

Random projections

Optimization-Based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16

Carlos Fernandez-Granda

2/29/2016

Random projections in data analysis and signal processing

They preserve information embedded in low-dimensional subspaces of high-dimensional spaces

Non-adaptive compression, agnostic to specific data

Dimensionality reduction

Principal component analysis Random projections

Compressed sensing

Motivation: Magnetic resonance imaging Exact recovery Robustness

Sampling

Nyquist-Shannon sampling theorem Compressive sampling Projection of data onto lower-dimensional space

- Decreases computational cost of processing the data
- Allows to visualize (2D, 3D)

We will focus on linear projections

Linear projection

The linear projection of $x \in \mathbb{R}^n$ onto a subspace $S \subseteq \mathbb{R}^n$ of dimension $m \leq n$ is the solution to

$$\begin{array}{ll} \text{minimize} & ||x - u||_2 \\ \text{subject to} & u \in \mathcal{S} \end{array}$$

If the columns of $U: U_1, \ldots, U_m$ are an orthonormal basis of $\mathcal S$

$$\mathcal{P}_{\mathcal{S}}(x) = \sum_{i=1}^{m} \langle x, U_i \rangle U_i = UU^{\mathsf{T}}x$$

To reduce the dimension we represent the signal using the coefficients

$$c := U^T x \in \mathbb{R}^m$$

Dimensionality reduction Principal component analysis Random projections

Compressed sensing

Motivation: Magnetic resonance imaging Exact recovery Robustness

Sampling

Nyquist-Shannon sampling theorem Compressive sampling

Adaptive projection

Data: $\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k$

Preprocessing: Centering the data

$$x_i = ilde{x}_i - rac{1}{k}\sum_{i=1}^k ilde{x}_i$$

Aim: Find directions of maximum variation

Principal component analysis (PCA)

1. Group the centered data in a data matrix X

$$X = \begin{bmatrix} x_1 & x_2 & \cdots & x_k \end{bmatrix}$$

- 2. Compute the SVD of $X = U\Sigma V^T$
- 3. Extract the first m left singular vectors

$$\widehat{U} = \begin{bmatrix} U_1 & \cdots & U_m \end{bmatrix}$$

For any *n*-dimensional subspace S'

$$\sum_{i=1}^{k} \left|\left|\mathcal{P}_{\mathcal{S}'} x_{i}\right|\right|_{2}^{2} \leq \sum_{i=1}^{k} \left|\left|\widehat{U}\widehat{U}^{\mathsf{T}} x_{i}\right|\right|_{2}^{2}$$

Example: 2D data

$$\frac{\sigma_1}{\sqrt{k}} = 0.705 \qquad \qquad \frac{\sigma_2}{\sqrt{k}} = 0.690$$

Example: 2D data

$$\frac{\sigma_1}{\sqrt{k}} = 0.9832 \qquad \qquad \frac{\sigma_2}{\sqrt{k}} = 0.3559$$

Example: 2D data

$$\frac{\sigma_1}{\sqrt{k}} = 1.3490$$
 $\frac{\sigma_2}{\sqrt{k}} = 0.1438$

Example

Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Dimensions:

- Area
- Perimeter
- Compactness
- Length of kernel
- Width of kernel
- Asymmetry coefficient
- Length of kernel groove

Projection onto two first PCs

•

Projection onto two last PCs

Dimensionality reduction

Principal component analysis Random projections

Compressed sensing

Motivation: Magnetic resonance imaging Exact recovery Robustness

Sampling

Nyquist-Shannon sampling theorem Compressive sampling PCA requires processing all of the data before projecting

Idea: Project onto random *m*-dimensional subspace

Not optimal, but more computationally efficient

Approximate projection: Multiply by a random matrix $A \in \mathbb{R}^{m \times n}$

Approximate projection onto two random directions

•

Johnson-Lindenstrauss lemma

Random function f preserves distance between points

$$f(x) := \frac{1}{\sqrt{m}} A x$$

A is an $m \times n$ matrix with iid Gaussian entries with mean 0 and variance 1 (can be generalized to Bernouilli ± 1 entries)

Fix
$$x_1, ..., x_k \in \mathbb{R}^n$$
. For any $x_i \neq x_j$
 $(1 - \epsilon) ||x_i - x_j||_2^2 \le ||f(x_i) - f(x_j)||_2^2 \le (1 + \epsilon) ||x_i - x_j||_2^2$

with probability at least $\frac{1}{k}$ as long as

$$m \geq \frac{8\log\left(k\right)}{\epsilon^2}$$

Result for fixed vector

For any fixed vector $v \in \mathbb{R}^n$

$$(1-\epsilon) ||v||_2^2 \le \frac{1}{m} ||Av||_2^2 \le (1+\epsilon) ||v||_2^2$$

with probability at least

$$1-2\exp\left(-\frac{m\epsilon^2}{8}\right)$$

Combining this with the union bound yields the result

Proof of result for fixed vector

Apply concentration bound on chi-square random variable Z with m degrees of freedom

$$Z := \sum_{i=1}^m X_i^2$$

 X_1,\ldots,X_m are Gaussian with mean 0 and variance 1 and independent For any $\epsilon>0$ we have

$$P\left(Z > m\left(1 + \epsilon\right)
ight) \le \exp\left(-rac{m\epsilon^2}{8}
ight)$$

 $P\left(Z < m\left(1 - \epsilon\right)
ight) \le \exp\left(-rac{m\epsilon^2}{2}
ight)$

Dimensionality reduction

Principal component analysis Random projections

Compressed sensing

Motivation: Magnetic resonance imaging Exact recovery Robustness

Sampling

Nyquist-Shannon sampling theorem Compressive sampling

Dimensionality reduction

Principal component analysis Random projections

Compressed sensing

Motivation: Magnetic resonance imaging

Exact recovery Robustness

Sampling

Nyquist-Shannon sampling theorem Compressive sampling

Magnetic resonance imaging

Data: Samples from spectrum

Problem: Sampling is time consuming (annoying, kids move ...)

Images are compressible (sparse in wavelet basis)

Can we recover compressible signals from less data?

By now (hopefully) we know that $\ell_1\text{-norm}$ induces sparsity

- 1. Undersample data
- 2. Solve the optimization problem

minimize||wavelet transform of estimate||1subject tofrequency samples of estimate = data

Regular vs random undersampling

Minimum ℓ_2 -norm estimate

$\mathsf{Minimum}\ \ell_1\text{-norm}\ \mathsf{estimate}$

Regular

Random

Dimensionality reduction

Principal component analysis Random projections

Compressed sensing

Motivation: Magnetic resonance imaging Exact recovery Robustness

Sampling

Nyquist-Shannon sampling theorem Compressive sampling

Random samples

1. Undersample the spectrum randomly

ℓ_1 -norm minimization

- 2. Solve the optimization problem
 - $\begin{array}{ll} \textit{minimize} & ||\texttt{estimate}||_1 \\ \textit{subject to} & \textit{frequency samples of estimate} = \mathsf{data} \end{array}$

Signal

Underdetermined system of equations

Underdetermined system of equations

Underdetermined system of equations

Ax = y where $A \in \mathbb{R}^{m \times n}$ and m < n, infinite solutions!

Exact recovery

Assumption: There exists a signal $x \in \mathbb{R}^n$ with s nonzeros such that

$$Ax = y$$

for a random $A \in \mathbb{R}^{m \times n}$ (random Fourier, Gaussian iid, Bernouilli $\pm 1, ...$)

Exact recovery: If the number of measurements satisfies

 $m \ge C' s \log n$

the solution of the problem

minimize $||\tilde{x}||_1$ subject to $A\tilde{x} = y$

is the original signal with probability at least $1-\frac{1}{n}$

Generalization: Random rows U_j from orthonormal basis U

Coherence:

$$\mu(U) := \sqrt{n} \max_{1 \le i \le n, 1 \le j \le m} |U_j e_i|$$

Exact recovery is achieved with high probability if

 $m \geq C'\mu(U) s \log n$

Random Fourier: $\mu(F) = 1$

Dual problem

The dual problem is equal to

$$\begin{array}{ll} \text{maximize} & y^{\mathcal{T}} \tilde{v} \\ \text{subject to} & \left| \left| A^{\mathcal{T}} \tilde{v} \right| \right|_{\infty} \leq 1 \end{array}$$
Dual certificate

A dual certificate $v \in \mathbb{R}^m$ associated to x is equal to

$$\begin{pmatrix} A^{T} v \end{pmatrix}_{i} = \operatorname{sign} (x_{i}) \quad \text{if } x_{i} \neq 0 \\ \left\| \left(A^{T} v \right)_{i} \right\|_{\infty} < 1 \quad \text{if } x_{i} = 0$$

Feasible for dual problem, corresponding cost-function value equals

$$y^T v = ||x||_1$$

By weak duality x must be a solution

Dual certificate

By the definition of v

$$q := A^T v$$

is a subgradient of the ℓ_1 norm at x and for any h such that Ah = 0

$$h^T q = 0$$

This also implies that x is a solution

If A_T (where T is the support of x) is injective, x is the unique solution

Proof of exact recovery

Prove that dual certificate exists for any s-sparse x

Idea: Choose vector that interpolates the sign and has minimum ℓ_2 norm

minimize
$$||\tilde{v}||_2$$

subject to $A_T^T \tilde{v} = \text{sign}(x_T)$

Closed-form solution $v_{\ell_2} = A_T \left(A_T^T A_T \right)^{-1} \operatorname{sign} (x_T)$

We need to prove that $q_{\ell_2} := A^{\mathcal{T}} v_{\ell_2}$ satisfies

$$(q_{\ell_2})_T = \operatorname{sign}(x_T)$$

 $\left|\left|(q_{\ell_2})_{T^c}\right|\right|_{\infty} < 1$

Random Fourier measurements

Tough stuff, we will prove the result for Gaussian measurements

Bounds on singular values of Gaussian submatrix

Fix a support T, $|T| \leq s$

For any unit-norm vector x with support T

$$1 - \epsilon \le \frac{1}{\sqrt{m}} ||Ax||_2^2 \le 1 + \epsilon$$

with probability at least

$$1 - 2\left(\frac{12}{\epsilon}\right)^{s} \exp\left(-\frac{m\epsilon^{2}}{32}\right)$$

Bounds on singular values of Gaussian submatrix

Setting $\epsilon = 1/2$ gives

$$1 - \frac{1}{2} \le \frac{1}{\sqrt{m}} ||Ax||_2 \le 1 + \frac{1}{2}$$

with probability at least

$$1 - \exp\left(-\frac{Cm}{s}\right)$$

for some constant $\ensuremath{\mathcal{C}}$

Minimum singular value of A_T

$$\sigma_{\min}\left(\mathsf{A}_{\mathcal{T}}\right) \geq rac{\sqrt{m}}{2}$$

with probability $1-\exp\left(-\frac{Cm}{s}\right)$

This implies $A_T^T A_T$ is invertible so

$$(q_{\ell_2})_T = A_T^T A_T \left(A_T^T A_T\right)^{-1} \operatorname{sign}(x_T) = \operatorname{sign}(x_T)$$

To bound $(q_{\ell_2})_{\mathcal{T}^c}$, for each $i \in \mathcal{T}^c$ we define

$$(q_{\ell_2})_i = A_i^T A_T \left(A_T^T A_T \right)^{-1} \operatorname{sign} (x_T)$$
$$= A_i^T w$$

A_i and w are independent

By the bound on $\sigma_{\min}(A_T)$

$$||w||_2 \le \frac{||\operatorname{sign}(x_T)||_2}{\sigma_{\min}(A_T)} \le 2\sqrt{\frac{s}{m}}$$

with probability $1 - \exp\left(-\frac{Cm}{s}\right)$

Conditioned on w, $A_i^T w$ is Gaussian with mean 0 and variance $||w||_2^2$

$$\begin{split} \mathbf{P}\left(\left|A_{i}^{\mathsf{T}}w\right| \geq 1|w=w'\right) \leq \mathbf{P}\left(|u| > \frac{1}{||w'||_{2}}\right) \\ \leq 2\exp\left(-\frac{1}{2||w'||_{2}^{2}}\right) \end{split}$$

Where u has mean 0 and variance 1

For
$$\mathcal{E} := \left\{ ||w||_2 \le 2\sqrt{\frac{s}{m}} \right\}$$
 this implies

$$P\left(\left|A_{i}^{T}w\right| \geq 1 \left|\mathcal{E}\right) \leq 2\exp\left(-\frac{m}{8s}\right)$$

Finally

$$P\left(\left|A_{i}^{T}w\right| \geq 1\right) \leq P\left(\left|A_{i}^{T}w\right| \geq 1\left|\mathcal{E}\right) + P\left(\mathcal{E}^{c}\right) \\ \leq \exp\left(-\frac{Cm}{s}\right) + 2\exp\left(-\frac{m}{8s}\right)$$

If the number of measurements satisfies

$$m \ge C' s \log n$$

we have exact recovery with probability $1 - \frac{1}{n}$ by the union bound

Let \mathcal{X}_T be the set of unit-norm vectors x with support T

Aim: Prove that for any $x \in \mathcal{X}_T$

$$(1-\epsilon) \leq \frac{1}{\sqrt{m}} ||Ax||_2 \leq (1+\epsilon)$$

With probability $1 - 2 \exp\left(-\frac{m\epsilon^2}{8}\right)$ for any fixed unit-norm vector v

$$(1-\epsilon) \leq rac{1}{m} ||Av||_2^2 \leq (1+\epsilon)$$

We apply this result on an $\epsilon\text{-net}$ of $\mathcal{X}_{\mathcal{T}}$

ϵ -net and covering number

 $\mathcal{N}_{\epsilon} \subseteq \mathcal{X}$ is an ϵ -net of \mathcal{X} if for every $y \in \mathcal{X}$ there is $x \in \mathcal{N}_{\epsilon}$ such that

$$||x-y||_2 \le \epsilon.$$

The covering number $\mathcal{N}(\mathcal{X}, \epsilon)$ of a set \mathcal{X} at scale ϵ is the minimal cardinality of an ϵ -net of \mathcal{X}

The covering number of $\mathcal{X}_{\mathcal{T}}$ is

$$\mathcal{N}\left(\mathcal{X}_{\mathcal{T}},\epsilon
ight)\leq \left(rac{3}{\epsilon}
ight)^{s}$$

By the union bound and the bound for fixed vectors

$$\left|\frac{1}{m}\left|\left|Au\right|\right|_{2}^{2}-1\right| > \frac{\epsilon}{2}$$

for some $u \in \mathcal{N}\left(\mathcal{X}, \epsilon/4
ight)$ with probability at most

$$2\left(\frac{12}{\epsilon}\right)^{s}\exp\left(-\frac{m\epsilon^{2}}{32}\right)$$

Assume that for all $u \in \mathcal{N}(\mathcal{X}, \epsilon/4)$

$$1 - \frac{\epsilon}{2} \le \frac{1}{\sqrt{m}} ||Au||_2 \le 1 + \frac{\epsilon}{2}$$

Define α as the smallest number such that for all $x \in \mathcal{X}_T$

$$\frac{1}{\sqrt{m}} \left| \left| Ax \right| \right|_2 \le 1 + \alpha$$

For any $x \in \mathcal{X}_{\mathcal{T}}$, there is a $u \in \mathcal{N}\left(\mathcal{X}, \epsilon/4\right)$ such that

$$\frac{1}{\sqrt{m}} ||Ax||_2 \leq \frac{1}{\sqrt{m}} (||Au||_2 + ||A(x-u)||_2)$$
$$\leq 1 + \frac{\epsilon}{2} + \frac{(1+\alpha)\epsilon}{4}$$

We conclude

$$\alpha \leq \frac{3\epsilon}{4-\epsilon} \leq \epsilon$$

$$\begin{aligned} \frac{1}{\sqrt{m}} ||Ax||_2 &\geq \frac{1}{\sqrt{m}} \left(||Au||_2 - ||A(x-u)||_2 \right) \\ &\geq 1 - \frac{\epsilon}{2} - \frac{(1+\epsilon)\epsilon}{4} \\ &\geq 1 - \epsilon \end{aligned}$$

Dimensionality reduction

Principal component analysis Random projections

Compressed sensing

Motivation: Magnetic resonance imaging Exact recovery Robustness

Sampling

Nyquist-Shannon sampling theorem Compressive sampling

Aim: Study effect of measurement operator on sparse vectors

Equivalently, is the submatrix always well conditioned?

Equivalently, is the submatrix always well conditioned?

Restricted isometry property (RIP)

For any s-sparse vector x

$$(1 - \epsilon_s) ||x||_2 \le \frac{1}{\sqrt{m}} ||Ax||_2 \le (1 + \epsilon_s) ||x||_2$$

with probability at least $1 - 2 \exp(-C_1 n)$ if

$$m \geq \frac{C_1 s}{\epsilon_s^2} \log\left(\frac{n}{s}\right)$$

2s-RIP implies that for any s-sparse signals x_1, x_2

$$||y_2 - y_1||_2 \ge (1 - \epsilon_{2s}) ||x_2 - x_1||_2$$

Robustness

Noisy data

$$y = Ax + z$$
 where $||z||_2 \le \epsilon_0$

Relaxed problem

minimize
$$||\tilde{x}||_1$$

subject to $||A\tilde{x} - y||_2 \le \epsilon_0$

Robustness

If x is s-sparse under the RIP, solution \hat{x} satisfies

$$\left|\left|\hat{x} - x\right|\right|_2 \le C_0 \,\epsilon_0$$

If x is not sparse

$$||\hat{x} - x||_2 \le C_0 \epsilon_0 + C_1 \frac{||x - x_s||_1}{\sqrt{s}}$$

 x_s contains s entries of x with largest magnitude

Proof of the RIP

For a fixed support T,

$$(1-\epsilon) ||x||_{2} \le \frac{1}{\sqrt{m}} ||Ax||_{2} \le (1+\epsilon) ||x||_{2}$$

for any x with support T with probability at least

$$1 - 2\left(\frac{12}{\epsilon}\right)^{s} \exp\left(-\frac{m\epsilon^{2}}{32}\right)$$

Proof of the RIP

Number of possible supports

$$\binom{n}{s} \leq \left(\frac{en}{s}\right)^s$$

By the union bound the result holds with probability at least

$$1 - 2\left(\frac{en}{s}\right)^{s} \left(\frac{12}{\epsilon}\right)^{s} \exp\left(-\frac{m\epsilon^{2}}{32}\right)$$
$$= 1 - \exp\left(\log 2 + s + s\log\left(\frac{n}{s}\right) + s\log\left(\frac{12}{\epsilon}\right) - \frac{m\epsilon^{2}}{2}\right)$$
$$\leq 1 - \frac{C_{2}}{n}$$

as long as
$$m \ge \frac{C_1 s}{\epsilon^2} \log\left(\frac{n}{s}\right)$$

Dimensionality reduction

Principal component analysis Random projections

Compressed sensing

Motivation: Magnetic resonance imaging Exact recovery Robustness

Sampling

Nyquist-Shannon sampling theorem Compressive sampling

Dimensionality reduction

Principal component analysis Random projections

Compressed sensing

Motivation: Magnetic resonance imaging Exact recovery Robustness

Sampling Nyquist-Shannon sampling theorem

Sampling problem

Aim: Estimate bandlimited signal $g \in \mathbb{L}_2([0,1])$

$$g(t) := \sum_{k=-f}^{f} c_k \exp(i2\pi kt)$$

from samples

$$g(0), g\left(\frac{1}{n}\right), g\left(\frac{2}{n}\right), \ldots, g\left(\frac{n-1}{n}\right)$$

Questions:

- 1. At what rate do we need to sample?
- 2. How do we recover the signal from the samples?

Sampling problem

Sampling problem

Notation

$$g(t) := \sum_{k=-f}^{f} c_k \exp(i2\pi kt) = a_{-f:f}(t)^* c$$

Data

n equations, 2f + 1 unknowns

$$F^*c = \begin{bmatrix} a_{-f:f}(0)^* \\ a_{-f:f}\left(\frac{1}{n}\right)^* \\ a_{-f:f}\left(\frac{2}{n}\right)^* \\ \dots \\ a_{-f:f}\left(\frac{n-1}{n}\right)^* \end{bmatrix} c = \begin{bmatrix} g(0) \\ g\left(\frac{1}{n}\right) \\ g\left(\frac{2}{n}\right) \\ \dots \\ g\left(\frac{n-1}{n}\right) \end{bmatrix}$$

Sampling rate $n \ge 2f + 1$

Recovery

If n = 2f + 1, the vectors

$$\frac{1}{\sqrt{n}} a_{-f:f}(0), \ \frac{1}{\sqrt{n}} a_{-f:f}\left(\frac{1}{n}\right), \ldots, \frac{1}{\sqrt{n}} a_{-f:f}\left(\frac{n-1}{n}\right)$$

form an orthonormal basis, so

$$c = \frac{1}{n} FF^* c = \frac{1}{n} F \begin{bmatrix} g(0) \\ g(\frac{1}{n}) \\ g(\frac{2}{n}) \\ \dots \\ g(\frac{n-1}{n}) \end{bmatrix} = \frac{1}{n} \sum_{j=0}^n g\left(\frac{j}{n}\right) a_{-f:f}\left(\frac{j}{n}\right)$$

Periodized sinc or Dirichlet kernel

$$D(t) := \frac{1}{n} \sum_{k=-f}^{f} e^{-i2\pi kt} = \frac{\sin(\pi nt)}{n\sin(\pi t)}$$

Recovery

Interpolation with weighted sincs!

$$g(t) = a_{-f:f}(t)^* c$$

= $\frac{1}{n} \sum_{j=0}^n g\left(\frac{j}{n}\right) a_{-f:f}(t)^* a_{-f:f}\left(\frac{j}{n}\right)$
= $\sum_{j=0}^n g\left(\frac{j}{n}\right) D\left(t - \frac{j}{n}\right)$

$$D\left(t-\frac{j}{n}\right) = \frac{1}{n} \sum_{k=-f}^{f} e^{-i2\pi k \left(t-\frac{j}{n}\right)}$$
$$= \frac{1}{n} a_{-f:f} \left(t\right)^* a_{-f:f} \left(\frac{j}{n}\right)$$

Recovery

Nyquist-Shannon sampling theorem

Condition: Sampling rate \geq twice the highest frequency

Recovery: Interpolation with sinc kernel

Just linear algebra!

Dimensionality reduction

Principal component analysis Random projections

Compressed sensing

Motivation: Magnetic resonance imaging Exact recovery Robustness

Sampling

Nyquist-Shannon sampling theorem Compressive sampling

Sparse spectrum

Aim: Estimate a signal $g \in \mathbb{L}_2\left([0,1]\right)$ with a sparse spectrum

$$g(t) := \sum_{k \in S} c_k \exp(i2\pi kt)$$

- ► Maximum frequency: *f*
- Number of sinusoids: s

How many measurements do we need?

- Nyquist-Shannon: 2f + 1
- Compressed sensing: $\mathcal{O}(s \log (2f + 1))$

Sparse spectrum

Linear estimation

n equations, 2f + 1 unknowns

$$F^{*}c = \begin{bmatrix} a_{-f:f}(0)^{*} \\ a_{-f:f}\left(\frac{1}{n}\right)^{*} \\ a_{-f:f}\left(\frac{2}{n}\right)^{*} \\ \cdots \\ a_{-f:f}\left(\frac{n-1}{n}\right)^{*} \end{bmatrix} c = \begin{bmatrix} g(0) \\ g\left(\frac{1}{n}\right) \\ g\left(\frac{2}{n}\right) \\ \vdots \\ g\left(\frac{n-1}{n}\right) \end{bmatrix}$$

Measurements: 2f + 1

Recovery: Sinc interpolation

Compressive sampling

m equations, 2f + 1 unknowns

$$F^*c = \begin{bmatrix} \underline{a}_{-f:f}(0)^* \\ a_{-f:f}(\frac{1}{n})^* \\ \underline{a}_{-f:f}(\frac{2}{n})^* \\ \cdots \\ a_{-f:f}(\frac{n-1}{n})^* \end{bmatrix} c = \begin{bmatrix} g(0) \\ g(\frac{1}{n}) \\ g(\frac{2}{n}) \\ \cdots \\ g(\frac{n-1}{n}) \end{bmatrix}$$

Measurements: $m \ge C s \log (2f + 1)$ (random undersampling)

Recovery: ℓ_1 -norm minimization to compute *c*

Recovery

Linear estimate

Compressive sampling

