Random projections

Optimization-Based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16

Carlos Fernandez-Granda

2/29/2016

Introduction

Random projections in data analysis and signal processing
They preserve information embedded in low-dimensional subspaces of high-dimensional spaces

Non-adaptive compression, agnostic to specific data

Dimensionality reduction
Principal component analysis
Random projections

Compressed sensing
Motivation: Magnetic resonance imaging
Exact recovery
Robustness

Sampling

Nyquist-Shannon sampling theorem
Compressive sampling

Dimensionality reduction

Projection of data onto lower-dimensional space

- Decreases computational cost of processing the data
- Allows to visualize (2D, 3D)

We will focus on linear projections

Linear projection

The linear projection of $x \in \mathbb{R}^{n}$ onto a subspace $\mathcal{S} \subseteq \mathbb{R}^{n}$ of dimension $m \leq n$ is the solution to

$$
\begin{array}{lc}
\operatorname{minimize} & \|x-u\|_{2} \\
\text { subject to } & u \in \mathcal{S}
\end{array}
$$

If the columns of $U: U_{1}, \ldots, U_{m}$ are an orthonormal basis of \mathcal{S}

$$
\mathcal{P}_{\mathcal{S}}(x)=\sum_{i=1}^{m}\left\langle x, U_{i}\right\rangle U_{i}=U U^{T} x
$$

To reduce the dimension we represent the signal using the coefficients

$$
c:=U^{T} x \in \mathbb{R}^{m}
$$

Dimensionality reduction
Principal component analysis
Random projections

Compressed sensing
Motivation: Magnetic resonance imaging
Exact recovery
Robustness

Sampling
Nyquist-Shannon sampling theorem
Compressive sampling

Adaptive projection

Data: $\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{k}$
Preprocessing: Centering the data

$$
x_{i}=\tilde{x}_{i}-\frac{1}{k} \sum_{i=1}^{k} \tilde{x}_{i}
$$

Aim: Find directions of maximum variation

Principal component analysis (PCA)

1. Group the centered data in a data matrix X

$$
X=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{k}
\end{array}\right]
$$

2. Compute the SVD of $X=U \Sigma V^{T}$
3. Extract the first m left singular vectors

$$
\widehat{U}=\left[\begin{array}{lll}
U_{1} & \cdots & U_{m}
\end{array}\right]
$$

For any n-dimensional subspace \mathcal{S}^{\prime}

$$
\sum_{i=1}^{k}\left\|\mathcal{P}_{\mathcal{S}^{\prime}} x_{i}\right\|_{2}^{2} \leq \sum_{i=1}^{k}\left\|\widehat{U} \widehat{U}^{T} x_{i}\right\|_{2}^{2}
$$

Example: 2D data

$$
\frac{\sigma_{1}}{\sqrt{k}}=0.705 \quad \frac{\sigma_{2}}{\sqrt{k}}=0.690
$$

Example: 2D data

$$
\frac{\sigma_{1}}{\sqrt{k}}=0.9832 \quad \frac{\sigma_{2}}{\sqrt{k}}=0.3559
$$

Example: 2D data

$$
\frac{\sigma_{1}}{\sqrt{k}}=1.3490 \quad \frac{\sigma_{2}}{\sqrt{k}}=0.1438
$$

Example

Seeds from three different varieties of wheat: Kama, Rosa and Canadian
Dimensions:

- Area
- Perimeter
- Compactness
- Length of kernel
- Width of kernel
- Asymmetry coefficient
- Length of kernel groove

Projection onto two first PCs

Projection onto two last PCs

Dimensionality reduction
Principal component analysis
Random projections

Compressed sensing
Motivation: Magnetic resonance imaging
Exact recovery
Robustness

Sampling
Nyquist-Shannon sampling theorem
Compressive sampling

Non-adaptive projections

PCA requires processing all of the data before projecting

Idea: Project onto random m-dimensional subspace

Not optimal, but more computationally efficient
Approximate projection: Multiply by a random matrix $A \in \mathbb{R}^{m \times n}$

Approximate projection onto two random directions

Johnson-Lindenstrauss lemma

Random function f preserves distance between points

$$
f(x):=\frac{1}{\sqrt{m}} A x
$$

A is an $m \times n$ matrix with iid Gaussian entries with mean 0 and variance 1 (can be generalized to Bernouilli ± 1 entries)

Fix $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$. For any $x_{i} \neq x_{j}$

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2} \leq\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{2}^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2}
$$

with probability at least $\frac{1}{k}$ as long as

$$
m \geq \frac{8 \log (k)}{\epsilon^{2}}
$$

Result for fixed vector

For any fixed vector $v \in \mathbb{R}^{n}$

$$
(1-\epsilon)\|v\|_{2}^{2} \leq \frac{1}{m}\|A v\|_{2}^{2} \leq(1+\epsilon)\|v\|_{2}^{2}
$$

with probability at least

$$
1-2 \exp \left(-\frac{m \epsilon^{2}}{8}\right)
$$

Combining this with the union bound yields the result

Proof of result for fixed vector

Apply concentration bound on chi-square random variable Z with m degrees of freedom

$$
Z:=\sum_{i=1}^{m} X_{i}^{2}
$$

X_{1}, \ldots, X_{m} are Gaussian with mean 0 and variance 1 and independent

For any $\epsilon>0$ we have

$$
\begin{aligned}
& P(Z>m(1+\epsilon)) \leq \exp \left(-\frac{m \epsilon^{2}}{8}\right) \\
& P(Z<m(1-\epsilon)) \leq \exp \left(-\frac{m \epsilon^{2}}{2}\right)
\end{aligned}
$$

Dimensionality reduction

Principal component analysis
Random projections

Compressed sensing
Motivation: Magnetic resonance imaging
Exact recovery
Robustness

Sampling
Nyquist-Shannon sampling theorem
Compressive sampling

Dimensionality reduction
Principal component analysis
Random projections

Compressed sensing
Motivation: Magnetic resonance imaging
Exact recovery
Robustness

Sampling
Nyquist-Shannon sampling theorem
Compressive sampling

Magnetic resonance imaging

Magnetic resonance imaging

Data: Samples from spectrum

Problem: Sampling is time consuming (annoying, kids move ...)

Images are compressible (sparse in wavelet basis)
Can we recover compressible signals from less data?

Idea

By now (hopefully) we know that ℓ_{1}-norm induces sparsity

1. Undersample data
2. Solve the optimization problem

$$
\begin{array}{ll}
\text { minimize } & \| \text { wavelet transform of estimate } \|_{1} \\
\text { subject to } & \text { frequency samples of estimate }=\text { data }
\end{array}
$$

Regular vs random undersampling

Minimum ℓ_{2}-norm estimate

Minimum ℓ_{1}-norm estimate

Regular

Random

Dimensionality reduction
Principal component analysis Random projections

Compressed sensing
Motivation: Magnetic resonance imaging
Exact recovery
Robustness

Sampling
Nyquist-Shannon sampling theorem
Compressive sampling

Random samples

1. Undersample the spectrum randomly

Signal

ℓ_{1}-norm minimization

2. Solve the optimization problem

Signal

Estimate

Underdetermined system of equations

Underdetermined system of equations

Underdetermined system of equations

$A x=y$ where $A \in \mathbb{R}^{m \times n}$ and $m<n$, infinite solutions!

Exact recovery

Assumption: There exists a signal $x \in \mathbb{R}^{n}$ with s nonzeros such that

$$
A x=y
$$

for a random $A \in \mathbb{R}^{m \times n}$ (random Fourier, Gaussian iid, Bernouilli $\pm 1, \ldots$)
Exact recovery: If the number of measurements satisfies

$$
m \geq C^{\prime} s \log n
$$

the solution of the problem

$$
\operatorname{minimize} \quad\|\tilde{x}\|_{1} \quad \text { subject to } \quad A \tilde{x}=y
$$

is the original signal with probability at least $1-\frac{1}{n}$

Incoherent measurements

Generalization: Random rows U_{j} from orthonormal basis U
Coherence:

$$
\mu(U):=\sqrt{n} \max _{1 \leq i \leq n, 1 \leq j \leq m}\left|U_{j} e_{i}\right|
$$

Exact recovery is achieved with high probability if

$$
m \geq C^{\prime} \mu(U) s \log n
$$

Random Fourier: $\mu(F)=1$

Dual problem

The dual problem is equal to

$$
\begin{array}{ll}
\operatorname{maximize} & y^{\top} \tilde{v} \\
\text { subject to } & \left\|A^{T} \tilde{v}\right\|_{\infty} \leq 1
\end{array}
$$

Dual certificate

A dual certificate $v \in \mathbb{R}^{m}$ associated to x is equal to

$$
\begin{array}{ll}
\left(A^{T} v\right)_{i}=\operatorname{sign}\left(x_{i}\right) & \text { if } x_{i} \neq 0 \\
\left\|\left(A^{T} v\right)_{i}\right\|_{\infty}<1 & \text { if } x_{i}=0
\end{array}
$$

Feasible for dual problem, corresponding cost-function value equals

$$
y^{\top} v=\|x\|_{1}
$$

By weak duality x must be a solution

Dual certificate

By the definition of v

$$
q:=A^{T} v
$$

is a subgradient of the ℓ_{1} norm at x and for any h such that $A h=0$

$$
h^{T} q=0
$$

This also implies that x is a solution
If A_{T} (where T is the support of x) is injective, x is the unique solution

Proof of exact recovery

Prove that dual certificate exists for any s-sparse x
Idea: Choose vector that interpolates the sign and has minimum ℓ_{2} norm

$$
\begin{array}{ll}
\operatorname{minimize} & \|\tilde{v}\|_{2} \\
\text { subject to } & A_{T}^{T} \tilde{v}=\operatorname{sign}\left(x_{T}\right)
\end{array}
$$

Closed-form solution $v_{\ell_{2}}=A_{T}\left(A_{T}^{T} A_{T}\right)^{-1} \operatorname{sign}\left(x_{T}\right)$
We need to prove that $q_{\ell_{2}}:=A^{T} v_{\ell_{2}}$ satisfies

$$
\begin{aligned}
& \left(q_{\ell_{2}}\right)_{T}=\operatorname{sign}\left(x_{T}\right) \\
& \left\|\left(q_{\ell_{2}}\right)_{T^{c}}\right\|_{\infty}<1
\end{aligned}
$$

Random Fourier measurements

Tough stuff, we will prove the result for Gaussian measurements

Bounds on singular values of Gaussian submatrix

Fix a support $T,|T| \leq s$

For any unit-norm vector x with support T

$$
1-\epsilon \leq \frac{1}{\sqrt{m}}\|A x\|_{2}^{2} \leq 1+\epsilon
$$

with probability at least

$$
1-2\left(\frac{12}{\epsilon}\right)^{s} \exp \left(-\frac{m \epsilon^{2}}{32}\right)
$$

Bounds on singular values of Gaussian submatrix

Setting $\epsilon=1 / 2$ gives

$$
1-\frac{1}{2} \leq \frac{1}{\sqrt{m}}\|A x\|_{2} \leq 1+\frac{1}{2}
$$

with probability at least

$$
1-\exp \left(-\frac{C m}{s}\right)
$$

for some constant C

Bound on dual certificate

Minimum singular value of A_{T}

$$
\sigma_{\min }\left(A_{T}\right) \geq \frac{\sqrt{m}}{2}
$$

with probability $1-\exp \left(-\frac{C m}{s}\right)$
This implies $A_{T}^{T} A_{T}$ is invertible so

$$
\left(q_{\ell_{2}}\right)_{T}=A_{T}^{T} A_{T}\left(A_{T}^{T} A_{T}\right)^{-1} \operatorname{sign}\left(x_{T}\right)=\operatorname{sign}\left(x_{T}\right)
$$

Bound on dual certificate

To bound $\left(q_{\ell_{2}}\right)_{T^{c}}$, for each $i \in T^{c}$ we define

$$
\begin{aligned}
\left(q_{\ell_{2}}\right)_{i} & =A_{i}^{T} A_{T}\left(A_{T}^{T} A_{T}\right)^{-1} \operatorname{sign}\left(x_{T}\right) \\
& =A_{i}^{T} w
\end{aligned}
$$

A_{i} and w are independent

By the bound on $\sigma_{\text {min }}\left(A_{T}\right)$

$$
\|w\|_{2} \leq \frac{\left\|\operatorname{sign}\left(x_{T}\right)\right\|_{2}}{\sigma_{\min }\left(A_{T}\right)} \leq 2 \sqrt{\frac{s}{m}}
$$

with probability $1-\exp \left(-\frac{C m}{s}\right)$

Bound on dual certificate

Conditioned on $w, A_{i}^{T} w$ is Gaussian with mean 0 and variance $\|w\|_{2}^{2}$

$$
\begin{aligned}
\mathrm{P}\left(\left|A_{i}^{T} w\right| \geq 1 \mid w=w^{\prime}\right) & \leq \mathrm{P}\left(|u|>\frac{1}{\left\|w^{\prime}\right\|_{2}}\right) \\
& \leq 2 \exp \left(-\frac{1}{2\left\|w^{\prime}\right\|_{2}^{2}}\right)
\end{aligned}
$$

Where u has mean 0 and variance 1

For $\quad \mathcal{E}:=\left\{\|w\|_{2} \leq 2 \sqrt{\frac{s}{m}}\right\} \quad$ this implies

$$
\mathrm{P}\left(\left|A_{i}^{T} w\right| \geq 1 \mid \mathcal{E}\right) \leq 2 \exp \left(-\frac{m}{8 s}\right)
$$

Bound on dual certificate

Finally

$$
\begin{aligned}
\mathrm{P}\left(\left|A_{i}^{T} w\right| \geq 1\right) & \leq \mathrm{P}\left(\left|A_{i}^{T} w\right| \geq 1 \mid \mathcal{E}\right)+\mathrm{P}\left(\mathcal{E}^{c}\right) \\
& \leq \exp \left(-\frac{C m}{s}\right)+2 \exp \left(-\frac{m}{8 s}\right)
\end{aligned}
$$

If the number of measurements satisfies

$$
m \geq C^{\prime} s \log n
$$

we have exact recovery with probability $1-\frac{1}{n}$ by the union bound

Proof of bounds on singular values

Let \mathcal{X}_{T} be the set of unit-norm vectors x with support T
Aim: Prove that for any $x \in \mathcal{X}_{T}$

$$
(1-\epsilon) \leq \frac{1}{\sqrt{m}}\|A x\|_{2} \leq(1+\epsilon)
$$

With probability $1-2 \exp \left(-\frac{m \epsilon^{2}}{8}\right)$ for any fixed unit-norm vector v

$$
(1-\epsilon) \leq \frac{1}{m}\|A v\|_{2}^{2} \leq(1+\epsilon)
$$

We apply this result on an ϵ-net of \mathcal{X}_{T}

ϵ-net and covering number

$\mathcal{N}_{\epsilon} \subseteq \mathcal{X}$ is an ϵ-net of \mathcal{X} if for every $y \in \mathcal{X}$ there is $x \in \mathcal{N}_{\epsilon}$ such that

$$
\|x-y\|_{2} \leq \epsilon
$$

The covering number $\mathcal{N}(\mathcal{X}, \epsilon)$ of a set \mathcal{X} at scale ϵ is the minimal cardinality of an ϵ-net of \mathcal{X}

The covering number of \mathcal{X}_{T} is

$$
\mathcal{N}\left(\mathcal{X}_{T}, \epsilon\right) \leq\left(\frac{3}{\epsilon}\right)^{s}
$$

Proof of bounds on singular values

By the union bound and the bound for fixed vectors

$$
\left|\frac{1}{m}\|A u\|_{2}^{2}-1\right|>\frac{\epsilon}{2}
$$

for some $u \in \mathcal{N}(\mathcal{X}, \epsilon / 4)$ with probability at most

$$
2\left(\frac{12}{\epsilon}\right)^{s} \exp \left(-\frac{m \epsilon^{2}}{32}\right)
$$

Proof of bounds on singular values

Assume that for all $u \in \mathcal{N}(\mathcal{X}, \epsilon / 4)$

$$
1-\frac{\epsilon}{2} \leq \frac{1}{\sqrt{m}}\|A u\|_{2} \leq 1+\frac{\epsilon}{2}
$$

Define α as the smallest number such that for all $x \in \mathcal{X}_{T}$

$$
\frac{1}{\sqrt{m}}\|A x\|_{2} \leq 1+\alpha
$$

For any $x \in \mathcal{X}_{T}$, there is a $u \in \mathcal{N}(\mathcal{X}, \epsilon / 4)$ such that

$$
\begin{aligned}
\frac{1}{\sqrt{m}}\|A x\|_{2} & \leq \frac{1}{\sqrt{m}}\left(\|A u\|_{2}+\|A(x-u)\|_{2}\right) \\
& \leq 1+\frac{\epsilon}{2}+\frac{(1+\alpha) \epsilon}{4}
\end{aligned}
$$

Proof of bounds on singular values

We conclude

$$
\begin{aligned}
\alpha & \leq \frac{3 \epsilon}{4-\epsilon} \leq \epsilon \\
\frac{1}{\sqrt{m}}\|A x\|_{2} & \geq \frac{1}{\sqrt{m}}\left(\|A u\|_{2}-\|A(x-u)\|_{2}\right) \\
& \geq 1-\frac{\epsilon}{2}-\frac{(1+\epsilon) \epsilon}{4} \\
& \geq 1-\epsilon
\end{aligned}
$$

Dimensionality reduction
Principal component analysis Random projections

Compressed sensing
Motivation: Magnetic resonance imaging Exact recovery
Robustness

Sampling

Nyquist-Shannon sampling theorem
Compressive sampling

Is the problem well posed?

Is the problem well posed?

Is the problem well posed?

Is the problem well posed?

Aim: Study effect of measurement operator on sparse vectors

Is the problem well posed?

Equivalently, is the submatrix always well conditioned?

Is the problem well posed?

Equivalently, is the submatrix always well conditioned?

Restricted isometry property (RIP)

For any s-sparse vector x

$$
\left(1-\epsilon_{s}\right)\|x\|_{2} \leq \frac{1}{\sqrt{m}}\|A x\|_{2} \leq\left(1+\epsilon_{s}\right)\|x\|_{2}
$$

with probability at least $1-2 \exp \left(-C_{1} n\right)$ if

$$
m \geq \frac{C_{1} s}{\epsilon_{s}^{2}} \log \left(\frac{n}{s}\right)
$$

$2 s$-RIP implies that for any s-sparse signals x_{1}, x_{2}

$$
\left\|y_{2}-y_{1}\right\|_{2} \geq\left(1-\epsilon_{2 s}\right)\left\|x_{2}-x_{1}\right\|_{2}
$$

Robustness

Noisy data

$$
y=A x+z \quad \text { where }\|z\|_{2} \leq \epsilon_{0}
$$

Relaxed problem

$$
\begin{array}{ll}
\operatorname{minimize} & \|\tilde{x}\|_{1} \\
\text { subject to } & \|A \tilde{x}-y\|_{2} \leq \epsilon_{0}
\end{array}
$$

Robustness

If x is s-sparse under the RIP, solution \hat{x} satisfies

$$
\|\hat{x}-x\|_{2} \leq C_{0} \epsilon_{0}
$$

If x is not sparse

$$
\|\hat{x}-x\|_{2} \leq C_{0} \epsilon_{0}+C_{1} \frac{\left\|x-x_{s}\right\|_{1}}{\sqrt{s}}
$$

x_{s} contains s entries of x with largest magnitude

Proof of the RIP

For a fixed support T,

$$
(1-\epsilon)\|x\|_{2} \leq \frac{1}{\sqrt{m}}\|A x\|_{2} \leq(1+\epsilon)\|x\|_{2}
$$

for any x with support T with probability at least

$$
1-2\left(\frac{12}{\epsilon}\right)^{s} \exp \left(-\frac{m \epsilon^{2}}{32}\right)
$$

Proof of the RIP

Number of possible supports

$$
\binom{n}{s} \leq\left(\frac{e n}{s}\right)^{s}
$$

By the union bound the result holds with probability at least

$$
\begin{aligned}
& 1-2\left(\frac{e n}{s}\right)^{s}\left(\frac{12}{\epsilon}\right)^{s} \exp \left(-\frac{m \epsilon^{2}}{32}\right) \\
& =1-\exp \left(\log 2+s+s \log \left(\frac{n}{s}\right)+s \log \left(\frac{12}{\epsilon}\right)-\frac{m \epsilon^{2}}{2}\right) \\
& \leq 1-\frac{C_{2}}{n}
\end{aligned}
$$

as long as $\quad m \geq \frac{C_{1} s}{\epsilon^{2}} \log \left(\frac{n}{s}\right)$

Dimensionality reduction

Principal component analysis
Random projections

Compressed sensing
Motivation: Magnetic resonance imaging
Exact recovery
Robustness

Sampling
Nyquist-Shannon sampling theorem
Compressive sampling

Dimensionality reduction
Principal component analysis Random projections

Compressed sensing
Motivation: Magnetic resonance imaging
Exact recovery
Robustness

Sampling
Nyquist-Shannon sampling theorem
Compressive sampling

Sampling problem

Aim: Estimate bandlimited signal $g \in \mathbb{L}_{2}([0,1])$

$$
g(t):=\sum_{k=-f}^{f} c_{k} \exp (i 2 \pi k t)
$$

from samples

$$
g(0), g\left(\frac{1}{n}\right), g\left(\frac{2}{n}\right), \ldots, g\left(\frac{n-1}{n}\right)
$$

Questions:

1. At what rate do we need to sample?
2. How do we recover the signal from the samples?

Sampling problem

Signal

Spectrum

Sampling problem

Spectrum

Notation

$$
\begin{aligned}
& a_{-f: f}(t)_{k}:=\left[\begin{array}{c}
\exp (-i 2 \pi(-f) t) \\
\exp (-i 2 \pi(-f+1) t) \\
\cdots \\
\exp (-i 2 \pi(f-1) t) \\
\exp (-i 2 \pi f t)
\end{array}\right] \\
& g(t):=\sum_{k=-f}^{f} c_{k} \exp (i 2 \pi k t)=a_{-f: f}(t)^{*} c
\end{aligned}
$$

Data

n equations, $2 f+1$ unknowns

$$
F^{*} c=\left[\begin{array}{c}
a_{-f: f}(0)^{*} \\
a_{-f: f}\left(\frac{1}{n}\right)^{*} \\
a_{-f: f}\left(\frac{2}{n}\right)^{*} \\
\ldots \\
a_{-f: f}\left(\frac{n-1}{n}\right)^{*}
\end{array}\right] c=\left[\begin{array}{c}
g(0) \\
g\left(\frac{1}{n}\right) \\
g\left(\frac{2}{n}\right) \\
\cdots \\
g\left(\frac{n-1}{n}\right)
\end{array}\right]
$$

Sampling rate $n \geq 2 f+1$

Recovery

If $n=2 f+1$, the vectors

$$
\frac{1}{\sqrt{n}} a_{-f: f}(0), \frac{1}{\sqrt{n}} a_{-f: f}\left(\frac{1}{n}\right), \ldots, \frac{1}{\sqrt{n}} a_{-f: f}\left(\frac{n-1}{n}\right)
$$

form an orthonormal basis, so

$$
c=\frac{1}{n} F F^{*} c=\frac{1}{n} F\left[\begin{array}{c}
g(0) \\
g\left(\frac{1}{n}\right) \\
g\left(\frac{2}{n}\right) \\
\cdots \\
g\left(\frac{n-1}{n}\right)
\end{array}\right]=\frac{1}{n} \sum_{j=0}^{n} g\left(\frac{j}{n}\right) a_{-f: f}\left(\frac{j}{n}\right)
$$

Periodized sinc or Dirichlet kernel

$$
D(t):=\frac{1}{n} \sum_{k=-f}^{f} e^{-i 2 \pi k t}=\frac{\sin (\pi n t)}{n \sin (\pi t)}
$$

Recovery

Interpolation with weighted sincs!

$$
\begin{aligned}
g(t) & =a_{-f: f}(t)^{*} c \\
& =\frac{1}{n} \sum_{j=0}^{n} g\left(\frac{j}{n}\right) a_{-f: f}(t)^{*} a_{-f: f}\left(\frac{j}{n}\right) \\
& =\sum_{j=0}^{n} g\left(\frac{j}{n}\right) D\left(t-\frac{j}{n}\right) \\
D\left(t-\frac{j}{n}\right) & =\frac{1}{n} \sum_{k=-f}^{f} e^{-i 2 \pi k\left(t-\frac{j}{n}\right)} \\
& =\frac{1}{n} a_{-f: f}(t)^{*} a_{-f: f}\left(\frac{j}{n}\right)
\end{aligned}
$$

Recovery

Nyquist-Shannon sampling theorem

Condition: Sampling rate \geq twice the highest frequency
Recovery: Interpolation with sinc kernel
Just linear algebra!

Dimensionality reduction
Principal component analysis Random projections

Compressed sensing
Motivation: Magnetic resonance imaging Exact recovery Robustness

Sampling

Nyquist-Shannon sampling theorem
Compressive sampling

Sparse spectrum

Aim: Estimate a signal $g \in \mathbb{L}_{2}([0,1])$ with a sparse spectrum

$$
g(t):=\sum_{k \in \mathcal{S}} c_{k} \exp (i 2 \pi k t)
$$

- Maximum frequency: f
- Number of sinusoids: s

How many measurements do we need?

- Nyquist-Shannon: $2 f+1$
- Compressed sensing: $\mathcal{O}(s \log (2 f+1))$

Sparse spectrum

Signal

Spectrum

Linear estimation

$$
\text { n equations, } 2 f+1 \text { unknowns }
$$

$$
F^{*} c=\left[\begin{array}{c}
a_{-f: f}(0)^{*} \\
a_{-f: f}\left(\frac{1}{n}\right)^{*} \\
a_{-f: f}\left(\frac{2}{n}\right)^{*} \\
\cdots \\
a_{-f: f}\left(\frac{n-1}{n}\right)^{*}
\end{array}\right] c=\left[\begin{array}{c}
g(0) \\
g\left(\frac{1}{n}\right) \\
g\left(\frac{2}{n}\right) \\
\cdots \\
g\left(\frac{n-1}{n}\right)
\end{array}\right]
$$

Measurements: $2 f+1$

Recovery: Sinc interpolation

Compressive sampling

m equations, $2 f+1$ unknowns

$$
F^{*} c=\left[\begin{array}{c}
a_{-f: f}(0)^{*} \\
a_{-f: f}\left(\frac{1}{n}\right)^{*} \\
a_{f: f}\left(\frac{2}{n}\right)^{*} \\
\cdots \\
a_{-f: f}\left(\frac{n-1}{n}\right)^{*}
\end{array}\right] c=\left[\begin{array}{c}
g(\theta) \\
g\left(\frac{1}{n}\right) \\
g\left(\frac{2}{n}\right) \\
\cdots \\
g\left(\frac{n-1}{n}\right)
\end{array}\right]
$$

Measurements: $m \geq C s \log (2 f+1)$ (random undersampling)
Recovery: ℓ_{1}-norm minimization to compute c

Recovery

Linear estimate

Compressive sampling

