Convex optimization

Optimization-Based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16

Carlos Fernandez-Granda

2/1/2016

Convexity
Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

Convexity
Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

Convex sets

A convex set \mathcal{S} is any set such that for any $x, y \in \mathcal{S}$ and $\theta \in(0,1)$

$$
\theta x+(1-\theta) y \in \mathcal{S}
$$

The intersection of convex sets is convex

Convex vs nonconvex

Nonconvex
Convex

Projection onto convex set

The projection of any vector x onto a non-empty closed convex set \mathcal{S}

$$
\mathcal{P}_{\mathcal{S}}(x):=\arg \min _{s \in \mathcal{S}}\|x-s\|_{2}
$$

exists and is unique

Convex combination

Given n vectors $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{n}$,

$$
x:=\sum_{i=1}^{n} \theta_{i} x_{i}
$$

is a convex combination of $x_{1}, x_{2}, \ldots, x_{n}$ if

$$
\begin{aligned}
& \theta_{i} \geq 0, \quad 1 \leq i \leq n \\
& \sum_{i=1}^{n} \theta_{i}=1
\end{aligned}
$$

Convex hull

The convex hull of \mathcal{S} is the set of convex combinations of points in \mathcal{S}

ℓ_{1}-norm ball

Convexity
Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

Convex function

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for any $x, y \in \mathbb{R}^{n}$ and any $\theta \in(0,1)$,

$$
\theta f(x)+(1-\theta) f(y) \geq f(\theta x+(1-\theta) y)
$$

The function is strictly convex if $x \neq y$ implies that

$$
\theta f(x)+(1-\theta) f(y)>f(\theta x+(1-\theta) y)
$$

A concave function is a function f such that $-f$ is convex

Convex function

Two important properties

Local minima of convex functions are global minima

Sublevel functions $\{x \mid f(x) \leq \gamma, \gamma \in \mathbb{R}\}$ of convex function are convex

Norm

Function \|•\| from a vector space \mathcal{V} to \mathbb{R} that satisfies:

- For all $\alpha \in \mathbb{R}$ and $x \in \mathcal{V}$

$$
\|\alpha x\|=|\alpha|\|x\|
$$

- Triangle inequality

$$
\|x+y\| \leq\|x\|+\|y\|
$$

- $\|x\|=0$ implies that x is the zero vector 0

Norms

$$
\begin{aligned}
& \|x\|_{2}:=\sqrt{x^{T} x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \\
& \|x\|_{1}:=\sum_{i=1}^{n}\left|x_{i}\right| \\
& \|x\|_{\infty}:=\max _{1 \leq i \leq n}\left|x_{i}\right|
\end{aligned}
$$

The ℓ_{0} "norm" is not convex and is not a norm

Equivalent definition of convex functions

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if for any $x, y \in \mathbb{R}^{n}$ the 1 D function

$$
g_{x, y}(\alpha):=f(\alpha x+(1-\alpha) y)
$$

is convex

Epigraph

The graph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the curve in \mathbb{R}^{n+1}

$$
\operatorname{graph}(f):=\left\{x \mid f\left(x_{1: n}\right)=x_{n+1}\right\}
$$

The epigraph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
\operatorname{epi}(f):=\left\{x \mid f\left(x_{1: n}\right) \leq x_{n+1}\right\}
$$

It is a subset of \mathbb{R}^{n+1}

Epigraph

A function is convex if and only if its epigraph is convex

Convexity
Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

Composition of convex and affine function

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, then for any $A \in \mathbb{R}^{n \times m}$ and any $b \in \mathbb{R}^{n}$

$$
h(x):=f(A x+b)
$$

is convex

Consequence: The least-squares cost function

$$
\|A x-y\|_{2}
$$

is convex

Nonnegative weighted sums

Nonnegative weighted sums of convex functions

$$
f:=\sum_{i=1}^{m} \alpha_{i} f_{i}
$$

are convex

Consequence: Regularized least-squares cost functions of the form

$$
\|A x-y\|_{2}^{2}+\|x\|
$$

where $\|\cdot\|$ is an arbitrary norm, are convex

Pointwise maximum/supremum

The pointwise maximum of m convex functions f_{1}, \ldots, f_{m}

$$
f(x):=\max _{1 \leq i \leq m} f_{i}(x)
$$

is convex
The pointwise supremum of a family of convex functions $f_{i}, i \in \mathcal{I}$,

$$
f(x):=\sup _{i \in \mathcal{I}} f_{i}(x)
$$

is convex

Convexity

Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

Convexity
Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

First-order condition

A differentiable function f is convex if and only if for every $x, y \in \mathbb{R}^{n}$

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

It is strictly convex if and only if

$$
f(y)>f(x)+\nabla f(x)^{T}(y-x) .
$$

Interpretation: First-order Taylor expansion

$$
f_{x}^{1}(y):=f(x)+\nabla f(x)(y-x)
$$

is a lower bound on f

Optimality conditions

- If $\nabla f(x)=0, x$ is a global minimum
- If in addition f is strictly convex x is the only minimum

First-order condition

Supporting hyperplane

A hyperplane \mathcal{H} is a supporting hyperplane of a set \mathcal{S} at x if

- \mathcal{H} and \mathcal{S} intersect at x
- \mathcal{S} is contained in one of the half-spaces bounded by \mathcal{H}

The hyperplane $\mathcal{H}_{f, x} \subset \mathbb{R}^{n+1}$

$$
\mathcal{H}_{f, x}:=\left\{y \mid y_{n+1}=f(x)+\nabla f(x)^{T}\left(y_{1: n}-x\right)\right\}
$$

is a supporting hyperplane of epi (f) at x

Convexity
Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

Second-order condition in 1D

A twice-differentiable function $g: \mathbb{R} \rightarrow \mathbb{R}$ is convex if and only if

$$
g^{\prime \prime}(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}
$$

Second-order condition

A twice-differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if

$$
\nabla^{2} f(x) \succeq 0 \quad \text { for all } x \in \mathbb{R}^{n}
$$

Intuition: Second derivative is nonnegative in every direction
The second-order or quadratic approximation of f

$$
f_{x}^{2}(y):=f(x)+\nabla f(x)(y-x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(x)(y-x)
$$

is convex everywhere

Second-order condition

Quadratic forms

Convex

Concave

Neither

Convexity
Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

Subgradients

The subgradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $x \in \mathbb{R}^{n}$ is a vector $q \in \mathbb{R}^{n}$ such that

$$
f(y) \geq f(x)+q^{T}(y-x), \quad \text { for all } y \in \mathbb{R}^{n}
$$

The set of all subgradients is the subdifferential of the function at x
Interpretation: Gradient of supporting hyperplane of f at x

First-order condition for nondifferentiable functions

If f has a non-empty subdifferential everywhere then f is convex

Optimality condition for nondifferentiable functions

If the zero vector is a subgradient of f at x then x minimizes f

Subdifferential of ℓ_{1} norm

$q \in \mathbb{R}^{n}$ is a subgradient of the ℓ_{1} norm at $x \in \mathbb{R}^{n}$ if

$$
\begin{array}{ll}
q_{i}=\operatorname{sign}\left(x_{i}\right) & \text { if } x_{i} \neq 0 \\
\left|q_{i}\right| \leq 1 & \text { if } x_{i}=0
\end{array}
$$

Convexity
Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

Convexity
Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

Canonical optimization problem

$$
f_{0}, f_{1}, \ldots, f_{m}, h_{1}, \ldots, h_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

minimize $f_{0}(x)$

subject to $f_{i}(x) \leq 0, \quad 1 \leq i \leq m$,

$$
h_{i}(x)=0, \quad 1 \leq i \leq p
$$

Definitions

- A feasible vector is a vector that satisfies all the constraints
- A solution is any vector x^{*} such that for all feasible vectors x

$$
f_{0}(x) \geq f_{0}\left(x^{*}\right)
$$

- If a solution exists $f\left(x^{*}\right)$ is the optimal value or optimum of the problem

Convex optimization problem

The optimization problem is convex if

- f_{0} is convex
- f_{1}, \ldots, f_{m} are convex
- h_{1}, \ldots, h_{p} are affine, i.e. $h_{i}(x)=a_{i}^{T} x+b_{i}$ for some $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$

Linear program

$$
\begin{array}{ll}
\operatorname{minimize} & a^{T} x \\
\text { subject to } & c_{i}^{T} x \leq d_{i}, \quad 1 \leq i \leq m \\
& A x=b
\end{array}
$$

ℓ_{1}-norm minimization as an LP

The optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=b
\end{array}
$$

can be recast as the LP

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} t_{i} \\
\text { subject to } & t_{i} \geq x_{i} \\
& t_{i} \geq-x_{i} \\
& A x=b
\end{array}
$$

Quadratic program

For a positive semidefinite matrix $Q \in \mathbb{R}^{n \times n}$

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\top} Q x+a^{T} x \\
\text { subject to } & c_{i}^{\top} x \leq d_{i}, \quad 1 \leq i \leq m \\
& A x=b
\end{array}
$$

ℓ_{1}-norm regularized least squares as a $Q P$

The optimization problem

$$
\operatorname{minimize} \quad\|A x-y\|_{2}^{2}+\lambda\|x\|_{1}
$$

can be recast as the QP

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} A^{T} A x-2 y^{T} x+\lambda \sum_{i=1}^{n} t_{i} \\
\text { subject to } & t_{i} \geq x_{i}, \\
& t_{i} \geq-x_{i}
\end{array}
$$

Convexity
Convex sets
Convex functions
Operations that preserve convexity

Differentiable functions
First-order conditions
Second-order conditions

Nondifferentiable functions

Optimization problems
Definition
Duality

Lagrangian

The Lagrangian of a canonical optimization problem is

$$
L(x, \lambda, \nu):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} \nu_{j} h_{j}(x)
$$

$\lambda \in \mathbb{R}^{m}, \nu \in \mathbb{R}^{p}$ are called Lagrange multipliers or dual variables

If x is feasible and $\lambda_{i} \geq 0$ for $1 \leq i \leq m$

$$
L(x, \lambda, \nu) \leq f_{0}(x)
$$

Lagrange dual function

The Lagrange dual function of the problem is

$$
I(\lambda, \nu):=\inf _{x \in \mathbb{R}^{n}} f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} \nu_{j} h_{j}(x)
$$

Let p^{*} be an optimum of the optimization problem

$$
I(\lambda, \nu) \leq p^{*}
$$

as long as $\lambda_{i} \geq 0$ for $1 \leq i \leq n$

Dual problem

The dual problem of the (primal) optimization problem is

$$
\begin{array}{ll}
\operatorname{maximize} & I(\lambda, \nu) \\
\text { subject to } & \lambda_{i} \geq 0, \quad 1 \leq i \leq m
\end{array}
$$

The dual problem is always convex, even if the primal isn't

Weak duality

If p^{*} is a primal optimum and d^{*} a dual optimum

$$
d^{*} \leq p^{*}
$$

Strong duality

For convex problems

$$
d^{*}=p^{*}
$$

under very weak conditions

LPs: The primal optimum is finite

General convex programs (Slater's condition):
There exists a point that is strictly feasible

$$
f_{i}(x)<0 \quad 1 \leq i \leq m
$$

