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Introduction

Random projections in data analysis and signal processing

They preserve information embedded in low-dimensional subspaces
of high-dimensional spaces

Non-adaptive compression, agnostic to specific data
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Dimensionality reduction

Projection of data onto lower-dimensional space

I Decreases computational cost of processing the data
I Allows to visualize (2D, 3D)

We will focus on linear projections



Linear projection

The linear projection of x ∈ Rn onto a subspace S ⊆ Rn

of dimension m ≤ n is the solution to

minimize ||x − u||2
subject to u ∈ S

If the columns of U: U1, . . . ,Um are an orthonormal basis of S

PS (x) =
m∑

i=1

〈x ,Ui 〉Ui = UUT x

To reduce the dimension we represent the signal using the coefficients

c := UT x ∈ Rm
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Adaptive projection

Data: x̃1, x̃2, . . . , x̃k

Preprocessing: Centering the data

xi = x̃i −
1
k

k∑
i=1

x̃i

Aim: Find directions of maximum variation



Principal component analysis (PCA)

1. Group the centered data in a data matrix X

X =
[
x1 x2 · · · xk

]
2. Compute the SVD of X = UΣV T

3. Extract the first m left singular vectors

Û =
[
U1 · · · Um

]
For any n-dimensional subspace S ′

k∑
i=1

||PS′xi ||22 ≤
k∑

i=1

∣∣∣∣∣∣ÛÛT xi

∣∣∣∣∣∣2
2



Example: 2D data
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Example: 2D data
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Example: 2D data
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k
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Example

Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Dimensions:
I Area
I Perimeter
I Compactness
I Length of kernel
I Width of kernel
I Asymmetry coefficient
I Length of kernel groove



Projection onto two first PCs



Projection onto two last PCs
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Non-adaptive projections

PCA requires processing all of the data before projecting

Idea: Project onto random m-dimensional subspace

Not optimal, but more computationally efficient

Approximate projection: Multiply by a random matrix A ∈ Rm×n



Approximate projection onto two random directions



Johnson-Lindenstrauss lemma

Random function f preserves distance between points

f (x) :=
1√
m

Ax

A is an m× n matrix with iid Gaussian entries with mean 0 and variance 1
(can be generalized to Bernouilli ±1 entries)

Fix x1, . . . , xk ∈ Rn. For any xi 6= xj

(1− ε) ||xi − xj ||22 ≤ ||f (xi )− f (xj)||22 ≤ (1 + ε) ||xi − xj ||22

with probability at least 1
k as long as

m ≥ 8 log (k)

ε2



Result for fixed vector

For any fixed vector v ∈ Rn

(1− ε) ||v ||22 ≤
1
m
||Av ||22 ≤ (1 + ε) ||v ||22

with probability at least

1− 2 exp
(
−mε2

8

)

Combining this with the union bound yields the result



Proof of result for fixed vector

Apply concentration bound on chi-square random variable Z with
m degrees of freedom

Z :=
m∑

i=1

X 2
i

X1, . . . ,Xm are Gaussian with mean 0 and variance 1 and independent

For any ε > 0 we have

P (Z > m (1 + ε)) ≤ exp
(
−mε2

8

)
P (Z < m (1− ε)) ≤ exp

(
−mε2

2

)
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Magnetic resonance imaging



Magnetic resonance imaging

Data: Samples from spectrum

Problem: Sampling is time consuming (annoying, kids move . . . )

Images are compressible (sparse in wavelet basis)

Can we recover compressible signals from less data?



Idea

By now (hopefully) we know that `1-norm induces sparsity

1. Undersample data
2. Solve the optimization problem

minimize ||wavelet transform of estimate||1
subject to frequency samples of estimate = data



Regular vs random undersampling

Minimum `2-norm estimate



Minimum `1-norm estimate

Regular Random
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Random samples

1. Undersample the spectrum randomly

Signal Spectrum

Data



`1-norm minimization

2. Solve the optimization problem

minimize ||estimate||1
subject to frequency samples of estimate = data

Signal Estimate



Underdetermined system of equations

=

=



Underdetermined system of equations

=

=



Underdetermined system of equations

=

=

Ax = y where A ∈ Rm×n and m < n, infinite solutions!



Exact recovery

Assumption: There exists a signal x ∈ Rn with s nonzeros such that

Ax = y

for a random A ∈ Rm×n (random Fourier, Gaussian iid, Bernouilli ±1, . . . )

Exact recovery: If the number of measurements satisfies

m ≥ C ′s log n

the solution of the problem

minimize ||x̃ ||1 subject to A x̃ = y

is the original signal with probability at least 1− 1
n



Incoherent measurements

Generalization: Random rows Uj from orthonormal basis U

Coherence:

µ (U) :=
√

n max
1≤i≤n,1≤j≤m

|Ujei |

Exact recovery is achieved with high probability if

m ≥ C ′µ (U) s log n

Random Fourier: µ (F ) = 1



Dual problem

The dual problem is equal to

maximize yT ṽ

subject to
∣∣∣∣∣∣AT ṽ

∣∣∣∣∣∣
∞
≤ 1



Dual certificate

A dual certificate v ∈ Rm associated to x is equal to(
AT v

)
i

= sign (xi ) if xi 6= 0∣∣∣∣∣∣(AT v
)

i

∣∣∣∣∣∣
∞
< 1 if xi = 0

Feasible for dual problem, corresponding cost-function value equals

yT v = ||x ||1

By weak duality x must be a solution



Dual certificate

By the definition of v

q := AT v

is a subgradient of the `1 norm at x and for any h such that Ah = 0

hTq = 0

This also implies that x is a solution

If AT (where T is the support of x) is injective, x is the unique solution



Proof of exact recovery

Prove that dual certificate exists for any s-sparse x

Idea: Choose vector that interpolates the sign and has minimum `2 norm

minimize ||ṽ ||2
subject to AT

T ṽ = sign (xT )

Closed-form solution v`2 = AT
(
AT

TAT
)−1 sign (xT )

We need to prove that q`2 := AT v`2 satisfies

(q`2)T = sign (xT )

∣∣∣∣(q`2)T c

∣∣∣∣
∞ < 1



Random Fourier measurements

Tough stuff, we will prove the result for Gaussian measurements



Bounds on singular values of Gaussian submatrix

Fix a support T , |T | ≤ s

For any unit-norm vector x with support T

1− ε ≤ 1√
m
||Ax ||22 ≤ 1 + ε

with probability at least

1− 2
(
12
ε

)s

exp
(
−mε2

32

)



Bounds on singular values of Gaussian submatrix

Setting ε = 1/2 gives

1− 1
2
≤ 1√

m
||Ax ||2 ≤ 1 +

1
2

with probability at least

1− exp
(
−Cm

s

)
for some constant C



Bound on dual certificate

Minimum singular value of AT

σmin (AT ) ≥
√

m
2

with probability 1− exp
(
−Cm

s

)
This implies AT

TAT is invertible so

(q`2)T = AT
TAT

(
AT

TAT

)−1
sign (xT ) = sign (xT )



Bound on dual certificate

To bound (q`2)T c , for each i ∈ T c we define

(q`2)i = AT
i AT

(
AT

TAT

)−1
sign (xT )

= AT
i w

Ai and w are independent

By the bound on σmin (AT )

||w ||2 ≤
||sign (xT )||2
σmin (AT )

≤ 2
√

s
m

with probability 1− exp
(
−Cm

s

)



Bound on dual certificate

Conditioned on w , AT
i w is Gaussian with mean 0 and variance ||w ||22

P
(∣∣∣AT

i w
∣∣∣ ≥ 1|w = w ′

)
≤ P

(
|u| > 1

||w ′||2

)
≤ 2 exp

(
− 1
2 ||w ′||22

)

Where u has mean 0 and variance 1

For E :=

{
||w ||2 ≤ 2

√
s
m

}
this implies

P
(∣∣∣AT

i w
∣∣∣ ≥ 1

∣∣∣E) ≤ 2 exp
(
−m
8s

)



Bound on dual certificate

Finally

P
(∣∣∣AT

i w
∣∣∣ ≥ 1

)
≤ P

(∣∣∣AT
i w
∣∣∣ ≥ 1

∣∣∣E)+ P (Ec)

≤ exp
(
−Cm

s

)
+ 2 exp

(
−m
8s

)
If the number of measurements satisfies

m ≥ C ′s log n

we have exact recovery with probability 1− 1
n by the union bound



Proof of bounds on singular values

Let XT be the set of unit-norm vectors x with support T

Aim: Prove that for any x ∈ XT

(1− ε) ≤ 1√
m
||Ax ||2 ≤ (1 + ε)

With probability 1− 2 exp
(
−mε2

8

)
for any fixed unit-norm vector v

(1− ε) ≤ 1
m
||Av ||22 ≤ (1 + ε)

We apply this result on an ε-net of XT



ε-net and covering number

Nε ⊆ X is an ε-net of X if for every y ∈ X there is x ∈ Nε such that

||x − y ||2 ≤ ε.

The covering number N (X , ε) of a set X at scale ε is the minimal
cardinality of an ε-net of X

The covering number of XT is

N (XT , ε) ≤
(
3
ε

)s



Proof of bounds on singular values

By the union bound and the bound for fixed vectors∣∣∣∣ 1m ||Au||22 − 1
∣∣∣∣ > ε

2

for some u ∈ N (X , ε/4) with probability at most

2
(
12
ε

)s

exp
(
−mε2

32

)



Proof of bounds on singular values

Assume that for all u ∈ N (X , ε/4)

1− ε

2
≤ 1√

m
||Au||2 ≤ 1 +

ε

2

Define α as the smallest number such that for all x ∈ XT

1√
m
||Ax ||2 ≤ 1 + α

For any x ∈ XT , there is a u ∈ N (X , ε/4) such that

1√
m
||Ax ||2 ≤

1√
m

(||Au||2 + ||A (x − u)||2)

≤ 1 +
ε

2
+

(1 + α) ε

4



Proof of bounds on singular values

We conclude

α ≤ 3ε
4− ε

≤ ε

1√
m
||Ax ||2 ≥

1√
m

(||Au||2 − ||A (x − u)||2)

≥ 1− ε

2
− (1 + ε) ε

4
≥ 1− ε
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Is the problem well posed?

=

=

Spectrum
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Is the problem well posed?

=

=

Spectrum



Is the problem well posed?

=

=

Spectrum

Aim: Study effect of measurement operator on sparse vectors



Is the problem well posed?

=

=

Spectrum

Equivalently, is the submatrix always well conditioned?



Is the problem well posed?

=

=

Spectrum

Equivalently, is the submatrix always well conditioned?



Restricted isometry property (RIP)

For any s-sparse vector x

(1− εs) ||x ||2 ≤
1√
m
||Ax ||2 ≤ (1 + εs) ||x ||2

with probability at least 1− 2 exp (−C1n) if

m ≥ C1s
ε2s

log
(n

s

)
2s-RIP implies that for any s-sparse signals x1, x2

||y2 − y1||2 ≥ (1− ε2s) ||x2 − x1||2



Robustness

Noisy data

y = Ax + z where ||z ||2 ≤ ε0

Relaxed problem

minimize ||x̃ ||1
subject to ||Ax̃ − y ||2 ≤ ε0



Robustness

If x is s-sparse under the RIP, solution x̂ satisfies

||x̂ − x ||2 ≤ C0 ε0

If x is not sparse

||x̂ − x ||2 ≤ C0 ε0 + C1
||x − xs ||1√

s

xs contains s entries of x with largest magnitude



Proof of the RIP

For a fixed support T ,

(1− ε) ||x ||2 ≤
1√
m
||Ax ||2 ≤ (1 + ε) ||x ||2

for any x with support T with probability at least

1− 2
(
12
ε

)s

exp
(
−mε2

32

)



Proof of the RIP

Number of possible supports(
n
s

)
≤
(en

s

)s

By the union bound the result holds with probability at least

1− 2
(en

s

)s
(
12
ε

)s

exp
(
−mε2

32

)
= 1− exp

(
log 2 + s + s log

(n
s

)
+ s log

(
12
ε

)
− mε2

2

)
≤ 1− C2

n

as long as m ≥ C1s
ε2

log
(n

s

)
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Sampling problem

Aim: Estimate bandlimited signal g ∈ L2 ([0, 1])

g (t) :=
f∑

k=−f

ck exp (i2πkt)

from samples

g (0), g
( 1

n

)
, g
( 2

n

)
, . . . , g

(n−1
n

)
Questions:
1. At what rate do we need to sample?
2. How do we recover the signal from the samples?



Sampling problem

Signal Spectrum



Sampling problem

Data Spectrum



Notation

a−f :f (t)k :=



exp (−i2π (−f ) t)

exp (−i2π (−f + 1) t)

· · ·

exp (−i2π (f − 1) t)

exp (−i2πft)



g (t) :=
f∑

k=−f

ck exp (i2πkt) = a−f :f (t)∗ c



Data

n equations, 2f + 1 unknowns

F ∗c =



a−f :f (0)∗

a−f :f
( 1

n

)∗
a−f :f

( 2
n

)∗
· · ·

a−f :f
(n−1

n

)∗


c =



g (0)

g
( 1

n

)
g
( 2

n

)
· · ·

g
(n−1

n

)



Sampling rate n ≥ 2f + 1



Recovery

If n = 2f + 1, the vectors

1√
n

a−f :f (0) ,
1√
n

a−f :f

(
1
n

)
, . . . ,

1√
n

a−f :f

(
n − 1

n

)

form an orthonormal basis, so

c =
1
n
FF ∗c =

1
n
F



g (0)

g
( 1

n

)
g
( 2

n

)
· · ·

g
(n−1

n

)


=

1
n

n∑
j=0

g
(

j
n

)
a−f :f

(
j
n

)



Periodized sinc or Dirichlet kernel

D (t) :=
1
n

f∑
k=−f

e−i2πkt =
sin (πnt)

n sin (πt)



Recovery

Interpolation with weighted sincs!

g (t) = a−f :f (t)∗ c

=
1
n

n∑
j=0

g
(

j
n

)
a−f :f (t)∗ a−f :f

(
j
n

)

=
n∑

j=0

g
(

j
n

)
D
(

t − j
n

)

D
(

t − j
n

)
=

1
n

f∑
k=−f

e−i2πk(t− j
n )

=
1
n
a−f :f (t)∗ a−f :f

(
j
n

)



Recovery



Nyquist-Shannon sampling theorem

Condition: Sampling rate ≥ twice the highest frequency

Recovery: Interpolation with sinc kernel

Just linear algebra!
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Sparse spectrum

Aim: Estimate a signal g ∈ L2 ([0, 1]) with a sparse spectrum

g (t) :=
∑
k∈S

ck exp (i2πkt)

I Maximum frequency: f
I Number of sinusoids: s

How many measurements do we need?

I Nyquist-Shannon: 2f + 1
I Compressed sensing: O (s log (2f + 1))



Sparse spectrum

Signal Spectrum



Linear estimation

n equations, 2f + 1 unknowns

F ∗c =



a−f :f (0)∗

a−f :f
( 1

n

)∗
a−f :f

( 2
n

)∗
· · ·

a−f :f
(n−1

n

)∗


c =



g (0)

g
( 1

n

)
g
( 2

n

)
· · ·

g
(n−1

n

)


Measurements: 2f + 1

Recovery: Sinc interpolation



Compressive sampling

m equations, 2f + 1 unknowns

F ∗c =



�����a−f :f (0)∗

a−f :f
( 1

n

)∗
�����
a−f :f

( 2
n

)∗
· · ·

a−f :f
(n−1

n

)∗


c =



�
��g (0)

g
( 1

n

)
�
��g
( 2

n

)
· · ·

g
(n−1

n

)


Measurements: m ≥ C s log (2f + 1) (random undersampling)

Recovery: `1-norm minimization to compute c



Recovery

Linear estimate Compressive sampling
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