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Convex sets

A convex set S is any set such that for any x,y € S and 6 € (0,1)
Ox+(1—-0)yeS

The intersection of convex sets is convex



Convex vs nonconvex

Nonconvex Convex




Projection onto convex set

The projection of any vector x onto a non-empty closed convex set S
Ps (x) := argmin ||x — s||,
seS

exists and is unique



Convex combination

Given n vectors x1,xo,...,x, € R",

n
X = E 0;x;
i=1

is a convex combination of x1,xo, ..., X, if

9, >0, 1<i<n

n

Z@,-zl

i=1



Convex hull

The convex hull of S is the set of convex combinations of points in S



¢1-norm ball
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Convex function

A function f : R" — R is convex if for any x,y € R” and any 6 € (0,1),
Of (x)+(1—=0)f(y) > f(x+(1—-0)y)

The function is strictly convex if x # y implies that
Of (x)+(1—-0)f(y)>f(x+(1—0)y)

A concave function is a function f such that —f is convex



Convex function




Two important properties

Local minima of convex functions are global minima

Sublevel functions {x | f (x) <=, v € R} of convex function are convex



Norm

Function ||-|| from a vector space V to R that satisfies:

» Foralla € Rand x € V
[lax]] = |af [|x]]
» Triangle inequality
[Ix + yll < [Ix]] + Iyl

> ||x|| = 0 implies that x is the zero vector 0



Norms

n
Ixlly == VxTx = | Y x?
i=1

n



Zo ‘norm"

The 45 “norm" is not convex and is not a norm



Equivalent definition of convex functions

f :R" — R is convex if and only if for any x, y € R" the 1D function

8xy (@) = f(ax+ (1 -a)y)

is convex



Epigraph

The graph of a function f : R” — R is the curve in R"+1
graph (f) := {x | f (x:n) = Xn41}
The epigraph of a function f : R” — R is defined as
epi (f) := {x [ f (x1:n) < Xp41}

It is a subset of R"+1



Epigraph

epi (f)

A function is convex if and only if its epigraph is convex
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Composition of convex and affine function

If f:R" — R is convex, then for any A € R"™™ and any b € R"
h(x):=f(Ax+b)

is convex

Consequence: The least-squares cost function

[1AX =yl

is convex



Nonnegative weighted sums

Nonnegative weighted sums of convex functions

f.= Emja; f;
i=1

are convex

Consequence: Regularized least-squares cost functions of the form
2
[1AX = y I3 + [Ix]]

where ||-|| is an arbitrary norm, are convex



Pointwise maximum //supremum

The pointwise maximum of m convex functions f1,..., fn

f(x):= max f;(x)

1<i<m

is convex

The pointwise supremum of a family of convex functions f;, i € Z,

f(x):= ?Eg fi (x)

is convex
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First-order condition

A differentiable function f is convex if and only if for every x,y € R"”
fly)=f )+ V() (v —x).

It is strictly convex if and only if
Fly)>f(x)+VF(x) (y—x).

Interpretation: First-order Taylor expansion
fe (y) = f (x) + VF(x) (y —x)

is a lower bound on f



Optimality conditions

» If Vf(x) =0, x is a global minimum

» If in addition f is strictly convex x is the only minimum



First-order condition




Supporting hyperplane

A hyperplane H is a supporting hyperplane of a set S at x if
» H and S intersect at x

» S is contained in one of the half-spaces bounded by H
The hyperplane H¢, C R™!

Hpo = {y [ymia = £ () + VF (T (=)}

is a supporting hyperplane of epi (f) at x
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Second-order condition in 1D

A twice-differentiable function g : R — R is convex
if and only if

g’ (a)>0 forallaeR



Second-order condition

A twice-differentiable function ¥ : R” — R is convex if and only if
V2f(x) =0 forall x € R"

Intuition: Second derivative is nonnegative in every direction

The second-order or quadratic approximation of f
1
£2(y) = f(x)+ V() (y —x) + SUr= x) TV (x) (v = x)

is convex everywhere



Second-order condition




Quadratic forms

Convex Concave Neither




Nondifferentiable functions



Subgradients

The subgradient of f : R” — R at x € R" is a vector g € R" such that
fly)>f(x)+q" (y—x), forallyeR"

The set of all subgradients is the subdifferential of the function at x

Interpretation: Gradient of supporting hyperplane of f at x



First-order condition for nondifferentiable functions

If f has a non-empty subdifferential everywhere then f is convex



Optimality condition for nondifferentiable functions

If the zero vector is a subgradient of f at x then x minimizes f



Subdifferential of #; norm

g € R" is a subgradient of the /1 norm at x € R" if

qi = sign (x;) if x; #0,
lgil <1 if x; =0
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Canonical optimization problem

foofis.ow by o hy  RT R

minimize  fy (x)
subject to  fi(x) <0, 1<i<m,



Definitions

» A feasible vector is a vector that satisfies all the constraints

» A solution is any vector x* such that for all feasible vectors x

fo(x) > fo (x7)

» If a solution exists f (x*) is the optimal value or optimum of the
problem



Convex optimization problem

The optimization problem is convex if

> fy is convex
» fi,..., fy are convex

> hi,...,h, are affine, i.e. h; (x) = a] x + b; for some a; € R" and
b,' eR



Linear program

minimize a'x

subject to ¢'x<d;, 1<i<m,
Ax=b



¢1-norm minimization as an LP

The optimization problem
minimize  [|x||;

subjectto Ax=0b

can be recast as the LP

n
minimize E t;
i=1

subject to  t; > x;,
ti > —x;,
Ax=b



Quadratic program

For a positive semidefinite matrix Q@ € R"™*"

minimize x' Qx +a’x
subject to ¢'x<d;, 1<i<m,
Ax=0b



¢1-norm regularized least squares as a QP

The optimization problem
minimize  ||Ax — y[|5 + A||x|];
can be recast as the QP
n
minimize  x' ATAx —2yTx+ A Z t;
i=1

subject to  t; > x;,
ti > —X;
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Lagrangian

The Lagrangian of a canonical optimization problem is

L(x, A v) = f(x)+ D Aifi (x) + Z vjh; (x)

i=1

A € R™ v € RP are called Lagrange multipliers or dual variables

If x is feasible and \; > 0for1 <i<m

L(x,\,v) < fy(x)



Lagrange dual function

The Lagrange dual function of the problem is

m p

T\ v) = inf () + > Nifi () + D vihi (x)
j=1

xeRn ]
Let p* be an optimum of the optimization problem
I(\v) < p",

aslongas \; >0for1<i<n



Dual problem

The dual problem of the (primal) optimization problem is

maximize (A, v)
subjectto A; >0, 1<i<m.

The dual problem is always convex, even if the primal isn't



Weak duality

If p* is a primal optimum and d* a dual optimum

d* <p*



Strong duality

For convex problems
d* — p*

under very weak conditions

LPs: The primal optimum is finite

General convex programs (Slater’s condition):

There exists a point that is strictly feasible

filx)<0 1<i<m
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