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How to deal with a data-analysis problem

1. Define the problem

2. Establish assumptions on signal structure

3. Design an efficient algorithm

4. Understand under what conditions the problem is well posed

5. Derive theoretical guarantees



Data-analysis problems

Signal structure

Methods
General techniques
Denoising
Signal recovery
Signal separation
Regression
Compression / dimensionality reduction
Clustering

When is the problem well posed?

Theoretical analysis



Denoising

Aim: Extracting information (signal) from data in the presence of
uninformative perturbations (noise)

Additive noise model

data = signal + noise
y = x + z



Denoising

Data

Signal



Denoising

Data
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Denoising

Signal Data



Denoising



Denoising



Denoising



Signal recovery

I Compressed sensing

I Deconvolution / super-resolution

I Matrix completion



General model

Aim: Estimate signal x from measurements y

y = A x

Linear underdetermined system where dimension (y) < dimension (x)



Compressed sensing



Compressed sensing

Signal Spectrum

Data



Super-resolution

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems



Super-resolution



Spatial Super-resolution

Spectrum

Signal

Data



Spectral Super-resolution

Spectrum

Signal

Data



Seismology



Reflection seismology

Geological section Acoustic impedance Reflection coefficients



Deconvolution

Sensing Ref. coeff. Pulse Data

Data ≈ convolution of pulse and reflection coefficients



Deconvolution

Ref. coeff. Pulse Data

∗ =

Spectrum × =



Matrix completion
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Matrix completion

Bob Molly Mary Larry


1 ? 5 4 The Dark Knight
? 1 4 5 Spiderman 3
4 5 2 ? Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 ? 5 Superman 2



Signal separation

Aim: Decompose the data into two (or more) signals

y = x1 + x2



Electrocardiogram



Electrocardiogram



Temperature data
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Temperature data
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Demixing of sines and spikes

Sines

+ =

Spectrum

+ =

x

+ s = y



Demixing of sines and spikes

Sines

+ =

Spectrum
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Fc x

+ s = y



Demixing of sines and spikes
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Demixing of sines and spikes

Sines Spikes
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Demixing of sines and spikes

Sines Spikes Data

+ =

Spectrum + =

Fc x + s = y



Collaborative filtering with outliers

A :=

Bob Molly Mary Larry


5 1 5 5 The Dark Knight
1 1 5 5 Spiderman 3
5 5 1 1 Love Actually
5 5 1 1 Bridget Jones’s Diary
5 5 1 1 Pretty Woman
1 1 5 1 Superman 2



Background subtraction
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Regression

Aim: Predict the value of a response y ∈ R from p predictors
X1, X2, . . . , Xp ∈ R

Methodology:

1. Fit a model with using n training examples y1, y2, . . . , yn

yi ≈ f (Xi1,Xi2, . . . ,Xip) 1 ≤ i ≤ n

2. Use learned model f to predict from new data



Sparse regression

Assumption: Response only depends on a subset S of s � p predictors

Model-selection problem: Determine what predictors are relevant



Classification

Aim: Predict the value of a binary response y ∈ {0, 1} from
p predictors X1, X2, . . . , Xp ∈ R

Methodology:

1. Fit a model with using n training examples y1, y2, . . . , yn

yi ≈ f (Xi1,Xi2, . . . ,Xip) 1 ≤ i ≤ n

2. Use learned model f to predict from new data



Arrhythmia prediction

Predict whether patient has arrhythmia from n = 271 examples and
p = 182 predictors

I Age, sex, height, weight
I Features obtained from electrocardiogram recordings



Compression

Aim: Map a signal x ∈ Rn to a lower-dimensional space

y ≈ f (x)

such that we can recover x from y with minimal loss of information



Compression



Compression



Dimensionality reduction

Projection of data onto lower-dimensional space

I Decreases computational cost of processing the data
I Allows to visualize (2D, 3D)

Difference with compression: Not necessarily reversible



Dimensionality reduction

Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Dimensions:
I Area
I Perimeter
I Compactness
I Length of kernel
I Width of kernel
I Asymmetry coefficient
I Length of kernel groove



Clustering

Aim: Separate signals x1, . . . , xn ∈ Rd into different classes



Clustering



Collaborative filtering

A :=

Bob Molly Mary Larry


1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2



Topic modeling

A :=

singer GDP senate election vote stock bass market band Articles


6 1 1 0 0 1 9 0 8 a
1 0 9 5 8 1 0 1 0 b
8 1 0 1 0 0 9 1 7 c
0 7 1 0 0 9 1 7 0 d
0 5 6 7 5 6 0 7 2 e
1 0 8 5 9 2 0 0 1 f
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Signal structure

Methods
General techniques
Denoising
Signal recovery
Signal separation
Regression
Compression / dimensionality reduction
Clustering

When is the problem well posed?

Theoretical analysis



Models

I Sparse models

I Group sparse models

I Low-rank models



Sparsity

x =



0

0

0
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0
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0





Group sparsity

Entries are partitioned into m groups G1, G2, . . . , Gm

x =


xG1

xG2

· · ·
xGm


Assumption: Most groups are zero



Sparse models

Let D be a dictionary of atoms

1. Synthesis sparse model

x = Dc where c is sparse

2. Analysis sparse model:

DT x is sparse



Low-rank model

Signal is structured as a matrix that presents significant correlations



Collaborative filtering

A :=

Bob Molly Mary Larry


1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2



SVD

A− Ā = U Σ V T = U


7.79 0 0 0
0 1.62 0 0
0 0 1.55 0
0 0 0 0.62

V T



Topic modeling

A :=

singer GDP senate election vote stock bass market band Articles


6 1 1 0 0 1 9 0 8 a
1 0 9 5 8 1 0 1 0 b
8 1 0 1 0 0 9 1 7 c
0 7 1 0 0 9 1 7 0 d
0 5 6 7 5 6 0 7 2 e
1 0 8 5 9 2 0 0 1 f



SVD

A = U Σ V T = U



23.64 0 0 0
0 18.82 0 0 0 0
0 0 14.23 0 0 0
0 0 0 3.63 0 0
0 0 0 0 2.03 0
0 0 0 0 0 1.36

V T



Designing signal representations

I Frequency representation

I Short-time Fourier transform

I Wavelets

I Finite differences



Frequency representation

. . .

x =

. . .

Spectrum
of x



Discrete cosine transform

Signal DCT coefficients



Electrocardiogram



Electrocardiogram (spectrum)



Electrocardiogram (spectrum)



Short-time Fourier transform

Real part Imaginary part

Spectrum



Speech signal



Spectrogram (log magnitude of STFT coefficients)
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Wavelets

Scaling function Mother wavelet



Electrocardiogram

Signal Haar transform



Scale 29

Contribution Approximation



Scale 28

Contribution Approximation



Scale 27

Contribution Approximation



Scale 26

Contribution Approximation



Scale 25

Contribution Approximation



Scale 24

Contribution Approximation



Scale 23

Contribution Approximation



Scale 22

Contribution Approximation



Scale 21

Contribution Approximation



Scale 20

Contribution Approximation



2D wavelet transform



2D wavelet transform



Finite differences



Learning signal representations

Aim: Learn representation from a set of n signals

X :=
[
x1 x2 · · · xn

]
For each signal

xj ≈
k∑

i=1

Φi Aij , 1 ≤ j ≤ n, for k � n

I Φ1, . . . , Φk ∈ Rd are atoms

I A1, . . . , An ∈ Rk are coefficient vectors



Learning signal representations

Equivalent formulation

X ≈
[
Φ1 Φ2 · · · Φk

] [
A1 A2 · · · An

]
= Φ A

Φ ∈ Rd×k , A ∈ Rk×n



Learning signal representations

I k means

I Principal-component analysis

I Nonnegative matrix factorization

I Sparse principal-component analysis

I Dictionary learning



k means

Aim: Divide x1, . . . xn into k classes

Learn Φ1, . . . , Φk that minimize

n∑
i=1

∣∣∣∣xi − Φc(i)
∣∣∣∣2

2

c (i) := arg min
1≤j≤k

||xi − Φj ||2



k means



Principal-component analysis

Best rank-k approximation

Φ A = U1:kΣ1:kV T
1:k = arg min

{M̃ | rank(M̃)=k}

∣∣∣∣∣∣X − M̃
∣∣∣∣∣∣2

F

The atoms Φ1, . . . , Φk are orthogonal



Principal-component analysis

σ1√
n

= 1.3490
σ2√
n

= 0.1438

U1

U2



PCA



Nonnegative matrix factorization

Nonnegative atoms/coefficients

X ≈ Φ A, Φi ,j ≥ 0, Ai ,j ≥ 0, for all i , j



Faces dataset



Sparse PCA

Sparse atoms

X ≈ Φ A, Φ sparse



Faces dataset



Dictionary learning

Sparse coefficients

X ≈ Φ A, A sparse



Dictionary learning
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Promoting sparsity

Find sparse x such that x ≈ y

Hard thresholding

Hη (y)i :=

{
yi if |yi | > η

0 otherwise



Promoting group sparsity

Find group sparse x such that x ≈ y

Block thresholding

Bη (x)i :=

{
xi if i ∈ Gj such that

∣∣∣∣xGj ∣∣∣∣2 > η

0 otherwise



Promoting low-rank structure

Find low rank M such that M ≈ Y ∈ Rm×n

I Truncate singular-value decomposition Y = U ΣV T

M = U1:k Σ1:kV T
1:k

Solves PCA problem

I Fit M = A B, A ∈ Rm×k , B ∈ Rk×n, by solving

minimize
∣∣∣∣∣∣Y − Ã B̃

∣∣∣∣∣∣
F



Promoting additional structure in low-rank models

I Nonnegative factors

minimize
∣∣∣∣∣∣Y − Ã B̃

∣∣∣∣∣∣
F

subject to Ãi ,j ≥ 0

B̃i ,j ≥ 0 for all i , j

I Sparse factors

minimize
∣∣∣∣∣∣Y − Ã B̃

∣∣∣∣∣∣
F

+ λ

k∑
i=1

∣∣∣∣∣∣Ãi

∣∣∣∣∣∣
1

subject to
∣∣∣∣∣∣Ãi

∣∣∣∣∣∣
2

= 1, 1 ≤ i ≤ k

minimize
∣∣∣∣∣∣Y − Ã B̃

∣∣∣∣∣∣
F

+ λ
k∑

i=1

∣∣∣∣∣∣B̃i

∣∣∣∣∣∣
1

subject to
∣∣∣∣∣∣Ãi

∣∣∣∣∣∣
2

= 1, 1 ≤ i ≤ k



Linear models

Signal representation

x = D c

I Columns of D are designed/learned atoms



Linear models

Inverse problems

y = A x

I A models the measurement process



Linear models

Linear regression

y = X β

I X contains the predictors



Least squares

Find x such that Ax ≈ y

minimize ||y − A x̃ ||2

Alternatives: Logistic loss for classification



Promoting sparsity

Find sparse x such that Ax ≈ y

I Greedy methods: Choose entries of x sequentially to minimize residual
(matching pursuit, orthogonal m. p., forward stepwise regression)

I Penalize `1 norm of x

minimize ||y − A x̃ ||22 + λ||x̃ ||1

Implementation:

gradient descent + soft-thresholding / coordinate descent



Promoting group sparsity

Find group sparse x such that Ax ≈ y

I Penalize `1/`2 norm of x

minimize ||y − A x̃ ||22 + λ||x̃ ||1,2

Implementation:

gradient descent + block soft-thresholding / coordinate descent



Promoting low-rank structure

Find low rank M such that MΩ ≈ YΩ ∈ Rm×n for a set of entries Ω

I Penalize nuclear norm of x

minimize
∣∣∣∣∣∣YΩ − M̃Ω

∣∣∣∣∣∣2
2

+ λ
∣∣∣∣∣∣M̃∣∣∣∣∣∣

∗

Implementation: gradient descent + soft-thresholding of
singular values

I Fit M = A B, A ∈ Rm×k , B ∈ Rk×n, by solving

minimize
∣∣∣∣∣∣YΩ −

(
Ã B̃
)

Ω

∣∣∣∣∣∣
F
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Denoising

Data

Signal



Denoising via thresholding

Estimate

Signal



Denoising

DCT coefficients

Data

Signal

Data



Denoising via thresholding in DCT basis

DCT coefficients

Estimate

Signal

Estimate



Denoising



Denoising



2D wavelet coefficients



Original coefficients



Thresholded coefficients



Denoising via thresholding in a wavelet basis



Denoising via thresholding in a wavelet basis



Denoising via thresholding in a wavelet basis

Original Noisy Estimate



Speech denoising



Time thresholding



Spectrum



Frequency thresholding



Frequency thresholding

 

 

Data

DFT thresholding



Spectrogram (STFT)
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STFT thresholding
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STFT thresholding

 

 

Data
STFT thresholding



STFT block thresholding
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STFT block thresholding

 

 

Data

STFT block thresh.



Sines and spikes

x = Dc c

DCT subdictionary
Spike subdictionary



Denoising



Denoising via `1-norm regularized least squares

Signal
Estimate



Denoising via `1-norm regularized least squares

Signal
Estimate



Denoising

Signal Data



Denoising via TV regularization

Signal TV reg. (small λ)



Denoising via TV regularization

Signal TV reg. (medium λ)



Denoising via TV regularization

Signal TV reg. (large λ)



Denoising via TV regularization



Denoising via TV regularization



Small λ



Small λ



Medium λ



Medium λ



Large λ



Large λ



Denoising via TV regularization

Original Noisy Estimate
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Compressed sensing

Signal Spectrum

Data



`1-norm minimization

Signal Estimate



x2 undersampling



`1-norm minimization

Regular Random



Super-resolution

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems



Super-resolution



Super-resolution: `1-norm regularization



Spectral Super-resolution

Spectrum

Signal

Data



Spectral super-resolution: Pseudospectrum from low-rank
model (MUSIC)



Deconvolution

Ref. coeff. Pulse Data

∗ =

Spectrum × =



Deconvolution with the `1 norm (Taylor, Banks, McCoy ’79)

Data

Fit

Pulse

Estimate



Matrix completion

Bob Molly Mary Larry


1 ? 5 4 The Dark Knight
? 1 4 5 Spiderman 3
4 5 2 ? Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 ? 5 Superman 2



Matrix completion via nuclear-norm minimization

Bob Molly Mary Larry


1 2 (1) 5 4 The Dark Knight

2 (2) 1 4 5 Spiderman 3
4 5 2 2 (1) Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 (5) 5 Superman 2
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Electrocardiogram

Spectrum



Electrocardiogram: High-frequency noise (power line hum)

Original spectrum Low-pass filtered spectrum



Electrocardiogram: High-frequency noise (power line hum)

Original spectrum Low-pass filtered spectrum



Electrocardiogram: High-frequency noise (power line hum)

Original Low-pass filtered



Electrocardiogram: High-frequency noise (power line hum)

Original Low-pass filtered



Temperature data
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Temperature data
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Model fitted by least squares
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Model fitted by least squares
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Model fitted by least squares
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Trend: Increase of 0.75 ◦C / 100 years (1.35 ◦F)
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Demixing of sines and spikes

Sines Spikes Data

+ =

Spectrum + =

Fc x + s = y



Demixing of sines and spikes

s ŝ x x̂

Spikes Sines (spectrum)



Background subtraction
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Low-rank component
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Sparse component
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Sparse regression

Assumption: Response only depends on a subset S of s � p predictors

Model-selection problem: Determine what predictors are relevant



Lasso
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Arrhythmia prediction

Predict whether patient has arrhythmia from n = 271 examples and
p = 182 predictors

I Age, sex, height, weight
I Features obtained from electrocardiogram recordings

Best sparse model uses around 60 predictors



Lasso (logistic regression)
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Correlated predictors: Lasso path
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Correlated predictors: Ridge-regression path
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Correlated predictors: Elastic net path
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Multi-task learning

Several responses y1, y2, . . . , yk modeled with the same predictors

Assumption: Responses depend on the same subset of predictors

Aim: Learn a group-sparse model



Multitask learning

Lasso Multitask lasso Original
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Compression

Original



Compression via frequency representation

10% largest DCT coeffs



Compression via frequency representation

2% largest DCT coeffs



Dimensionality reduction

Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Dimensions:
I Area
I Perimeter
I Compactness
I Length of kernel
I Width of kernel
I Asymmetry coefficient
I Length of kernel groove



PCA: Projection onto two first PCs



PCA: Projection onto two last PCs



Random projections
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Clustering



k means using Lloyd’s algorithm



Collaborative filtering

Bob Molly Mary Larry


1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2



First left singular vector clusters movies

U1 =
D. Knight Sp. 3 Love Act. B.J.’s Diary P. Woman Sup. 2

( )−0.45 −0.39 0.39 0.39 0.39 −0.45



First right singular vector clusters users

V1 =
Bob Molly Mary Larry

( )0.48 0.52 −0.48 −0.52



Topic modeling

singer GDP senate election vote stock bass market band Articles


6 1 1 0 0 1 9 0 8 a
1 0 9 5 8 1 0 1 0 b
8 1 0 1 0 0 9 1 7 c
0 7 1 0 0 9 1 7 0 d
0 5 6 7 5 6 0 7 2 e
1 0 8 5 9 2 0 0 1 f



Right nonnegative factors cluster words

singer GDP senate election vote stock bass market band

( )H1 = 0.34 0 3.73 2.54 3.67 0.52 0 0.35 0.35
( )H2 = 0 2.21 0.21 0.45 0 2.64 0.21 2.43 0.22
( )H3 = 3.22 0.37 0.19 0.2 0 0.12 4.13 0.13 3.43



Left nonnegative factors cluster documents

a b c d e f
( )W1 = 0.03 2.23 0 0 1.59 2.24
( )W2 = 0.1 0 0.08 3.13 2.32 0
( )W3 = 2.13 0 2.22 0 0 0.03
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Denoising based on sparsity

Signal is sparse in the chosen representation

Noise is not sparse in the chosen representation



Signal recovery

Measurements Class of signals

Compressed
sensing

Gaussian, random
Fourier coeffs.

Sparse

Super-resolution Low pass
Signals with min.

separation

Matrix
completion Random sampling

Incoherent low-rank
matrices



Compressed sensing

=

=

Spectrum
of x



Compressed sensing

=

=

Spectrum
of x

Measurement operator = random frequency samples



Compressed sensing

=

=

Spectrum
of x



Compressed sensing

=

=

Spectrum
of x

Aim: Study effect of measurement operator on sparse vectors



Compressed sensing

=

=

Spectrum
of x

Operator is well conditioned when acting upon any sparse signal

(restricted isometry property)



Compressed sensing

=

=

Spectrum
of x

Operator is well conditioned when acting upon any sparse signal

(restricted isometry property)



Super-resolution

. . .

x =

. . .

Spectrum
of x

Fc y= y

No discretization



Super-resolution

. . .

x =

. . .

Spectrum
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Fc y
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Data: Low-pass Fourier coefficients



Super-resolution

. . .

x

=

. . .

Spectrum
of x

Fc

y

= y

Data: Low-pass Fourier coefficients



Super-resolution

. . .

x

=

. . .

Spectrum
of x

Fc

y

= y

Problem: If the support is clustered, the problem may be ill posed

In super-resolution sparsity is not enough!



Super-resolution

. . .

x

=

. . .

Spectrum
of x

Fc

y

= y

If the support is spread out, there is still hope

We need conditions beyond sparsity



Matrix completion


1
1
1
1

 [1 1 1 1
]

+


0
0
0
1

 [1 2 3 4
]

=


1 1 1 1
1 1 1 1
1 1 1 1
2 3 4 5





Signal separation

The signals are identifiable

Example: For low rank + sparse model, low rank component
cannot be sparse and vice versa



Regression

Enough examples to prevent overfitting

For sparse models, enough examples with respect to the number
of relevant predictors



Least-squares regression
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Lasso (logistic regression)

n = 271 examples
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Optimization problem

minimize f (x̃)

subject to Ax = y

f is a nondifferentiable convex function

Examples: `1 norm, nuclear norm

Aim: Show that the original signal x is the solution



Dual certificate

Subgradient of f at x of the form

q := AT v

For any h such that Ah = 0

〈q, h〉 =
〈
AT v , h

〉
= 〈v ,Ah〉 = 0

f (x + h) ≥ f (x) + 〈q, h〉 = f (x)



Certificates

Subgradient Row space of A

Compressed
sensing

sign (x) + z ,
||z ||∞ < 1

Random sinusoids

Super-resolution sign (x) + z ,
||z ||∞ < 1

Low-pass sinusoids

Matrix
completion UV T + Z , ||Z || < 1 Observed entries



Certificate for compressed sensing



Certificate for super-resolution

1

0

−1

1

0

−1
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