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Introduction

Aim: Overview of optimization methods that

I Tend to scale well with the problem dimension
I Are widely used in machine learning and signal processing
I Are (reasonably) well understood theoretically
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Gradient descent (aka steepest descent)

Method to solve the optimization problem

minimize f (x) ,

where f is differentiable

Gradient-descent iteration:

x (0) = arbitrary initialization

x (k+1) = x (k) − αk ∇f
(
x (k)

)
where αk is the step size



Gradient descent (1D)



Gradient descent (2D)
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Small step size
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Line search

I Exact

αk := argmin
β≥0

f
(
x (k) − β∇f

(
x (k)

))

I Backtracking (Armijo rule)

Given α0 ≥ 0 and β ∈ (0, 1), set αk := α0 βi for the smallest i
such that

f
(
x (k+1)

)
≤ f

(
x (k)

)
− 1

2
αk

∣∣∣∣∣∣∇f
(
x (k)

)∣∣∣∣∣∣2
2



Backtracking line search
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Lipschitz continuity

A function f : Rn → Rm is Lipschitz continuous with Lipschitz
constant L if for any x , y ∈ Rn

||f (y)− f (x)||2 ≤ L ||y − x ||2

Example:

f (x) := Ax is Lipschitz continuous with L = σmax (A)



Quadratic upper bound

If the gradient of f : Rn → R is Lipschitz continuous with constant L

||∇f (y)−∇f (x)||2 ≤ L ||y − x ||2

then for any x , y ∈ Rn

f (y) ≤ f (x) +∇f (x)T (y − x) +
L
2
||y − x ||22



Consequence of quadratic bound

Since x (k+1) = x (k) − αk∇f
(
x (k))

f
(
x (k+1)

)
≤ f

(
x (k)

)
− αk

(
1− αkL

2

) ∣∣∣∣∣∣∇f
(
x (k)

)∣∣∣∣∣∣2
2

If αk ≤ 1
L the value of the function always decreases!

f
(
x (k+1)

)
≤ f

(
x (k)

)
− αk

2

∣∣∣∣∣∣∇f
(
x (k)

)∣∣∣∣∣∣2
2



Gradient descent with constant step size

Conditions:
I f is convex
I ∇f is L-Lipschitz continuous
I There exists a solution x∗ such that f (x∗) is finite

If αk = α ≤ 1
L

f
(
x (k)

)
− f (x∗) ≤

∣∣∣∣x (k) − x (0)
∣∣∣∣2

2
2α k

We need O
(1
ε

)
iterations to get an ε-optimal solution



Proof

Recall that if α ≤ 1
L

f
(
x (i)
)
≤ f

(
x (i−1)

)
− α

2

∣∣∣∣∣∣∇f
(
x (i−1)

)∣∣∣∣∣∣2
2

By the first-order characterization of convexity

f
(
x (i−1)

)
− f (x∗) ≤ ∇f

(
x (i−1)

)T (
x (i−1) − x∗

)
This implies

f
(
x (i)
)
− f (x∗) ≤ ∇f

(
x (i−1)

)T (
x (i−1) − x∗

)
− α

2

∣∣∣∣∣∣∇f
(
x (i−1)

)∣∣∣∣∣∣2
2

=
1
2α

(∣∣∣∣∣∣x (i−1) − x∗
∣∣∣∣∣∣2

2
−
∣∣∣∣∣∣x (i−1) − x∗ − α∇f

(
x (i−1)

)∣∣∣∣∣∣2
2

)
=

1
2α

(∣∣∣∣∣∣x (i−1) − x∗
∣∣∣∣∣∣2

2
−
∣∣∣∣∣∣x (i) − x∗

∣∣∣∣∣∣
2

)



Proof

Because the value of f never increases,

f
(
x (k)

)
− f (x∗) ≤ 1

k

k∑
i=1

f
(
x (i)
)
− f (x∗)

=
1

2α k

(∣∣∣∣∣∣x (0) − x∗
∣∣∣∣∣∣2

2
−
∣∣∣∣∣∣x (k) − x∗

∣∣∣∣∣∣2
2

)
≤
∣∣∣∣x (0) − x∗

∣∣∣∣2
2

2α k



Backtracking line search

If the gradient of f : Rn → R is Lipschitz continuous with constant L
the step size in the backtracking line search satisfies

αk ≥ αmin := min
{
α0,

β

L

}



Proof

Line search ends when

f
(
x (k+1)

)
≤ f

(
x (k)

)
− αk

2

∣∣∣∣∣∣∇f
(
x (k)

)∣∣∣∣∣∣2
2

but we know that if αk ≤ 1
L

f
(
x (k+1)

)
≤ f

(
x (k)

)
− αk

2

∣∣∣∣∣∣∇f
(
x (k)

)∣∣∣∣∣∣2
2

This happens as soon as β/L ≤ α0βi ≤ 1/L



Gradient descent with backtracking

Under the same conditions as before gradient descent with
backtracking line search achieves

f
(
x (k)

)
− f (x∗) ≤

∣∣∣∣x (0) − x∗
∣∣∣∣2

2
2αmin k

O
(1
ε

)
iterations to get an ε-optimal solution



Strong convexity

A function f : Rn is strongly convex if for any x , y ∈ Rn

f (y) ≥ f (x) +∇f (x)T (y − x) + S ||y − x ||2 .

Example:

f (x) := ||Ax − y ||22

where A ∈ Rm×n is strongly convex with S = σmin (A) if m > n



Gradient descent for strongly convex functions

If f is S-strongly convex and ∇f is L-Lipschitz continuous

f
(
x (k)

)
− f (x∗) ≤

ckL
∣∣∣∣x (k) − x (0)

∣∣∣∣2
2

2

c :=
L
S − 1
L
S + 1

We need O
(
log 1

ε

)
iterations to get an ε-optimal solution
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Lower bounds for convergence rate

There exist convex functions with L-Lipschitz-continuous gradients
such that for any algorithm that selects x (k) from

x (0) + span
{
∇f
(
x (0)

)
,∇f

(
x (1)

)
, . . . ,∇f

(
x (k−1)

)}
we have

f
(
x (k)

)
− f (x∗) ≥

3L
∣∣∣∣x (0) − x∗

∣∣∣∣2
2

32 (k + 1)2



Nesterov’s accelerated gradient method

Achieves lower bound, i.e. O
(

1√
ε

)
convergence

Uses momentum variable

y (k+1) = x (k) − αk∇f
(
x (k)

)
x (k+1) = βky (k+1) + γky (k)

Despite guarantees, why this works is not completely understood
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Projected gradient descent

Optimization problem

minimize f (x)
subject to x ∈ S,

where f is differentiable and S is convex

Projected-gradient-descent iteration:

x (0) = arbitrary initialization

x (k+1) = PS
(
x (k) − αk ∇f

(
x (k)

))
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Subgradient method

Optimization problem

minimize f (x)

where f is convex but nondifferentiable

Subgradient-method iteration:

x (0) = arbitrary initialization

x (k+1) = x (k) − αk q(k)

where q(k) is a subgradient of f at x (k)



Least-squares regression with `1-norm regularization

minimize
1
2
||Ax − y ||22 + λ ||x ||1

Sum of subgradients is a subgradient of the sum

q(k) = AT
(
Ax (k) − y

)
+ λ sign

(
x (k)

)
Subgradient-method iteration:

x (0) = arbitrary initialization

x (k+1) = x (k) − αk

(
AT
(
Ax (k) − y

)
+ λ sign

(
x (k)

))



Convergence of subgradient method

It is not a descent method

Convergence rate can be shown to be O
(
1/ε2

)
Diminishing step sizes are necessary for convergence

Experiment:

minimize
1
2
||Ax − y ||22 + λ ||x ||1

A ∈ R2000×1000, y = Ax0 + z where x0 is 100-sparse and z is iid Gaussian



Convergence of subgradient method
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Convergence of subgradient method
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Composite functions

Interesting class of functions for data analysis

f (x) + g (x)

f convex and differentiable, g convex but not differentiable

Example:

Least-squares regression (f ) + `1-norm regularization (g)

1
2
||Ax − y ||22 + λ ||x ||1



Interpretation of gradient descent

Solution of local first-order approximation

x (k+1) := x (k) − αk ∇f
(
x (k)

)
= argmin

x

∣∣∣∣∣∣x − (x (k) − αk ∇f
(
x (k)

))∣∣∣∣∣∣2
2

= argmin
x

f
(
x (k)

)
+∇f

(
x (k)

)T (
x − x (k)

)
+

1
2αk

∣∣∣∣∣∣x − x (k)
∣∣∣∣∣∣2

2



Proximal gradient method

Idea: Minimize local first-order approximation + g

x (k+1) = argmin
x

f
(
x (k)

)
+∇f

(
x (k)

)T (
x − x (k)

)
+

1
2αk

∣∣∣∣∣∣x − x (k)
∣∣∣∣∣∣2

2

+ g (x)

= argmin
x

1
2

∣∣∣∣∣∣x − (x (k) − αk ∇f
(
x (k)

))∣∣∣∣∣∣2
2
+ αk g (x)

= proxαk g

(
x (k) − αk ∇f

(
x (k)

))
Proximal operator:

proxg (y) := argmin
x

g (x) +
1
2
||y − x ||22



Proximal gradient method

Method to solve the optimization problem

minimize f (x) + g (x) ,

where f is differentiable and proxg is tractable

Proximal-gradient iteration:

x (0) = arbitrary initialization

x (k+1) = proxαk g

(
x (k) − αk ∇f

(
x (k)

))



Interpretation as a fixed-point method

A vector x̂ is a solution to

minimize f (x) + g (x) ,

if and only if it is a fixed point of the proximal-gradient iteration
for any α > 0

x̂ = proxαk g (x̂ − αk ∇f (x̂))



Projected gradient descent as a proximal method

The proximal operator of the indicator function

IS (x) :=

{
0 if x ∈ S,
∞ if x /∈ S.

of a convex set S ⊆ Rn is projection onto S

Proximal-gradient iteration:

x (k+1) = proxαk IS

(
x (k) − αk ∇f

(
x (k)

))
= PS

(
x (k) − αk ∇f

(
x (k)

))



Proximal operator of `1 norm

The proximal operator of the `1 norm is the soft-thresholding operator

proxβ ||·||1 (y) = Sβ (y)

where β > 0 and

Sβ (y)i :=

{
yi − sign (yi )β if |yi | ≥ β
0 otherwise



Iterative Shrinkage-Thresholding Algorithm (ISTA)

The proximal gradient method for the problem

minimize
1
2
||Ax − y ||22 + λ ||x ||1

is called ISTA

ISTA iteration:

x (0) = arbitrary initialization

x (k+1) = Sαk λ

(
x (k) − αk AT

(
Ax (k) − y

))



Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

ISTA can be accelerated using Nesterov’s accelerated gradient method

FISTA iteration:

x (0) = arbitrary initialization

z(0) = x (0)

x (k+1) = Sαk λ

(
z(k) − αk AT

(
Az(k) − y

))
z(k+1) = x (k+1) +

k
k + 3

(
x (k+1) − x (k)

)



Convergence of proximal gradient method

Without acceleration:
I Descent method
I Convergence rate can be shown to be O (1/ε) with constant step or

backtracking line search
With acceleration:
I Not a descent method
I Convergence rate can be shown to be O

(
1√
ε

)
with constant step or

backtracking line search

Experiment: minimize 1
2 ||Ax − y ||22 + λ ||x ||1

A ∈ R2000×1000, y = Ax0 + z , x0 100-sparse and z iid Gaussian



Convergence of proximal gradient method
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Coordinate descent

Idea: Solve the n-dimensional problem

minimize h (x1, x2, . . . , xn)

by solving a sequence of 1D problems

Coordinate-descent iteration:

x (0) = arbitrary initialization

x (k+1)
i = argmin

α
h
(
x (k)
1 , . . . , α, . . . , x (k)

n

)
for some 1 ≤ i ≤ n



Coordinate descent

Convergence is guaranteed for functions of the form

f (x) +
n∑

i=1

gi (xi )

where f is convex and differentiable and g1, . . . , gn are convex



Least-squares regression with `1-norm regularization

h (x) :=
1
2
||Ax − y ||22 + λ ||x ||1

The solution to the subproblem minxi h (x1, . . . , xi , . . . , xn) is

x̂i =
Sλ (γi )

||Ai ||22

where Ai is the ith column of A and

γi :=
m∑

l=1

Ali

yl −
∑
j 6=i

Aljxj





Computational experiments

From Statistical Learning with Sparsity The Lasso and Generalizations
by Hastie, Tibshirani and Wainwright
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