

Convex optimization

Optimization-Based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16

Carlos Fernandez-Granda

2/1/2016

Convexity

Convex sets Convex functions Operations that preserve convexity

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems Definition Duality

Convexity

Convex sets

Convex functions Operations that preserve convexity

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems

Definition Duality

Convex sets

A convex set S is any set such that for any $x, y \in S$ and $\theta \in (0, 1)$

$$\theta x + (1 - \theta) y \in \mathcal{S}$$

The intersection of convex sets is convex

Convex vs nonconvex

Projection onto convex set

The projection of any vector x onto a non-empty closed convex set S

$$\mathcal{P}_{\mathcal{S}}(x) := \arg\min_{s\in\mathcal{S}} ||x-s||_2$$

exists and is unique

Convex combination

Given *n* vectors $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$,

$$x := \sum_{i=1}^{n} \theta_i x_i$$

is a convex combination of x_1, x_2, \ldots, x_n if

$$heta_i \ge 0, \quad 1 \le i \le n$$

 $\sum_{i=1}^n heta_i = 1$

Convex hull

The convex hull of ${\mathcal S}$ is the set of convex combinations of points in ${\mathcal S}$

ℓ_1 -norm ball

Convexity Convex sets Convex functions Operations that preserve convexit

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems

Definition Duality

Convex function

A function $f:\mathbb{R}^n o \mathbb{R}$ is convex if for any $x,y\in \mathbb{R}^n$ and any $heta\in (0,1)$,

$$heta f(x) + (1 - heta) f(y) \ge f(heta x + (1 - heta) y)$$

The function is strictly convex if $x \neq y$ implies that

$$\theta f(x) + (1 - \theta) f(y) > f(\theta x + (1 - \theta) y)$$

A concave function is a function f such that -f is convex

Convex function

Two important properties

Local minima of convex functions are global minima

Sublevel functions $\{x \mid f(x) \leq \gamma, \gamma \in \mathbb{R}\}$ of convex function are convex

Norm

Function $||{\cdot}||$ from a vector space ${\mathcal V}$ to ${\mathbb R}$ that satisfies:

• For all $\alpha \in \mathbb{R}$ and $x \in \mathcal{V}$

$$||\alpha \mathbf{x}|| = |\alpha| \, ||\mathbf{x}||$$

Triangle inequality

$$||x + y|| \le ||x|| + ||y||$$

• ||x|| = 0 implies that x is the zero vector 0

Norms

$$||x||_2 := \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$$

$$||x||_1 := \sum_{i=1}^n |x_i|$$

$$||x||_{\infty} := \max_{1 \le i \le n} |x_i|$$

ℓ_0 "norm"

The ℓ_0 "norm" is not convex and is not a norm

Equivalent definition of convex functions

$f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if for any $x, y \in \mathbb{R}^n$ the 1D function

$$g_{x,y}(\alpha) := f(\alpha x + (1 - \alpha)y)$$

is convex

Epigraph

The graph of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the curve in \mathbb{R}^{n+1}

graph
$$(f) := \{x \mid f(x_{1:n}) = x_{n+1}\}$$

The epigraph of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$epi(f) := \{x \mid f(x_{1:n}) \le x_{n+1}\}$$

It is a subset of \mathbb{R}^{n+1}

Epigraph

A function is convex if and only if its epigraph is convex

Convexity

Convex sets Convex functions Operations that preserve convexity

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems

Definition Duality

Composition of convex and affine function

If $f: \mathbb{R}^n \to \mathbb{R}$ is convex, then for any $A \in \mathbb{R}^{n \times m}$ and any $b \in \mathbb{R}^n$

$$h(x) := f(Ax + b)$$

is convex

Consequence: The least-squares cost function

 $||Ax - y||_2$

is convex

Nonnegative weighted sums

Nonnegative weighted sums of convex functions

$$f:=\sum_{i=1}^m \alpha_i f_i$$

are convex

Consequence: Regularized least-squares cost functions of the form

$$||Ax - y||_{2}^{2} + ||x||,$$

where $||{\boldsymbol \cdot}||$ is an arbitrary norm, are convex

Pointwise maximum/supremum

The pointwise maximum of *m* convex functions f_1, \ldots, f_m

$$f(x) := \max_{1 \le i \le m} f_i(x)$$

is convex

The pointwise supremum of a family of convex functions f_i , $i \in \mathcal{I}$,

$$f(x) := \sup_{i \in \mathcal{I}} f_i(x)$$

is convex

Convexity

Convex sets Convex functions Operations that preserve convexity

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems Definition Duality

Convexity

Convex sets Convex functions Operations that preserve convexity

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems

Definition Duality

First-order condition

A differentiable function f is convex if and only if for every $x, y \in \mathbb{R}^n$

$$f(y) \geq f(x) + \nabla f(x)^T (y - x)$$
.

It is strictly convex if and only if

$$f(y) > f(x) + \nabla f(x)^{T}(y-x)$$
.

Interpretation: First-order Taylor expansion

$$f_{x}^{1}(y) := f(x) + \nabla f(x)(y-x)$$

is a lower bound on f

Optimality conditions

• If
$$\nabla f(x) = 0$$
, x is a global minimum

If in addition f is strictly convex x is the only minimum

First-order condition

Supporting hyperplane

A hyperplane \mathcal{H} is a supporting hyperplane of a set \mathcal{S} at x if

- \mathcal{H} and \mathcal{S} intersect at x
- $\blacktriangleright~{\cal S}$ is contained in one of the half-spaces bounded by ${\cal H}$

The hyperplane $\mathcal{H}_{f,x} \subset \mathbb{R}^{n+1}$

$$\mathcal{H}_{f,x} := \left\{ y \mid y_{n+1} = f(x) + \nabla f(x)^T (y_{1:n} - x) \right\}$$

is a supporting hyperplane of epi(f) at x

Convexity

Convex sets Convex functions Operations that preserve convexity

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems

Definition Duality

Second-order condition in 1D

A twice-differentiable function $g:\mathbb{R}\to\mathbb{R}$ is convex if and only if

$$g''(lpha) \geq 0$$
 for all $lpha \in \mathbb{R}$

Second-order condition

A twice-differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if and only if

$$abla^2 f(x) \succeq 0 \quad \text{for all } x \in \mathbb{R}^n$$

Intuition: Second derivative is nonnegative in every direction

The second-order or quadratic approximation of f

$$f_{x}^{2}\left(y
ight):=f\left(x
ight)+
abla f\left(x
ight)\left(y-x
ight)+rac{1}{2}\left(y-x
ight)^{T}
abla^{2}f\left(x
ight)\left(y-x
ight)$$

is convex everywhere

Second-order condition

Quadratic forms

Convex

Concave

Neither

Convexity

Convex sets Convex functions Operations that preserve convexit

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems Definition Duality

Subgradients

The subgradient of $f: \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ is a vector $q \in \mathbb{R}^n$ such that

$$f\left(y
ight)\geq f\left(x
ight)+q^{T}\left(y-x
ight), \quad ext{for all } y\in\mathbb{R}^{n}.$$

The set of all subgradients is the subdifferential of the function at x

Interpretation: Gradient of supporting hyperplane of f at x

First-order condition for nondifferentiable functions

If f has a non-empty subdifferential everywhere then f is convex

Optimality condition for nondifferentiable functions

If the zero vector is a subgradient of f at x then x minimizes f

Subdifferential of ℓ_1 norm

 $q \in \mathbb{R}^n$ is a subgradient of the ℓ_1 norm at $x \in \mathbb{R}^n$ if

$$q_i = ext{sign}(x_i) \quad ext{if } x_i \neq 0, \ |q_i| \leq 1 \qquad ext{if } x_i = 0$$

Convexity

Convex sets Convex functions Operations that preserve convexity

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems Definition Duality

Convexity

Convex sets Convex functions Operations that preserve convexity

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems Definition Duality

Canonical optimization problem

$$f_0, f_1, \ldots, f_m, h_1, \ldots, h_p : \mathbb{R}^n \to \mathbb{R}$$

$$\begin{array}{ll} \text{minimize} & f_0\left(x\right) \\ \text{subject to} & f_i\left(x\right) \leq 0, \quad 1 \leq i \leq m, \\ & h_i\left(x\right) = 0, \quad 1 \leq i \leq p, \end{array}$$

Definitions

- ► A feasible vector is a vector that satisfies all the constraints
- A solution is any vector x^* such that for all feasible vectors x

 $f_{0}\left(x\right) \geq f_{0}\left(x^{*}\right)$

If a solution exists f (x*) is the optimal value or optimum of the problem

Convex optimization problem

The optimization problem is convex if

- ► *f*₀ is convex
- f_1, \ldots, f_m are convex
- ▶ h_1, \ldots, h_p are affine, i.e. $h_i(x) = a_i^T x + b_i$ for some $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$

Linear program

minimize
$$a^T x$$

subject to $c_i^T x \le d_i$, $1 \le i \le m$,
 $Ax = b$

 ℓ_1 -norm minimization as an LP

The optimization problem

minimize $||x||_1$ subject to Ax = b

can be recast as the LP

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n t_i \\ \text{subject to} & t_i \geq x_i, \\ & t_i \geq -x_i, \\ & Ax = b \end{array}$$

Quadratic program

For a positive semidefinite matrix $Q \in \mathbb{R}^{n imes n}$

minimize
$$x^T Q x + a^T x$$

subject to $c_i^T x \le d_i$, $1 \le i \le m$,
 $Ax = b$

 ℓ_1 -norm regularized least squares as a QP

The optimization problem

minimize
$$||Ax - y||_2^2 + \lambda ||x||_1$$

can be recast as the $\ensuremath{\mathsf{QP}}$

minimize
$$x^T A^T A x - 2y^T x + \lambda \sum_{i=1}^n t_i$$

subject to $t_i \ge x_i$,
 $t_i \ge -x_i$

Convexity

Convex sets Convex functions Operations that preserve convexity

Differentiable functions

First-order conditions Second-order conditions

Nondifferentiable functions

Optimization problems Definition Duality

Lagrangian

The Lagrangian of a canonical optimization problem is

$$L(x,\lambda,\nu) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^p \nu_j h_j(x)$$

 $\lambda \in \mathbb{R}^m, \nu \in \mathbb{R}^p$ are called Lagrange multipliers or dual variables

If x is feasible and $\lambda_i \geq 0$ for $1 \leq i \leq m$

 $L(x,\lambda,\nu) \leq f_0(x)$

The Lagrange dual function of the problem is

$$I(\lambda,\nu) := \inf_{x \in \mathbb{R}^n} f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^p \nu_j h_j(x)$$

Let p^* be an optimum of the optimization problem

$$I(\lambda,\nu) \leq p^*,$$

as long as $\lambda_i \geq 0$ for $1 \leq i \leq n$

The dual problem of the (primal) optimization problem is

$$\begin{array}{ll} {\rm maximize} & l\left(\lambda,\nu\right)\\ {\rm subject \ to} & \lambda_i\geq 0, \quad 1\leq i\leq m. \end{array}$$

The dual problem is always convex, even if the primal isn't

Weak duality

If p^* is a primal optimum and d^* a dual optimum

 $d^* \leq p^*$

Strong duality

For convex problems

$$d^* = p^*$$

under very weak conditions

LPs: The primal optimum is finite

General convex programs (Slater's condition):

There exists a point that is strictly feasible

 $f_i(x) < 0 \quad 1 \leq i \leq m$