(4) N I I COURANT INSTITUTE OF MATHEMATICAL SCIENCES

Optimization methods

Optimization-Based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16

Carlos Fernandez-Granda

$$
2 / 8 / 2016
$$

Introduction

Aim: Overview of optimization methods that

- Tend to scale well with the problem dimension
- Are widely used in machine learning and signal processing
- Are (reasonably) well understood theoretically

Differentiable functions
Gradient descent
Convergence analysis of gradient descent Accelerated gradient descent Projected gradient descent

Nondifferentiable functions
Subgradient method
Proximal gradient method
Coordinate descent

Differentiable functions
Gradient descent
Convergence analysis of gradient descent Accelerated gradient descent Projected gradient descent

Nondifferentiable functions
Subgradient method
Proximal gradient method
Coordinate descent

Gradient

Direction of maximum variation

Gradient descent (aka steepest descent)

Method to solve the optimization problem

$$
\operatorname{minimize} \quad f(x),
$$

where f is differentiable

Gradient-descent iteration:

$$
\begin{aligned}
& x^{(0)}=\text { arbitrary initialization } \\
& x^{(k+1)}=x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)
\end{aligned}
$$

where α_{k} is the step size

Gradient descent (1D)

Gradient descent (2D)

目 4.0
3.5
3.0
2.5
2.0
1.5
1.0
1
1.5

Small step size

目 4.0
3.5
3.0
2.5
2.0
1.5
1.0
1
1.5

Large step size

目100
90
80
70
60
50
40
30
20
目10

Line search

- Exact

$$
\alpha_{k}:=\arg \min _{\beta \geq 0} f\left(x^{(k)}-\beta \nabla f\left(x^{(k)}\right)\right)
$$

- Backtracking (Armijo rule)

Given $\alpha^{0} \geq 0$ and $\beta \in(0,1)$, set $\alpha_{k}:=\alpha^{0} \beta^{i}$ for the smallest i such that

$$
f\left(x^{(k+1)}\right) \leq f\left(x^{(k)}\right)-\frac{1}{2} \alpha_{k}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2}
$$

Backtracking line search

Differentiable functions
Gradient descent
Convergence analysis of gradient descent Accelerated gradient descent Projected gradient descent

Nondifferentiable functions
Subgradient method
Proximal gradient method
Coordinate descent

Lipschitz continuity

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is Lipschitz continuous with Lipschitz constant L if for any $x, y \in \mathbb{R}^{n}$

$$
\|f(y)-f(x)\|_{2} \leq L\|y-x\|_{2}
$$

Example:
$f(x):=A x$ is Lipschitz continuous with $L=\sigma_{\max }(A)$

Quadratic upper bound

If the gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Lipschitz continuous with constant L

$$
\|\nabla f(y)-\nabla f(x)\|_{2} \leq L\|y-x\|_{2}
$$

then for any $x, y \in \mathbb{R}^{n}$

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2}
$$

Consequence of quadratic bound

Since $x^{(k+1)}=x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)$

$$
f\left(x^{(k+1)}\right) \leq f\left(x^{(k)}\right)-\alpha_{k}\left(1-\frac{\alpha_{k} L}{2}\right)\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2}
$$

If $\alpha_{k} \leq \frac{1}{L}$ the value of the function always decreases!

$$
f\left(x^{(k+1)}\right) \leq f\left(x^{(k)}\right)-\frac{\alpha_{k}}{2}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2}
$$

Gradient descent with constant step size

Conditions:

- f is convex
- ∇f is L-Lipschitz continuous
- There exists a solution x^{*} such that $f\left(x^{*}\right)$ is finite

If $\alpha_{k}=\alpha \leq \frac{1}{L}$

$$
f\left(x^{(k)}\right)-f\left(x^{*}\right) \leq \frac{\left\|x^{(k)}-x^{(0)}\right\|_{2}^{2}}{2 \alpha k}
$$

We need $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ iterations to get an ϵ-optimal solution

Proof

Recall that if $\alpha \leq \frac{1}{L}$

$$
f\left(x^{(i)}\right) \leq f\left(x^{(i-1)}\right)-\frac{\alpha}{2}\left\|\nabla f\left(x^{(i-1)}\right)\right\|_{2}^{2}
$$

By the first-order characterization of convexity

$$
f\left(x^{(i-1)}\right)-f\left(x^{*}\right) \leq \nabla f\left(x^{(i-1)}\right)^{T}\left(x^{(i-1)}-x^{*}\right)
$$

This implies

$$
\begin{aligned}
f\left(x^{(i)}\right)-f\left(x^{*}\right) & \leq \nabla f\left(x^{(i-1)}\right)^{T}\left(x^{(i-1)}-x^{*}\right)-\frac{\alpha}{2}\left\|\nabla f\left(x^{(i-1)}\right)\right\|_{2}^{2} \\
& =\frac{1}{2 \alpha}\left(\left\|x^{(i-1)}-x^{*}\right\|_{2}^{2}-\left\|x^{(i-1)}-x^{*}-\alpha \nabla f\left(x^{(i-1)}\right)\right\|_{2}^{2}\right) \\
& =\frac{1}{2 \alpha}\left(\left\|x^{(i-1)}-x^{*}\right\|_{2}^{2}-\left\|x^{(i)}-x^{*}\right\|_{2}\right)
\end{aligned}
$$

Proof

Because the value of f never increases,

$$
\begin{aligned}
f\left(x^{(k)}\right)-f\left(x^{*}\right) & \leq \frac{1}{k} \sum_{i=1}^{k} f\left(x^{(i)}\right)-f\left(x^{*}\right) \\
& =\frac{1}{2 \alpha k}\left(\left\|x^{(0)}-x^{*}\right\|_{2}^{2}-\left\|x^{(k)}-x^{*}\right\|_{2}^{2}\right) \\
& \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 \alpha k}
\end{aligned}
$$

Backtracking line search

If the gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Lipschitz continuous with constant L the step size in the backtracking line search satisfies

$$
\alpha_{k} \geq \alpha_{\min }:=\min \left\{\alpha^{0}, \frac{\beta}{L}\right\}
$$

Proof

Line search ends when

$$
f\left(x^{(k+1)}\right) \leq f\left(x^{(k)}\right)-\frac{\alpha_{k}}{2}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2}
$$

but we know that if $\alpha_{k} \leq \frac{1}{L}$

$$
f\left(x^{(k+1)}\right) \leq f\left(x^{(k)}\right)-\frac{\alpha_{k}}{2}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2}
$$

This happens as soon as $\beta / L \leq \alpha^{0} \beta^{i} \leq 1 / L$

Gradient descent with backtracking

Under the same conditions as before gradient descent with backtracking line search achieves

$$
f\left(x^{(k)}\right)-f\left(x^{*}\right) \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 \alpha_{\min } k}
$$

$\mathcal{O}\left(\frac{1}{\epsilon}\right)$ iterations to get an ϵ-optimal solution

Strong convexity

A function $f: \mathbb{R}^{n}$ is strongly convex if for any $x, y \in \mathbb{R}^{n}$

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+S\|y-x\|^{2} .
$$

Example:

$$
f(x):=\|A x-y\|_{2}^{2}
$$

where $A \in \mathbb{R}^{m \times n}$ is strongly convex with $S=\sigma_{\min }(A)$ if $m>n$

Gradient descent for strongly convex functions

If f is S-strongly convex and ∇f is L-Lipschitz continuous

$$
\begin{aligned}
& f\left(x^{(k)}\right)-f\left(x^{*}\right) \leq \frac{c^{k} L\left\|x^{(k)}-x^{(0)}\right\|_{2}^{2}}{2} \\
& c:=\frac{\frac{L}{S}-1}{\frac{L}{S}+1}
\end{aligned}
$$

We need $\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$ iterations to get an ϵ-optimal solution

Differentiable functions

Gradient descent

Convergence analysis of gradient descent
Accelerated gradient descent
Projected gradient descent

Nondifferentiable functions
Subgradient method
Proximal gradient method
Coordinate descent

Lower bounds for convergence rate

There exist convex functions with L-Lipschitz-continuous gradients such that for any algorithm that selects $x^{(k)}$ from

$$
x^{(0)}+\operatorname{span}\left\{\nabla f\left(x^{(0)}\right), \nabla f\left(x^{(1)}\right), \ldots, \nabla f\left(x^{(k-1)}\right)\right\}
$$

we have

$$
f\left(x^{(k)}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}}
$$

Nesterov's accelerated gradient method

Achieves lower bound, i.e. $\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$ convergence
Uses momentum variable

$$
\begin{aligned}
& y^{(k+1)}=x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right) \\
& x^{(k+1)}=\beta_{k} y^{(k+1)}+\gamma_{k} y^{(k)}
\end{aligned}
$$

Despite guarantees, why this works is not completely understood

Differentiable functions
Gradient descent
Convergence analysis of gradient descent
Accelerated gradient descent
Projected gradient descent

Nondifferentiable functions
Subgradient method
Proximal gradient method
Coordinate descent

Projected gradient descent

Optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in \mathcal{S},
\end{array}
$$

where f is differentiable and \mathcal{S} is convex

Projected-gradient-descent iteration:
$x^{(0)}=$ arbitrary initialization

$$
x^{(k+1)}=\mathcal{P}_{\mathcal{S}}\left(x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)\right)
$$

Projected gradient descent

Projected gradient descent

Differentiable functions
Gradient descent
Convergence analysis of gradient descent
Accelerated gradient descent
Projected gradient descent

Nondifferentiable functions
Subgradient method
Proximal gradient method
Coordinate descent

Differentiable functions
Gradient descent
Convergence analysis of gradient descent
Accelerated gradient descent
Projected gradient descent

Nondifferentiable functions
Subgradient method
Proximal gradient method
Coordinate descent

Subgradient method

Optimization problem

$$
\text { minimize } \quad f(x)
$$

where f is convex but nondifferentiable

Subgradient-method iteration:

$$
\begin{aligned}
& x^{(0)}=\text { arbitrary initialization } \\
& x^{(k+1)}=x^{(k)}-\alpha_{k} q^{(k)}
\end{aligned}
$$

where $q^{(k)}$ is a subgradient of f at $x^{(k)}$

Least-squares regression with ℓ_{1}-norm regularization

$$
\text { minimize } \frac{1}{2}\|A x-y\|_{2}^{2}+\lambda\|x\|_{1}
$$

Sum of subgradients is a subgradient of the sum

$$
q^{(k)}=A^{T}\left(A x^{(k)}-y\right)+\lambda \operatorname{sign}\left(x^{(k)}\right)
$$

Subgradient-method iteration:
$x^{(0)}=$ arbitrary initialization

$$
x^{(k+1)}=x^{(k)}-\alpha_{k}\left(A^{T}\left(A x^{(k)}-y\right)+\lambda \operatorname{sign}\left(x^{(k)}\right)\right)
$$

Convergence of subgradient method

It is not a descent method
Convergence rate can be shown to be $\mathcal{O}\left(1 / \epsilon^{2}\right)$
Diminishing step sizes are necessary for convergence

Experiment:

$$
\operatorname{minimize} \quad \frac{1}{2}\|A x-y\|_{2}^{2}+\lambda\|x\|_{1}
$$

$A \in \mathbb{R}^{2000 \times 1000}, y=A x_{0}+z$ where x_{0} is 100 -sparse and z is iid Gaussian

Convergence of subgradient method

Convergence of subgradient method

Differentiable functions
Gradient descent
Convergence analysis of gradient descent
Accelerated gradient descent
Projected gradient descent

Nondifferentiable functions
Subgradient method
Proximal gradient method
Coordinate descent

Composite functions

Interesting class of functions for data analysis

$$
f(x)+g(x)
$$

f convex and differentiable, g convex but not differentiable

Example:
Least-squares regression $(f)+\ell_{1}$-norm regularization (g)

$$
\frac{1}{2}\|A x-y\|_{2}^{2}+\lambda\|x\|_{1}
$$

Interpretation of gradient descent

Solution of local first-order approximation

$$
\begin{aligned}
x^{(k+1)} & :=x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right) \\
& =\arg \min _{x}\left\|x-\left(x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)\right)\right\|_{2}^{2} \\
& =\arg \min _{x} f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{T}\left(x-x^{(k)}\right)+\frac{1}{2 \alpha_{k}}\left\|x-x^{(k)}\right\|_{2}^{2}
\end{aligned}
$$

Proximal gradient method

Idea: Minimize local first-order approximation $+g$

$$
\begin{aligned}
x^{(k+1)}= & \arg \min _{x} f\left(x^{(k)}\right)+\nabla f\left(x^{(k)}\right)^{T}\left(x-x^{(k)}\right)+\frac{1}{2 \alpha_{k}}\left\|x-x^{(k)}\right\|_{2}^{2} \\
& \quad+g(x) \\
= & \arg \min _{x} \frac{1}{2}\left\|x-\left(x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)\right)\right\|_{2}^{2}+\alpha_{k} g(x) \\
= & \operatorname{prox}_{\alpha_{k}} g\left(x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)\right)
\end{aligned}
$$

Proximal operator:

$$
\operatorname{prox}_{g}(y):=\arg \min _{x} g(x)+\frac{1}{2}\|y-x\|_{2}^{2}
$$

Proximal gradient method

Method to solve the optimization problem

$$
\operatorname{minimize} f(x)+g(x),
$$

where f is differentiable and prox $_{g}$ is tractable

Proximal-gradient iteration:

$$
\begin{aligned}
& x^{(0)}=\text { arbitrary initialization } \\
& x^{(k+1)}=\operatorname{prox}_{\alpha_{k}} g\left(x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)\right)
\end{aligned}
$$

Interpretation as a fixed-point method

A vector \hat{x} is a solution to

$$
\operatorname{minimize} f(x)+g(x),
$$

if and only if it is a fixed point of the proximal-gradient iteration for any $\alpha>0$

$$
\hat{x}=\operatorname{prox}_{\alpha_{k} g}\left(\hat{x}-\alpha_{k} \nabla f(\hat{x})\right)
$$

Projected gradient descent as a proximal method

The proximal operator of the indicator function

$$
\mathcal{I}_{\mathcal{S}}(x):= \begin{cases}0 & \text { if } x \in \mathcal{S} \\ \infty & \text { if } x \notin \mathcal{S}\end{cases}
$$

of a convex set $\mathcal{S} \subseteq \mathbb{R}^{n}$ is projection onto \mathcal{S}
Proximal-gradient iteration:

$$
\begin{aligned}
x^{(k+1)} & =\operatorname{prox}_{\alpha_{k} \mathcal{I}_{\mathcal{S}}}\left(x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)\right) \\
& =\mathcal{P}_{\mathcal{S}}\left(x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)\right)
\end{aligned}
$$

Proximal operator of ℓ_{1} norm

The proximal operator of the ℓ_{1} norm is the soft-thresholding operator

$$
\operatorname{prox}_{\beta\|\cdot\|_{1}}(y)=\mathcal{S}_{\beta}(y)
$$

where $\beta>0$ and

$$
\mathcal{S}_{\beta}(y)_{i}:= \begin{cases}y_{i}-\operatorname{sign}\left(y_{i}\right) \beta & \text { if }\left|y_{i}\right| \geq \beta \\ 0 & \text { otherwise }\end{cases}
$$

Iterative Shrinkage-Thresholding Algorithm (ISTA)

The proximal gradient method for the problem

$$
\operatorname{minimize} \quad \frac{1}{2}\|A x-y\|_{2}^{2}+\lambda\|x\|_{1}
$$

is called ISTA

ISTA iteration:

$$
\begin{aligned}
& x^{(0)}=\text { arbitrary initialization } \\
& x^{(k+1)}=\mathcal{S}_{\alpha_{k} \lambda}\left(x^{(k)}-\alpha_{k} A^{T}\left(A x^{(k)}-y\right)\right)
\end{aligned}
$$

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

ISTA can be accelerated using Nesterov's accelerated gradient method

FISTA iteration:

$$
\begin{aligned}
& x^{(0)}=\text { arbitrary initialization } \\
& z^{(0)}=x^{(0)} \\
& x^{(k+1)}=\mathcal{S}_{\alpha_{k} \lambda}\left(z^{(k)}-\alpha_{k} A^{T}\left(A z^{(k)}-y\right)\right) \\
& z^{(k+1)}=x^{(k+1)}+\frac{k}{k+3}\left(x^{(k+1)}-x^{(k)}\right)
\end{aligned}
$$

Convergence of proximal gradient method

Without acceleration:

- Descent method
- Convergence rate can be shown to be $\mathcal{O}(1 / \epsilon)$ with constant step or backtracking line search
With acceleration:
- Not a descent method
- Convergence rate can be shown to be $\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$ with constant step or backtracking line search

Experiment: minimize $\quad \frac{1}{2}\|A x-y\|_{2}^{2}+\lambda\|x\|_{1}$
$A \in \mathbb{R}^{2000 \times 1000}, y=A x_{0}+z, x_{0} 100$-sparse and z iid Gaussian

Convergence of proximal gradient method

Differentiable functions
Gradient descent
Convergence analysis of gradient descent
Accelerated gradient descent Projected gradient descent

Nondifferentiable functions
Subgradient method
Proximal gradient method
Coordinate descent

Coordinate descent

Idea: Solve the n-dimensional problem

$$
\operatorname{minimize} \quad h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

by solving a sequence of 1 D problems

Coordinate-descent iteration:

$$
\begin{aligned}
& x^{(0)}=\text { arbitrary initialization } \\
& x_{i}^{(k+1)}=\arg \min _{\alpha} h\left(x_{1}^{(k)}, \ldots, \alpha, \ldots, x_{n}^{(k)}\right) \quad \text { for some } 1 \leq i \leq n
\end{aligned}
$$

Coordinate descent

Convergence is guaranteed for functions of the form

$$
f(x)+\sum_{i=1}^{n} g_{i}\left(x_{i}\right)
$$

where f is convex and differentiable and g_{1}, \ldots, g_{n} are convex

Least-squares regression with ℓ_{1}-norm regularization

$$
h(x):=\frac{1}{2}\|A x-y\|_{2}^{2}+\lambda\|x\|_{1}
$$

The solution to the subproblem $\min _{x_{i}} h\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$ is

$$
\hat{x}_{i}=\frac{\mathcal{S}_{\lambda}\left(\gamma_{i}\right)}{\left\|A_{i}\right\|_{2}^{2}}
$$

where A_{i} is the i th column of A and

$$
\gamma_{i}:=\sum_{l=1}^{m} A_{l i}\left(y_{l}-\sum_{j \neq i} A_{l j} x_{j}\right)
$$

Computational experiments

Table 5.1 Lasso for linear regression: Average (standard error) of CPU times over ten realizations, for coordinate descent, generalized gradient, and Nesterov's momentum methods. In each case, time shown is the total time over a path of 20λ values.

	$N=10000, p=100$		$N=200, p=10000$	
Correlation	0	0.5	0	0.5
Coordinate descent	$0.110(0.001)$	$0.127(0.002)$	$0.298(0.003)$	$0.513(0.014)$
Proximal gradient	$0.218(0.008)$	$0.671(0.007)$	$1.207(0.026)$	$2.912(0.167)$
Nesterov	$0.251(0.007)$	$0.604(0.011)$	$1.555(0.049)$	$2.914(0.119)$

From Statistical Learning with Sparsity The Lasso and Generalizations by Hastie, Tibshirani and Wainwright

