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Introduction

Random projections in data analysis and signal processing

They preserve information embedded in low-dimensional subspaces
of high-dimensional spaces

Non-adaptive compression, agnostic to specific data



Dimensionality reduction
Principal component analysis
Random projections



Dimensionality reduction

Projection of data onto lower-dimensional space

» Decreases computational cost of processing the data
» Allows to visualize (2D, 3D)

We will focus on linear projections



Linear projection

The linear projection of x € R"” onto a subspace S C R”
of dimension m < n is the solution to

minimize [1x — ull,

subject to ues
If the columns of U: Uy, ..., Uy, are an orthonormal basis of S

Ps (x) = zm: (x, Up) Uy = UUT x

i=1

To reduce the dimension we represent the signal using the coefficients

c:=U"xeR™



Dimensionality reduction
Principal component analysis

Compressed sensing

Sampling



Adaptive projection

Data: X1, X, ..., )N(k

Preprocessing: Centering the data

Aim: Find directions of maximum variation



Principal component analysis (PCA)

1. Group the centered data in a data matrix X
X = [X1 Xp - Xk]

2. Compute the SVD of X = UZ VT

3. Extract the first m left singular vectors

U= [Ul Um]

For any n-dimensional subspace S’
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Example: 2D data
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Example: 2D data
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Example: 2D data
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Example

Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Dimensions:

> Area

» Perimeter

» Compactness

» Length of kernel

» Width of kernel

» Asymmetry coefficient

» Length of kernel groove



Projection onto two first PCs
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Projection onto two last PCs
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Dimensionality reduction

Random projections

Compressed sensing

Sampling



Non-adaptive projections

PCA requires processing all of the data before projecting
Idea: Project onto random m-dimensional subspace
Not optimal, but more computationally efficient

Approximate projection: Multiply by a random matrix A € R™*"



Approximate projection onto two random directions
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Johnson-Lindenstrauss lemma

Random function f preserves distance between points

f(x):= ﬁAX

Ais an m x n matrix with iid Gaussian entries with mean 0 and variance 1
(can be generalized to Bernouilli +1 entries)

Fix x1,...,xx € R". For any x; # x;
2 2 2
(T =) [lxi = xjll5 < If (xi) = £ Oz < (14 €) [1xi = x5

with probability at least % as long as

. 8|og2(k)

€



Result for fixed vector

For any fixed vector v € R”

1
2 2 2
L= llvllz = —[[Av]l; < (1 +€) [lv]]

2
1—2exp <—n;€>

Combining this with the union bound yields the result

with probability at least



Proof of result for fixed vector

Apply concentration bound on chi-square random variable Z with
m degrees of freedom

m

Z:=Y X7

i=1

Xi,...,Xm are Gaussian with mean 0 and variance 1 and independent

For any € > 0 we have
me?
P(Z>m(1+¢)) <exp ()

P(Z<m(i-0) <ex (—2)



Compressed sensing
Motivation: Magnetic resonance imaging
Exact recovery
Robustness



Dimensionality reduction

Compressed sensing
Motivation: Magnetic resonance imaging

Sampling



Magnetic resonance imaging




Magnetic resonance imaging

Data: Samples from spectrum

Problem: Sampling is time consuming (annoying, kids move ...

Images are compressible (sparse in wavelet basis)

Can we recover compressible signals from less data?



ldea

By now (hopefully) we know that ¢1-norm induces sparsity
1. Undersample data
2. Solve the optimization problem

minimize ||wavelet transform of estimate||,

subject to frequency samples of estimate = data



Regular vs random undersampling

Minimum #>-norm estimate




Minimum /¢1-norm estimate

Regular Random




Dimensionality reduction

Compressed sensing

Exact recovery

Sampling



Random samples

1. Undersample the spectrum randomly

Signal Spectrum




¢1-norm minimization

2. Solve the optimization problem

minimize ||estimate]|,

subject to frequency samples of estimate = data

Signal Estimate




Underdetermined system of equations




Underdetermined system of equations




Underdetermined system of equations

Ax = y where A € R™*" and m < n, infinite solutions!



Exact recovery

Assumption: There exists a signal x € R"” with s nonzeros such that
Ax =y
for a random A € R™*" (random Fourier, Gaussian iid, Bernouilli +1, ...)
Exact recovery: If the number of measurements satisfies
m > C'slogn
the solution of the problem
minimize  [|X||; subjectto Ax =y

is the original signal with probability at least 1 — %



Incoherent measurements

Generalization: Random rows U; from orthonormal basis U

Coherence:

p(U):=+vn_  max_ |Vl

1<i<n,1<j<m

Exact recovery is achieved with high probability if
m> C'u(U)slogn

Random Fourier: 1 (F) =1



Dual problem

The dual problem is equal to

maximize y'¥

<1

[e.9]

subject to HAT\”/




Dual certificate

A dual certificate v € R™ associated to x is equal to

(ATV) = sign (x;) if x; #0

(),

Feasible for dual problem, corresponding cost-function value equals

<1 ifx;=0

e}

-
y v =|Ixll

By weak duality x must be a solution



Dual certificate

By the definition of v
g =A"v

is a subgradient of the ¢; norm at x and for any h such that Ah =0
hTg=0

This also implies that x is a solution

If AT (where T is the support of x) is injective, x is the unique solution



Proof of exact recovery

Prove that dual certificate exists for any s-sparse x

Idea: Choose vector that interpolates the sign and has minimum ¢, norm

minimize |7,

subject to ATV = sign (x7)
Closed-form solution v,, = At (A;AT)f1 sign (x7)
We need to prove that qp, := AT v, satisfies

(9e,) 7 = sign (x7)

<1

H(qﬁz)TC

(e 9]



Random Fourier measurements

Tough stuff, we will prove the result for Gaussian measurements



Bounds on singular values of Gaussian submatrix

Fix a support T, |T| <s
For any unit-norm vector x with support T

1
l—e< ——||AX|3 <1+
m

NG

with probability at least



Bounds on singular values of Gaussian submatrix

Setting e = 1/2 gives

with probability at least

for some constant C



Bound on dual certificate

Minimum singular value of At
m
Omin (AT) > \/2>
with probability 1 — exp (—%)

This implies A;AT is invertible so

~1
(9,)7 = ATAT (A;AT> sign (x7) = sign (x7)



Bound on dual certificate

To bound (qe,)rc, for each i € T¢ we define

(ac); = AT AT (ATAT)  sign (x7)

= A,-TW
A; and w are independent
By the bound on omin (A7)

|Isign (x7)ll> /s
wll, < —————-2 = <2,/ —
|| ||2 — Tmin (AT) — n

with probability 1 — exp (—%)



Bound on dual certificate

.. . . . . 2
Conditioned on w, AT w is Gaussian with mean 0 and variance ||w||5

P

1
A,TW) > 1w = W’) <P <|u| > />
[1w[[

1
<2exp | ————
( 2 ||W’||2>
Where u has mean 0 and variance 1

For & := {||w||2 < 21/5} this implies
m

P (7] 1) <2e0(-2)



Bound on dual certificate

Finally

P

A,TW‘ > 1) <P <‘A,TW‘ > 1‘5) + P (£°)
Cm m
< exp <_s> + 2exp (—§>

If the number of measurements satisfies
m > C'slogn

we have exact recovery with probability 1 — % by the union bound



Proof of bounds on singular values

Let X7 be the set of unit-norm vectors x with support T

Aim: Prove that for any x € X't

(1—e) < —=IIAx]l; <(1+¢)

With probability 1 — 2 exp (— '"852) for any fixed unit-norm vector v

(1-e) < —[lAvl3< (1+¢)

1
m

We apply this result on an e-net of Xt



e-net and covering number

N: C X is an e-net of X if for every y € X there is x € N such that
Ix = yll, <e

The covering number N (X, €) of a set X' at scale € is the minimal
cardinality of an e-net of X

The covering number of X1 is

N (XT,€) < (i)s



Proof of bounds on singular values

By the union bound and the bound for fixed vectors
1 2 €
—||Aull5 = 1| > =
A1) > 5

for some u € N (X, ¢/4) with probability at most

) 12 Se me?
22 exp [
€ P 32



Proof of bounds on singular values

Assume that for all u € N (X, ¢/4)

—A <14 =
Al < 1+ 5

ﬁ

Define o as the smallest number such that for all x € X7

1
—Axll, <1+a

Jm

For any x € X1, there is a u € N (X, €/4) such that

1 1
NG [1AX]l; < \ﬁ(llAquJr 1A (x = u)l])
< 14 +M

2 4



Proof of bounds on singular values

We conclude

IN
o)}

=11l > —= (lAull, ~ 1A (e = w)l)

>1_E_(1+6)6
- 2 4



Dimensionality reduction

Compressed sensing

Robustness

Sampling



Is the problem well posed?

_ Spectrum




Is the problem well posed?

- Spectrum




Is the problem well posed?




Is the problem well posed?

n

Aim: Study effect of measurement operator on sparse vectors




Is the problem well posed?
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Equivalently, is the submatrix always well conditioned?




Is the problem well posed?

........

Equivalently, is the submatrix always well conditioned?



Restricted isometry property (RIP)

For any s-sparse vector x

1
(1 =€) [Ixlla < —=IAx]lp < (1 +€s) [[x]]

NG

with probability at least 1 — 2exp (—Cin) if

Cis n
m> —- log (—)
€2 s

2s5-RIP implies that for any s-sparse signals x1, x»

ly2 = yill, > (1 = e2s) [[x2 — xall,



Robustness

Noisy data

y=Ax+z where ||z|[], < €

Relaxed problem

minimize  |[X]|

subject to  [|AX — y||, < €



Robustness

If x is s-sparse under the RIP, solution X satisfies

[ = x|[, < Goeo

If x is not sparse

[1x = xsll4
NG

Xs contains s entries of x with largest magnitude

[[x = x|, < Coeo + G



Proof of the RIP

For a fixed support T,

1
(1 =) lIxll2 = = IIAx]l, < (1 + ) [[x]],

NG

for any x with support T with probability at least

12\° me?
1-2(— _
(2) e (-%)



Proof of the RIP

Number of possible supports
(n> en\s
<(3)
s s
By the union bound the result holds with probability at least
en\s [12\° me?
-2 () (2) e (-
D) (8) = (-5)

n 12 me?
=1—exp |og2+s+s|og<7)+s|og — )5
s €

<1-©
n

Cis n
as long as m > —log <7>
€2 s



Sampling
Nyquist-Shannon sampling theorem
Compressive sampling



Dimensionality reduction

Compressed sensing

Sampling
Nyquist-Shannon sampling theorem



Sampling problem

Aim: Estimate bandlimited signal g € L, ([0, 1])

f

g(t):= Z ck exp (i2mkt)

k=—f

from samples

Questions:
1. At what rate do we need to sample?

2. How do we recover the signal from the samples?



Sampling problem

Signal Spectrum




Sampling problem

Data Spectrum




Notation

[ exp (—i2n (—f) t)
exp(—i2m (—f +1)t)
a_r.f(t), ==

exp (—i2m (f — 1) t)

exp (—i2rft)

f

g(t):= Z ckexp (I2mkt) = a_s.r (t) ¢
k=—f



Data

n equations, 2f + 1 unknowns

a_r.r(0)" g (0)

SN—
*
0q
—~
3=
SN—

Sampling rate n > 2f + 1



Recovery

If n=2f + 1, the vectors

\; a_r.r (0), \; a_f.f <,11> ..

form an orthonormal basis, so

g (0)
g(3)
= LFFe=1F | g (3) | =

la n—1
Cyn T



Periodized sinc or Dirichlet kernel

f

1 _; sin (7nt)
D(t) = = i2mkt _
(t) n kz_f ¢ nsin (7t)

MV\MA/\/WW/WW




Recovery

Interpolation with weighted sincs!

g(t)=a_rr(t)c

=i (4) e (2)
=;g<z>0<r—i>



Recovery




Nyquist-Shannon sampling theorem

Condition: Sampling rate > twice the highest frequency
Recovery: Interpolation with sinc kernel

Just linear algebral



Dimensionality reduction

Compressed sensing

Sampling

Compressive sampling



Sparse spectrum

Aim: Estimate a signal g € L, ([0, 1]) with a sparse spectrum

g(t):= Z ck exp (i2wkt)

keS

» Maximum frequency: f

» Number of sinusoids: s

How many measurements do we need?

» Nyquist-Shannon: 2f + 1
» Compressed sensing: O (slog (2f + 1))



Sparse spectrum

Signal Spectrum




Linear estimation

n equations, 2f + 1 unknowns

AT () S Y (1)
arr (3) (%)
Fe=| an(@) |e=| e
ERCN g (52

Measurements: 2f + 1

Recovery: Sinc interpolation




Compressive sampling

m equations, 2f + 1 unknowns

la—rr (%50)) g (3%

Measurements: m > C slog (2f + 1) (random undersampling)

Recovery: ¢1-norm minimization to compute ¢



Recovery

Linear estimate Compressive sampling
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