

Sparse linear models

Optimization-Based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16

Carlos Fernandez-Granda

2/22/2016

Introduction

Linear transforms

Frequency representation Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising The denoising problem Thresholding Synthesis model Analysis model A linear model for a signal $x \in \mathbb{R}^n$ is a representation of the form

$$x = \sum_{i=1}^m c_i \, \phi_i$$

 $\{\phi_1,\ldots,\phi_m\}$ is a family of atoms in \mathbb{R}^n

 $c \in \mathbb{R}^m$ is an alternative representation or transform of x

A sparse linear model contains a small number of coefficients

$$x = \sum_{i \in \mathcal{S}} c_i \phi_i \qquad |\mathcal{S}| \ll m$$

How do we choose a transform that sparsifies a class of signals?

- Intuition / Domain knowledge (this lecture)
- Learning it from the data (later on)

Signals of interest (speech, natural images, biomedical activity, etc.) are often highly structured

Sparse linear models are able to exploit this structure to enhance data analysis and processing

Applications:

- Compression
- Denoising
- Inverse problems

Sparse representation in an orthonormal basis

If the atoms $\{\phi_1,\ldots,\phi_n\}$ form an orthonormal basis, then

$$U := \begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_n \end{bmatrix} \qquad U U^T = \mathsf{I}$$

Coefficients are obtained by computing inner products with the atoms

$$x = UU^{\mathsf{T}} x = \sum_{i=1}^{m} \langle \phi_i, x \rangle \phi_i$$

Sparse representation in a basis

If the atoms $\{\phi_1, \ldots, \phi_n\}$ form a basis, then

$$B := \begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_n \end{bmatrix} \qquad BB^{-1} = \mathsf{I}$$

Coefficients are obtained by computing inner products with dual atoms

$$x = BB^{-1}x = \sum_{i=1}^{m} \langle \theta_i, x \rangle \phi_i$$

where

Overcomplete dictionaries

If the atoms $\{\phi_1,\ldots,\phi_m\}$ are linearly independent and m>n

$$D := \begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_m \end{bmatrix}$$

Two alternative sparse models

1. Synthesis sparse model

x = Dc where c is sparse

Problem: Given x find a sparse c

2. Analysis sparse model:

 $D^T x$ is sparse

Both are equivalent if D is an orthonormal basis

Introduction

Linear transforms

Frequency representation Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising The denoising problem Thresholding Synthesis model Analysis model

Introduction

Linear transforms

Frequency representation

Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising

The denoising problem Thresholding Synthesis model Analysis model

Fourier series

Fourier series coefficients of $f:[0,1] \to \mathbb{C}$

$$c_k := \int_0^1 f(t) e^{-i2\pi kt} \, \mathrm{d}t$$

Fourier series

$$S_n(t) := \sum_{k=-n}^n c_k e^{i2\pi kt} = \sum_{k=-n}^n \langle \phi_k, f \rangle \phi_k$$

Sinusoidal atoms $\phi_k(t) = e^{i2\pi kt} = \cos(2\pi kt) + i\sin(2\pi kt)$

Orthonormal basis of \mathbb{L}_2 under the usual inner product

$$\lim_{n\to\infty} ||f(t) - S_n(t)|| = 0 \quad \text{for all } f \in \mathbb{L}_2$$

Discrete Fourier transform (DFT)

Discretized frequency representation for vectors in \mathbb{C}^n

Sinusoidal atoms are a basis for \mathbb{C}^n

$$\phi_{k} = \frac{1}{\sqrt{n}} \begin{bmatrix} 1\\ e^{\frac{i2\pi k}{n}}\\ e^{\frac{i2\pi k2}{n}}\\ \vdots\\ e^{\frac{i2\pi k(n-1)}{n}} \end{bmatrix} \qquad F := \begin{bmatrix} \phi_{0} & \phi_{1} & \cdots & \phi_{n-1} \end{bmatrix}$$
$$\mathsf{DFT} \{x\}_{k} := (Fx)_{k} = \langle \phi_{k}, x \rangle$$

The fast Fourier transform (FFT) computes the DFT in $\mathcal{O}(n \log n)$

The discrete cosine transform (DCT) is a related transformation designed for real vectors

Discrete cosine transform

Electrocardiogram

Electrocardiogram (spectrum)

Electrocardiogram (spectrum)

2D DFT

Discretized frequency representation for 2D arrays in $\mathbb{C}^{n \times n}$

Sinusoidal atoms are a basis for $\mathbb{C}^{n \times n}$

$$\begin{split} \phi_{k_1,k_2}^{\text{2D}} &= \frac{1}{n} \begin{bmatrix} 1 & e^{\frac{i2\pi k_2}{n}} & \cdots & e^{\frac{i2\pi k_2(n-1)}{n}} \\ e^{\frac{i2\pi k_1}{n}} & e^{\frac{i2\pi (k_1+k_2)}{n}} & \cdots & e^{\frac{i2\pi (k_1+k_2(n-1))}{n}} \\ & & \cdots & \\ e^{\frac{i2\pi k_1(n-1)}{n}} & e^{\frac{i2\pi (k_1(n-1)+k_2)}{n}} & \cdots & e^{\frac{i2\pi (k_1(n-1)+k_2(n-1))}{n}} \end{bmatrix} \\ &= \phi_{k_1}^{\text{1D}} \left(\phi_{k_2}^{\text{1D}}\right)^T \\ \text{DFT}^{\text{2D}} \left\{X\right\} := FXF = \sum_{k_1=0}^{n-1} \sum_{k_2=0}^{n-1} \left\langle\phi_{k_1,k_2}^{\text{2D}}, X\right\rangle \phi_{k_1,k_2}^{\text{2D}} \end{split}$$

Generalizes to $\mathbb{C}^{m \times n}$, $m \neq n$, and to higher dimensions

The 2D frequency representation of images tends to be sparse

Thresholding the coefficients yields a compressed representation

The JPEG compression standard is based on the 2D DCT

High-frequency coefficients are discarded according to a perceptual model

Compression via frequency representation

Original

Compression via frequency representation

10 % largest DCT coeffs

Compression via frequency representation

2% largest DCT coeffs

Introduction

Linear transforms

Frequency representation Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising

The denoising problem Thresholding Synthesis model Analysis model Spectrum of speech, music, etc. varies over time

Idea: Compute frequency representation of time segments of the signal We must use a window to avoid introducing spurious high frequencies

The need for windowing

The need for windowing

Short-time Fourier transform

Let $w:[0,1] \rightarrow \mathbb{C}$ be a window function localized in time and frequency

$$\mathsf{STFT}\left\{f\right\}(k,\tau) := \int_{0}^{1} f\left(t\right) \overline{w\left(t-\tau\right)} e^{-i2\pi kt} \, \mathsf{d}t = \left\langle \phi_{k,\tau}, f \right\rangle$$

Each atom $\phi_{k,\tau}(t) := w(t - \tau) e^{i2\pi kt}$ corresponds to w shifted by τ in time and by k in frequency

In discrete time, pointwise multiplication by a shifted window followed by a DFT, equivalent to $D^T x$ where $D \in \mathbb{C}^{n \times m}$, m > n

The STFT of speech tends to be sparse (analysis sparse model)

Including dilations of w (in addition to time and frequency translations) yields a dictionary of Gabor atoms

Atom $\tau = 0$, k = 0

Atom au=1/32, k=0

Atom $\tau = 0$, k = 64

Atom $\tau = 1/32$, k = 64

Speech signal

Spectrum

Spectrogram (log magnitude of STFT coefficients)

Frequency

Introduction

Linear transforms

Frequency representation Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising

The denoising problem Thresholding Synthesis model Analysis model

Wavelets

Aim: Approximate signals at different scales

A wavelet ψ is a unit-norm, zero-mean function in \mathbb{L}_2

Wavelet transform

$$\mathsf{W}\left\{f\right\}(s,\tau) := \frac{1}{\sqrt{s}} \int_{0}^{1} f(t) \,\overline{\psi\left(\frac{t-\tau}{s}\right)} \, \mathsf{d}t = \langle \phi_{s,\tau}, f \rangle$$

Atoms are dilations and translations of the mother wavelet

$$\phi_{s,\tau}\left(t
ight)=rac{1}{\sqrt{s}}\psi\left(rac{t- au}{s}
ight)$$

We can build orthonormal basis for \mathbb{L}_2 using wavelets

Multiresolution approximation

Sequence $\{\mathcal{V}_j, j \in \mathbb{Z}\}$ of closed subspaces of $\mathbb{L}_2(\mathbb{R})$ such that $\mathcal{P}_{\mathcal{V}_j}(f)$ is an approximation of f at scale 2^j

Conditions:

• Dilating functions in V_j by 2 yields functions in V_{j+1}

$$f(t) \in \mathcal{V}_j \iff f\left(rac{t}{2}
ight) \in \mathcal{V}_{j+1}$$

• Approximations at a scale 2^j are always better than at 2^{j+1}

 $\mathcal{V}_{j+1} \subset \mathcal{V}_j$
Multiresolution approximation

V_j is invariant to translations at the scale 2^j

$$f\left(t
ight)\in\mathcal{V}_{j}\iff f\left(t-2^{j}k
ight)\in\mathcal{V}_{j}\qquad ext{for all }k\in\mathbb{Z}$$

• As $j \to \infty$ the approximation loses all information

$$\lim_{j\to\infty}\mathcal{V}_j=\{0\}$$

 \blacktriangleright As $j \rightarrow -\infty$ the approximation is perfect

$$\lim_{j\to -\infty}\mathcal{V}_j=\mathbb{L}_2$$

► There exists a scaling function $\zeta \in \mathcal{V}_0$ such that $\{\zeta_{0,k}(t) := \zeta(t-k), k \in \mathbb{Z}\}$ is an orthonormal basis for \mathcal{V}_0

Wavelet basis

Mallat and Meyer prove that there exists a wavelet ψ such that

$$\mathcal{P}_{\mathcal{V}_{j}}\left(f
ight)=\mathcal{P}_{\mathcal{V}_{j+1}}\left(f
ight)+\sum_{k\in\mathbb{Z}}\left\langle\psi_{2^{j},k},f
ight
angle\psi_{2^{j},k}.$$

 $ig\{\psi_{2^j,k},\,k\in\mathbb{Z}ig\}$ is an orthonormal basis for $\mathcal{V}_j\cap\mathcal{V}_j^\perp$

 $\left\{ \zeta_{0,k}\left(t
ight),\psi_{2^{1},k},\psi_{2^{2},k},\ldots,\psi_{2^{j},k},\,k\in\mathbb{Z}
ight\}$ is an orthonormal basis for \mathcal{V}_{j}

Many different wavelet bases: Meyer, Daubechies, Battle-Lemarie, ...

Discrete wavelet transform can be computed in $\mathcal{O}(n)$

Signal processing interpretation:

Wavelets act as band-pass filters, scaling functions act as low-pass filters

Haar wavelet

Scaling function Mother wavelet

Electrocardiogram

Signal Haar transform

Contribution

Contribution

Scale 2^7

Contribution

Contribution

Scale 2^5

Contribution

Scale 2^4

÷

Contribution

Contribution

Contribution

Scale 2^1

Contribution Approximation

Contribution

2D Wavelets

Extension to 2D by using outer products of 1D atoms

$$\phi^{\mathrm{2D}}_{\mathbf{s}_1,\mathbf{s}_2,\mathbf{k}_1,\mathbf{k}_2} := \phi^{\mathrm{1D}}_{\mathbf{s}_1,\mathbf{k}_1} \left(\phi^{\mathrm{1D}}_{\mathbf{s}_2,\mathbf{k}_2}\right)^T$$

Yields sparse representation of natural images

The JPEG 2000 compression standard is based on 2D wavelets

Many extensions:

Steerable pyramid, ridgelets, curvelets, bandlets,

2D wavelet transform

2D wavelet transform

Sorted coefficients

Introduction

Linear transforms

Frequency representation Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising The denoising probler Thresholding Synthesis model Analysis model

Overcomplete dictionaries

Atoms $\{\phi_1,\ldots,\phi_m\}$ are linearly independent and m>n

$$D := \begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_m \end{bmatrix}$$

Synthesis sparse model:

x = Dc where *c* is sparse

Problem: There are infinite choices of *c* such that x = Dc

Some may not be sparse at all!

Example: Dictionary of sinusoids

Dictionary of sinusoids

x = Dc

С

First idea

Apply pseudoinverse

$$\widehat{c} := D^{\dagger} x = D^{T} \left(D D^{T} \right)^{-1} x$$

Interpretations:

Projection of c onto row space of D

Solution to

 $\begin{array}{ll} \text{minimize} & ||\tilde{c}||_2 \\ \text{subject to} & x = D \, \tilde{c}, \end{array}$

Dictionary of sinusoids: Minimum ℓ_2 -norm coefficients

Computing sparse representations

We would like to solve

minimize $||\tilde{c}||_0$ subject to $x = D\tilde{c}$

Computationally intractable

Two possibilities:

- Greedy methods: Select atoms one by one
- ℓ_1 -norm minimization:

$$\min_{\widetilde{c}\in\mathbb{R}^m}||\widetilde{c}||_1$$
 such that $x=Dc$

Matching pursuit (MP)

Iteratively choose atoms that are most correlated with the signal Initialization:

$$r^{(0)} = x$$

 $\hat{x}^{(0)} = 0$

Iterations: $k = 1, 2, \ldots$

$$\phi^{(k)} = \arg \max_{j} \left| \left\langle r^{(k-1)}, \phi_{k} \right\rangle \right|$$
$$\hat{x}^{(k)} = \hat{x}^{(k-1)} + \left\langle r^{(k-1)}, \phi^{(k)} \right\rangle \phi^{(k)}$$
$$r^{(k)} = r^{(k-1)} - \left\langle r^{(k-1)}, \phi^{(k)} \right\rangle \phi^{(k)}$$

Dictionary of sinusoids: Coefficients

Dictionary of sinusoids: Approximation

Orthogonal matching pursuit (OMP)

Makes sure approximation is orthogonal to residual at

Initialization:

$$r^{(0)} = x$$

Iterations: $k = 1, 2, \ldots$

$$\phi^{(k)} = \arg \max_{j} \left| \left\langle r^{(k-1)}, \phi_{k} \right\rangle \right|$$
$$A^{(k)} = \left[\phi^{(1)} \quad \phi^{(2)} \quad \dots \quad \phi^{(k)} \right]$$
$$\hat{c}^{(k)} = A^{(k)\dagger} x = \left(A^{(k)} A^{(k)T} \right)^{-1} A^{(k)T} x$$
$$\hat{x}^{(k)} = A^{(k)} \hat{c}^{(k)}$$
$$r^{(k)} = x - \hat{x}^{(k)}$$

Dictionary of sinusoids: Coefficients

Dictionary of sinusoids: Approximation

Estimate coefficients by solving

minimize $||\tilde{c}||_1$ subject to $x = D\tilde{c}$

Computationally tractable (convex program)

Known as basis pursuit in the literature

Geometric intuition

Dictionary of sinusoids: Coefficients

Dictionary of sinusoids: Approximation

Introduction

Linear transforms

Frequency representation Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising The denoising problem Thresholding Synthesis model Analysis model

Introduction

Linear transforms

Frequency representation Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising The denoising problem Thresholding Synthesis model Analysis model
Aim: Extracting information (signal) from data in the presence of uninformative perturbations (noise)

Additive noise model

data = signal + noise y = x + z

Prior knowledge about structure of signal vs structure of noise is required

Electrocardiogram

Spectrum

Introduction

Linear transforms

Frequency representation Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising The denoising problem Thresholding Synthesis model Analysis model

Thresholding

Prior knowledge:

- Signal is a sparse superposition of dictionary atoms
- Noise is not (incoherence between atoms and noise)

Hard-thresholding operator

$$\mathcal{H}_{\eta}\left(x
ight)_{i}:=egin{cases} x_{i} & ext{if } |x_{i}|>\eta, \ 0 & ext{otherwise} \end{cases}$$

Denoising via thresholding

Denoising via thresholding

Sparsity in a basis

Assumption: x = Bc, where c is sparse

Threshold $B^{-1}y$

$$egin{aligned} \hat{c} &= \mathcal{H}_\eta \left(B^{-1} y
ight) \ &= \mathcal{H}_\eta \left(c + B^{-1} z
ight) \ \hat{y} &= B \hat{c} \end{aligned}$$

Noise and sparsifying atoms should be incoherent, i.e. $B^{-1}z$ is not sparse

Example: Orthogonal sparsifying basis and Gaussian noise

Denoising via thresholding in DCT basis

Denoising via thresholding in DCT basis

Denoising via thresholding in a wavelet basis

Denoising via thresholding in a wavelet basis

2D wavelet coefficients

Original coefficients

Thresholded coefficients

Estimate

Estimate

Denoising via thresholding in a wavelet basis

Original

Noisy

Estimate

Analysis model

Assumption: $D^T x$ is sparse

Threshold, then use left inverse of $D^T L$

$$\begin{split} \hat{c} &= \mathcal{H}_{\eta} \left(D^{\mathsf{T}} y \right) \\ &= \mathcal{H}_{\eta} \left(D^{\mathsf{T}} x + D^{\mathsf{T}} z \right) \\ \hat{y} &= L \hat{c} \end{split}$$

Example: Thresholding STFT coefficients for speech denoising

Assumption: Coefficients are group sparse, nonzero coefficients cluster together

Block thresholding: Partition coefficients into blocks $\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_k$ and threshold whole blocks

$$\mathcal{B}_{\eta}\left(x\right)_{i} := \begin{cases} x_{i} & \text{if } i \in \mathcal{I}_{j} \text{ such that } \left|\left|x_{\mathcal{I}_{j}}\right|\right|_{2} > \eta, \\ 0 & \text{otherwise} \end{cases}$$

Haar transform

2D wavelet transform

Speech denoising

Time thresholding

Spectrum

Frequency thresholding

Frequency thresholding

Spectrogram (STFT)

Frequency

STFT thresholding

Frequency

Time

STFT thresholding

STFT block thresholding

Time

STFT block thresholding

Wavelets

Sorted wavelet coefficients

Introduction

Linear transforms

Frequency representation Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising The denoising problem Thresholding Synthesis model Analysis model

Denoising via ℓ_1 -norm regularized least squares

Synthesis sparse model

x = Dc where c is sparse

We would like to solve

minimize $||\tilde{c}||_0$ subject to $y \approx D \tilde{c}$

Computationally intractable if D is overcomplete

Basis-pursuit denoising

$$\hat{c} = \arg \min_{\tilde{x} \in \mathbb{R}^{m}} ||y - D\tilde{c}||_{2}^{2} + \lambda ||\tilde{c}||_{1}$$
$$\hat{x} = D\hat{c}$$

Sines and spikes

Denoising via $\ell_1\text{-norm}$ regularized least squares

Denoising via $\ell_1\text{-norm}$ regularized least squares

Denoising via $\ell_1\text{-norm}$ regularized least squares

Introduction

Linear transforms

Frequency representation Short-time Fourier transform (STFT) Wavelets

Overcomplete sparse models

Denoising

The denoising problem Thresholding Synthesis model Analysis model Denoising via ℓ_1 -norm regularized least squares

Analysis sparse model

 $D^T x$ is sparse

We would like to solve

minimize $\left\| D^T \tilde{x} \right\|_0$ subject to $y \approx \tilde{x}$

Computationally intractable if D is overcomplete

Instead, we solve

$$\hat{x} = \arg\min_{\tilde{x} \in \mathbb{R}^m} \left| \left| y - \tilde{x} \right| \right|_2^2 + \lambda \left| \left| A^T \tilde{x} \right| \right|_1$$

Significantly more challenging to solve than synthesis formulation

Total variation

Images and some time series tend to be piecewise constant

Equivalently: Sparse gradient (or derivative)

The total variation of an image I is the ℓ_1 -norm of the horizontal and vertical components of the gradient

$$\mathsf{TV}(I) := ||\nabla_x I||_1 + ||\nabla_y I||_1$$

Equivalent to $\ell_1\text{-norm}$ regularization with an overcomplete analysis operator

$$\hat{I} = \arg\min_{\tilde{I} \in \mathbb{R}^{n \times n}} \left| \left| Y - \tilde{I} \right| \right|_{\mathsf{F}}^{2} + \lambda \operatorname{TV}\left(\tilde{I} \right)$$

Data

Small λ

Small λ

${\rm Medium}\ \lambda$

${\rm Medium}\ \lambda$

Large λ

Large λ

Original

Noisy

Estimate

