffs.SparseSuper-resolutionLow passSignals with min.
separation

Matrix completion

Random sampling

Incoherent low-rank matrices

Measurement operator = random frequency samples

Aim: Study effect of measurement operator on sparse vectors

Operator is well conditioned when acting upon any sparse signal (restricted isometry property)
Compressed sensing

Operator is well conditioned when acting upon any sparse signal (restricted isometry property)

No discretization

Data: Low-pass Fourier coefficients

Data: Low-pass Fourier coefficients

Problem: If the support is clustered, the problem may be ill posed In super-resolution sparsity is not enough!

If the support is spread out, there is still hope We need conditions beyond sparsity

Matrix completion

The signals are identifiable

Example: For low rank + sparse model, low rank component cannot be sparse and vice versa

Enough examples to prevent overfitting

For sparse models, enough examples with respect to the number of relevant predictors

Least-squares regression

Lasso (logistic regression)

n = 271 examples

Data-analysis problems

Signal structure

Methods

General techniques Denoising Signal recovery Signal separation Regression Compression / dimensionality reduction Clustering

When is the problem well posed?

Theoretical analysis

Optimization problem

minimize $f(\tilde{x})$ subject to Ax = y

f is a nondifferentiable convex function

Examples: ℓ_1 norm, nuclear norm

Aim: Show that the original signal x is the solution

Dual certificate

Subgradient of f at x of the form

$$q := A^T v$$

For any h such that Ah = 0

$$\langle q,h\rangle = \left\langle A^T v,h\right\rangle = \langle v,Ah\rangle = 0$$

$$f(x+h) \geq f(x) + \langle q, h \rangle = f(x)$$

Certificates

	Subgradient	Row space of A
Compressed sensing	$egin{array}{l} { m sign}\left(x ight)+z,\ {\left \left z ight ight _{\infty}}<1 \end{array}$	Random sinusoids
Super-resolution	$egin{array}{l} { m sign}\left(x ight)+z,\ {\left \left z ight ight _{\infty}}<1 \end{array}$	Low-pass sinusoids
Matrix completion	$UV^{T} + Z$, $ Z < 1$	Observed entries

Certificate for compressed sensing

Certificate for super-resolution

