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Convex sets

A convex set S is any set such that for any x , y ∈ S and θ ∈ (0, 1)

θx + (1− θ) y ∈ S

The intersection of convex sets is convex



Convex vs nonconvex

Nonconvex Convex



Projection onto convex set

The projection of any vector x onto a non-empty closed convex set S

PS (x) := argmin
s∈S
||x − s||2

exists and is unique



Convex combination

Given n vectors x1, x2, . . . , xn ∈ Rn,

x :=
n∑

i=1

θixi

is a convex combination of x1, x2, . . . , xn if

θi ≥ 0, 1 ≤ i ≤ n
n∑

i=1

θi = 1



Convex hull

The convex hull of S is the set of convex combinations of points in S



`1-norm ball
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Convex function

A function f : Rn → R is convex if for any x , y ∈ Rn and any θ ∈ (0, 1),

θf (x) + (1− θ) f (y) ≥ f (θx + (1− θ) y)

The function is strictly convex if x 6= y implies that

θf (x) + (1− θ) f (y) > f (θx + (1− θ) y)

A concave function is a function f such that −f is convex



Convex function

f (θx + (1 − θ)y)

θf (x) + (1 − θ)f (y)

f (x)

f (y)



Two important properties

Local minima of convex functions are global minima

Sublevel functions {x | f (x) ≤ γ, γ ∈ R} of convex function are convex



Norm

Function ||·|| from a vector space V to R that satisfies:

I For all α ∈ R and x ∈ V

||α x || = |α| ||x ||

I Triangle inequality

||x + y || ≤ ||x ||+ ||y ||

I ||x || = 0 implies that x is the zero vector 0



Norms

||x ||2 :=
√

xT x =

√√√√ n∑
i=1

x2
i

||x ||1 :=
n∑

i=1

|xi |

||x ||∞ := max
1≤i≤n

|xi |



`0 “norm"

The `0 “norm" is not convex and is not a norm



Equivalent definition of convex functions

f : Rn → R is convex if and only if for any x , y ∈ Rn the 1D function

gx ,y (α) := f (αx + (1− α) y)

is convex



Epigraph

The graph of a function f : Rn → R is the curve in Rn+1

graph (f ) := {x | f (x1:n) = xn+1}

The epigraph of a function f : Rn → R is defined as

epi (f ) := {x | f (x1:n) ≤ xn+1}

It is a subset of Rn+1



Epigraph

f

epi (f )

A function is convex if and only if its epigraph is convex
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Composition of convex and affine function

If f : Rn → R is convex, then for any A ∈ Rn×m and any b ∈ Rn

h (x) := f (Ax + b)

is convex

Consequence: The least-squares cost function

||Ax − y ||2

is convex



Nonnegative weighted sums

Nonnegative weighted sums of convex functions

f :=
m∑

i=1

αi fi

are convex

Consequence: Regularized least-squares cost functions of the form

||Ax − y ||22 + ||x || ,

where ||·|| is an arbitrary norm, are convex



Pointwise maximum/supremum

The pointwise maximum of m convex functions f1, . . . , fm

f (x) := max
1≤i≤m

fi (x)

is convex

The pointwise supremum of a family of convex functions fi , i ∈ I,

f (x) := sup
i∈I

fi (x)

is convex
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First-order condition

A differentiable function f is convex if and only if for every x , y ∈ Rn

f (y) ≥ f (x) +∇f (x)T (y − x) .

It is strictly convex if and only if

f (y) > f (x) +∇f (x)T (y − x) .

Interpretation: First-order Taylor expansion

f 1
x (y) := f (x) +∇f (x) (y − x)

is a lower bound on f



Optimality conditions

I If ∇f (x) = 0, x is a global minimum

I If in addition f is strictly convex x is the only minimum



First-order condition

x

f (y)

f 1
x (y)



Supporting hyperplane

A hyperplane H is a supporting hyperplane of a set S at x if
I H and S intersect at x
I S is contained in one of the half-spaces bounded by H

The hyperplane Hf ,x ⊂ Rn+1

Hf ,x :=
{

y | yn+1 = f (x) +∇f (x)T (y1:n − x)
}

is a supporting hyperplane of epi (f ) at x
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Second-order condition in 1D

A twice-differentiable function g : R→ R is convex
if and only if

g ′′ (α) ≥ 0 for all α ∈ R



Second-order condition

A twice-differentiable function f : Rn → R is convex if and only if

∇2f (x) � 0 for all x ∈ Rn

Intuition: Second derivative is nonnegative in every direction

The second-order or quadratic approximation of f

f 2
x (y) := f (x) +∇f (x) (y − x) +

1
2
(y − x)T ∇2f (x) (y − x)

is convex everywhere



Second-order condition

x

f (y)

f 2
x (y)



Quadratic forms

Convex Concave Neither
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Subgradients

The subgradient of f : Rn → R at x ∈ Rn is a vector q ∈ Rn such that

f (y) ≥ f (x) + qT (y − x) , for all y ∈ Rn.

The set of all subgradients is the subdifferential of the function at x

Interpretation: Gradient of supporting hyperplane of f at x



First-order condition for nondifferentiable functions

If f has a non-empty subdifferential everywhere then f is convex



Optimality condition for nondifferentiable functions

If the zero vector is a subgradient of f at x then x minimizes f



Subdifferential of `1 norm

q ∈ Rn is a subgradient of the `1 norm at x ∈ Rn if

qi = sign (xi ) if xi 6= 0,
|qi | ≤ 1 if xi = 0
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Canonical optimization problem

f0, f1, . . . , fm, h1, . . . , hp : Rn → R

minimize f0 (x)
subject to fi (x) ≤ 0, 1 ≤ i ≤ m,

hi (x) = 0, 1 ≤ i ≤ p,



Definitions

I A feasible vector is a vector that satisfies all the constraints

I A solution is any vector x∗ such that for all feasible vectors x

f0 (x) ≥ f0 (x∗)

I If a solution exists f (x∗) is the optimal value or optimum of the
problem



Convex optimization problem

The optimization problem is convex if

I f0 is convex

I f1, . . . , fm are convex

I h1, . . . , hp are affine, i.e. hi (x) = aT
i x + bi for some ai ∈ Rn and

bi ∈ R



Linear program

minimize aT x

subject to cT
i x ≤ di , 1 ≤ i ≤ m,

Ax = b



`1-norm minimization as an LP

The optimization problem

minimize ||x ||1
subject to Ax = b

can be recast as the LP

minimize
n∑

i=1

ti

subject to ti ≥ xi ,

ti ≥ −xi ,

Ax = b



Quadratic program

For a positive semidefinite matrix Q ∈ Rn×n

minimize xTQx + aT x

subject to cT
i x ≤ di , 1 ≤ i ≤ m,

Ax = b



`1-norm regularized least squares as a QP

The optimization problem

minimize ||Ax − y ||22 + λ ||x ||1

can be recast as the QP

minimize xTATAx − 2yT x + λ

n∑
i=1

ti

subject to ti ≥ xi ,

ti ≥ −xi
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Lagrangian

The Lagrangian of a canonical optimization problem is

L (x , λ, ν) := f0 (x) +
m∑

i=1

λi fi (x) +
p∑

j=1

νjhj (x)

λ ∈ Rm, ν ∈ Rp are called Lagrange multipliers or dual variables

If x is feasible and λi ≥ 0 for 1 ≤ i ≤ m

L (x , λ, ν) ≤ f0 (x)



Lagrange dual function

The Lagrange dual function of the problem is

l (λ, ν) := inf
x∈Rn

f0 (x) +
m∑

i=1

λi fi (x) +
p∑

j=1

νjhj (x)

Let p∗ be an optimum of the optimization problem

l (λ, ν) ≤ p∗,

as long as λi ≥ 0 for 1 ≤ i ≤ n



Dual problem

The dual problem of the (primal) optimization problem is

maximize l (λ, ν)
subject to λi ≥ 0, 1 ≤ i ≤ m.

The dual problem is always convex, even if the primal isn’t



Weak duality

If p∗ is a primal optimum and d∗ a dual optimum

d∗ ≤ p∗



Strong duality

For convex problems

d∗ = p∗

under very weak conditions

LPs: The primal optimum is finite

General convex programs (Slater’s condition):

There exists a point that is strictly feasible

fi (x) < 0 1 ≤ i ≤ m
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