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Linear model

A linear model for a signal x ∈ Rn is a representation of the form

x =
m∑

i=1

ci φi

{φ1, . . . , φm} is a family of atoms in Rn

c ∈ Rm is an alternative representation or transform of x



Sparse linear model

A sparse linear model contains a small number of coefficients

x =
∑
i∈S

ci φi |S| � m

How do we choose a transform that sparsifies a class of signals?

I Intuition / Domain knowledge (this lecture)
I Learning it from the data (later on)



Why?

Signals of interest (speech, natural images, biomedical activity, etc.)
are often highly structured

Sparse linear models are able to exploit this structure to enhance
data analysis and processing

Applications:

I Compression
I Denoising
I Inverse problems



Sparse representation in an orthonormal basis

If the atoms {φ1, . . . , φn} form an orthonormal basis, then

U :=
[
φ1 φ2 · · · φn

]
UUT = I

Coefficients are obtained by computing inner products with the atoms

x = UUT x =
m∑

i=1

〈φi , x〉φi



Sparse representation in a basis

If the atoms {φ1, . . . , φn} form a basis, then

B :=
[
φ1 φ2 · · · φn

]
BB−1 = I

Coefficients are obtained by computing inner products with dual atoms

x = BB−1x =
m∑

i=1

〈θi , x〉φi

where

B−1 =


θT
1

θT
2

· · ·

θT
n





Overcomplete dictionaries

If the atoms {φ1, . . . , φm} are linearly independent and m > n

D :=
[
φ1 φ2 · · · φm

]
Two alternative sparse models

1. Synthesis sparse model

x = Dc where c is sparse

Problem: Given x find a sparse c

2. Analysis sparse model:

DT x is sparse

Both are equivalent if D is an orthonormal basis
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Fourier series

Fourier series coefficients of f : [0, 1]→ C

ck :=

∫ 1

0
f (t) e−i2πkt dt

Fourier series

Sn (t) :=
n∑

k=−n

cke i2πkt =
n∑

k=−n

〈φk , f 〉φk

Sinusoidal atoms φk (t) = e i2πkt = cos (2πkt) + i sin (2πkt)

Orthonormal basis of L2 under the usual inner product

lim
n→∞

||f (t)− Sn (t)|| = 0 for all f ∈ L2



Discrete Fourier transform (DFT)

Discretized frequency representation for vectors in Cn

Sinusoidal atoms are a basis for Cn

φk =
1√
n


1

e
i2πk

n

e
i2πk2

n

· · ·
e

i2πk(n−1)
n

 F :=
[
φ0 φ1 · · · φn−1

]

DFT {x}k := (Fx)k = 〈φk , x〉

The fast Fourier transform (FFT) computes the DFT in O (n log n)

The discrete cosine transform (DCT) is a related transformation
designed for real vectors



Discrete cosine transform

Signal DCT coefficients



Electrocardiogram



Electrocardiogram (spectrum)



Electrocardiogram (spectrum)



2D DFT

Discretized frequency representation for 2D arrays in Cn×n

Sinusoidal atoms are a basis for Cn×n

φ2D
k1,k2

=
1
n


1 e

i2πk2
n · · · e

i2πk2(n−1)
n

e
i2πk1

n e
i2π(k1+k2)

n · · · e
i2π(k1+k2(n−1))

n

· · ·

e
i2πk1(n−1)

n e
i2π(k1(n−1)+k2)

n · · · e
i2π(k1(n−1)+k2(n−1))

n


= φ1D

k1

(
φ1D

k2

)T

DFT2D {X} := FXF =
n−1∑
k1=0

n−1∑
k2=0

〈
φ2D

k1,k2
,X
〉
φ2D

k1,k2

Generalizes to Cm×n, m 6= n, and to higher dimensions



Compression via frequency representation

The 2D frequency representation of images tends to be sparse

Thresholding the coefficients yields a compressed representation

The JPEG compression standard is based on the 2D DCT

High-frequency coefficients are discarded according to a perceptual model



Compression via frequency representation

Original



Compression via frequency representation

10% largest DCT coeffs



Compression via frequency representation

2% largest DCT coeffs
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Motivation

Spectrum of speech, music, etc. varies over time

Idea: Compute frequency representation of time segments of the signal

We must use a window to avoid introducing spurious high frequencies



The need for windowing

Signal Window

× =

Spectrum ∗ =



The need for windowing

Signal Window

× =

Spectrum ∗ =



Short-time Fourier transform

Let w : [0, 1]→ C be a window function localized in time and frequency

STFT {f } (k , τ) :=
∫ 1

0
f (t)w (t − τ)e−i2πkt dt =

〈
φk,τ , f

〉
Each atom φk,τ (t) := w (t − τ) e i2πkt corresponds to w shifted
by τ in time and by k in frequency

In discrete time, pointwise multiplication by a shifted window followed
by a DFT, equivalent to DT x where D ∈ Cn×m, m > n

The STFT of speech tends to be sparse (analysis sparse model)

Including dilations of w (in addition to time and frequency translations)
yields a dictionary of Gabor atoms



Atom τ = 0, k = 0

Real part Imaginary part

Spectrum



Atom τ = 1/32, k = 0

Real part Imaginary part

Spectrum



Atom τ = 0, k = 64

Real part Imaginary part

Spectrum



Atom τ = 1/32, k = 64

Real part Imaginary part

Spectrum



Speech signal



Spectrum



Spectrogram (log magnitude of STFT coefficients)
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Wavelets

Aim: Approximate signals at different scales

A wavelet ψ is a unit-norm, zero-mean function in L2

Wavelet transform

W {f } (s, τ) := 1√
s

∫ 1

0
f (t)ψ

(
t − τ

s

)
dt = 〈φs,τ , f 〉

Atoms are dilations and translations of the mother wavelet

φs,τ (t) =
1√
s
ψ

(
t − τ

s

)
We can build orthonormal basis for L2 using wavelets



Multiresolution approximation

Sequence {Vj , j ∈ Z} of closed subspaces of L2 (R) such that PVj (f )
is an approximation of f at scale 2j

Conditions:

I Dilating functions in Vj by 2 yields functions in Vj+1

f (t) ∈ Vj ⇐⇒ f
( t
2

)
∈ Vj+1

I Approximations at a scale 2j are always better than at 2j+1

Vj+1 ⊂ Vj



Multiresolution approximation

I Vj is invariant to translations at the scale 2j

f (t) ∈ Vj ⇐⇒ f
(
t − 2jk

)
∈ Vj for all k ∈ Z

I As j →∞ the approximation loses all information

lim
j→∞
Vj = {0}

I As j → −∞ the approximation is perfect

lim
j→−∞

Vj = L2

I There exists a scaling function ζ ∈ V0 such that{
ζ0,k (t) := ζ (t − k) , k ∈ Z

}
is an orthonormal basis for V0



Wavelet basis

Mallat and Meyer prove that there exists a wavelet ψ such that

PVj (f ) = PVj+1 (f ) +
∑
k∈Z

〈
ψ2j ,k , f

〉
ψ2j ,k .

{
ψ2j ,k , k ∈ Z

}
is an orthonormal basis for Vj ∩ V⊥j{

ζ0,k (t) , ψ21,k , ψ22,k , . . . , ψ2j ,k , k ∈ Z
}
is an orthonormal basis for Vj

Many different wavelet bases: Meyer, Daubechies, Battle-Lemarie, . . .

Discrete wavelet transform can be computed in O (n)

Signal processing interpretation:

Wavelets act as band-pass filters, scaling functions act as low-pass filters



Haar wavelet

Scaling function Mother wavelet



Electrocardiogram

Signal Haar transform



Scale 29

Contribution Approximation



Scale 28

Contribution Approximation



Scale 27

Contribution Approximation



Scale 26

Contribution Approximation



Scale 25

Contribution Approximation



Scale 24

Contribution Approximation



Scale 23

Contribution Approximation



Scale 22

Contribution Approximation



Scale 21

Contribution Approximation



Scale 20

Contribution Approximation



2D Wavelets

Extension to 2D by using outer products of 1D atoms

φ2D
s1,s2,k1,k2

:= φ1D
s1,k1

(
φ1D

s2,k2

)T

Yields sparse representation of natural images

The JPEG 2000 compression standard is based on 2D wavelets

Many extensions:
Steerable pyramid, ridgelets, curvelets, bandlets, . . .



2D wavelet transform



2D wavelet transform



Sorted coefficients

10−3

10−1

101

103
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Overcomplete dictionaries

Atoms {φ1, . . . , φm} are linearly independent and m > n

D :=
[
φ1 φ2 · · · φm

]
Synthesis sparse model:

x = Dc where c is sparse

Problem: There are infinite choices of c such that x = Dc

Some may not be sparse at all!

Example: Dictionary of sinusoids



Dictionary of sinusoids

x = Dc c



First idea

Apply pseudoinverse

ĉ := D†x = DT
(
DDT

)−1
x

Interpretations:

I Projection of c onto row space of D

I Solution to

minimize ||c̃ ||2
subject to x = D c̃ ,



Dictionary of sinusoids: Minimum `2-norm coefficients



Computing sparse representations

We would like to solve

minimize ||c̃ ||0
subject to x = D c̃

Computationally intractable

Two possibilities:

I Greedy methods: Select atoms one by one

I `1-norm minimization:

min
c̃∈Rm

||c̃ ||1 such that x = Dc



Matching pursuit (MP)

Iteratively choose atoms that are most correlated with the signal

Initialization:

r (0) = x

x̂ (0) = 0

Iterations: k = 1, 2, . . .

φ(k) = argmax
j

∣∣∣〈r (k−1), φk

〉∣∣∣
x̂ (k) = x̂ (k−1) +

〈
r (k−1), φ(k)

〉
φ(k)

r (k) = r (k−1) −
〈
r (k−1), φ(k)

〉
φ(k)



Dictionary of sinusoids: Coefficients

Original
MP



Dictionary of sinusoids: Approximation

Original
MP



Orthogonal matching pursuit (OMP)

Makes sure approximation is orthogonal to residual at

Initialization:

r (0) = x

Iterations: k = 1, 2, . . .

φ(k) = argmax
j

∣∣∣〈r (k−1), φk

〉∣∣∣
A(k) =

[
φ(1) φ(2) · · · φ(k)

]
ĉ(k) = A(k)†x =

(
A(k)A(k)T

)−1
A(k)T x

x̂ (k) = A(k)ĉ(k)

r (k) = x − x̂ (k)



Dictionary of sinusoids: Coefficients

Original
OMP



Dictionary of sinusoids: Approximation

Original
OMP



`1-norm minimization

Estimate coefficients by solving

minimize ||c̃ ||1
subject to x = D c̃

Computationally tractable (convex program)

Known as basis pursuit in the literature



Geometric intuition

c1

c2
Min. `1-norm solution

Min. `2-norm solution

Dc = x



Dictionary of sinusoids: Coefficients

Original
`1-norm min.



Dictionary of sinusoids: Approximation

Original
`1-norm min.



Introduction

Linear transforms
Frequency representation
Short-time Fourier transform (STFT)
Wavelets

Overcomplete sparse models

Denoising
The denoising problem
Thresholding
Synthesis model
Analysis model



Introduction

Linear transforms
Frequency representation
Short-time Fourier transform (STFT)
Wavelets

Overcomplete sparse models

Denoising
The denoising problem
Thresholding
Synthesis model
Analysis model



Denoising

Aim: Extracting information (signal) from data in the presence of
uninformative perturbations (noise)

Additive noise model

data = signal+ noise
y = x + z

Prior knowledge about structure of signal vs structure of noise is required



Electrocardiogram

Spectrum



Electrocardiogram: High-frequency noise (power line hum)

Original spectrum Low-pass filtered spectrum



Electrocardiogram: High-frequency noise (power line hum)

Original spectrum Low-pass filtered spectrum



Electrocardiogram: High-frequency noise (power line hum)

Original Low-pass filtered



Electrocardiogram: High-frequency noise (power line hum)

Original Low-pass filtered
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Thresholding

Prior knowledge:
I Signal is a sparse superposition of dictionary atoms
I Noise is not (incoherence between atoms and noise)

Hard-thresholding operator

Hη (x)i :=

{
xi if |xi | > η,

0 otherwise



Denoising via thresholding

Data

Signal



Denoising via thresholding

Estimate

Signal



Sparsity in a basis

Assumption: x = Bc , where c is sparse

Threshold B−1y

ĉ = Hη
(
B−1y

)
= Hη

(
c + B−1z

)
ŷ = Bĉ

Noise and sparsifying atoms should be incoherent, i.e. B−1z is not sparse

Example: Orthogonal sparsifying basis and Gaussian noise



Denoising via thresholding in DCT basis

DCT coefficients

Data

Signal

Data



Denoising via thresholding in DCT basis

DCT coefficients

Estimate

Signal

Estimate



Denoising via thresholding in a wavelet basis



Denoising via thresholding in a wavelet basis



2D wavelet coefficients



Original coefficients



Thresholded coefficients



Estimate



Estimate



Denoising via thresholding in a wavelet basis

Original Noisy Estimate



Analysis model

Assumption: DT x is sparse

Threshold, then use left inverse of DT L

ĉ = Hη
(
DT y

)
= Hη

(
DT x + DT z

)
ŷ = Lĉ

Example: Thresholding STFT coefficients for speech denoising



Block thresholding

Assumption: Coefficients are group sparse, nonzero coefficients
cluster together

Block thresholding: Partition coefficients into blocks I1, I2, . . . , Ik
and threshold whole blocks

Bη (x)i :=

{
xi if i ∈ Ij such that

∣∣∣∣xIj ∣∣∣∣2 > η,

0 otherwise



Haar transform



2D wavelet transform



Speech denoising



Time thresholding



Spectrum



Frequency thresholding



Frequency thresholding

 

 

Data

DFT thresholding



Spectrogram (STFT)
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STFT thresholding

Time
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STFT thresholding

 

 

Data
STFT thresholding



STFT block thresholding

Time
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STFT block thresholding

 

 

Data

STFT block thresh.



Wavelets



Sorted wavelet coefficients

10−3

10−1

101

103
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Denoising via `1-norm regularized least squares

Synthesis sparse model

x = Dc where c is sparse

We would like to solve

minimize ||c̃ ||0
subject to y ≈ D c̃

Computationally intractable if D is overcomplete

Basis-pursuit denoising

ĉ = arg min
x̃∈Rm

||y − Dc̃ ||22 + λ ||c̃ ||1

x̂ = Dĉ



Sines and spikes

x = Dc c

DCT subdictionary
Spike subdictionary



Denoising via `1-norm regularized least squares



Denoising via `1-norm regularized least squares

Signal
Estimate



Denoising via `1-norm regularized least squares

Signal
Estimate
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Denoising via `1-norm regularized least squares

Analysis sparse model

DT x is sparse

We would like to solve

minimize
∣∣∣∣∣∣DT x̃

∣∣∣∣∣∣
0

subject to y ≈ x̃

Computationally intractable if D is overcomplete

Instead, we solve

x̂ = arg min
x̃∈Rm

||y − x̃ ||22 + λ
∣∣∣∣∣∣AT x̃

∣∣∣∣∣∣
1

Significantly more challenging to solve than synthesis formulation



Total variation

Images and some time series tend to be piecewise constant

Equivalently: Sparse gradient (or derivative)

The total variation of an image I is the `1-norm of the horizontal
and vertical components of the gradient

TV (I ) := ||∇x I ||1 + ||∇y I ||1

Equivalent to `1-norm regularization with an overcomplete
analysis operator

Denoising via TV regularization

Î = arg min
Ĩ∈Rn×n

∣∣∣∣∣∣Y − Ĩ
∣∣∣∣∣∣2

F
+ λTV

(
Ĩ
)



Denoising via TV regularization

Signal Data



Denoising via TV regularization

Signal TV reg. (small λ)



Denoising via TV regularization

Signal TV reg. (medium λ)



Denoising via TV regularization

Signal TV reg. (large λ)



Denoising via TV regularization



Denoising via TV regularization



Small λ



Small λ



Medium λ



Medium λ



Large λ



Large λ



Denoising via TV regularization

Original Noisy Estimate
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