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Super-resolution

» Optics: Data-acquisition techniques to overcome the diffraction limit

» Image processing: Methods to upsample images onto a finer grid
while preserving edges and hallucinating textures

» This lecture: Signal estimation from low-resolution data



Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
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Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

L

W

5(t—1) optical system h(t —7)

Diffraction imposes a fundamental limit on the resolution of optical systems



Measurement model

Sensing mechanism acts as a low-pass filter

XLR = ¢ * X
XLR = ¢ X
=N ¢ e

High-frequency information is gone

We need prior assumptions to recover the signal



Super-resolution of point sources




Mathematical model

» Signal: Superposition of Dirac measures with support T

X::chétj Cje(c, tj € TC[071]
Jj

» Data: Convolution of signal and point-spread function
xR (t) == ¢ x x(t)
= Z CJ¢ (t - tJ) )

tjET

Equivalently, low-pass Fourier coeffs with cut-off frequency f.

y=Fcx

1
Vi = / e PR (dt) = e ™, ke Z, |kl < f
0 .
J



Spatial Super-resolution

Signal

Data

Spectrum
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Mathematical model

» Signal: Multisinusoidal signal

g(t) — Z Cje—i2mf,-t

fieT

g=> o

fieT

» Data: n samples measured at Nyquist rate

g (k) = Z cje 2Tl 1<k<n
feT
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Seismology




Reflection seismology

Geological section Acoustic impedance  Reflection coefficients

m L N




Reflection seismology

Sensing Ref. coeft. Pulse Data

Data & convolution of pulse and reflection coefficients



Sensing model for reflection seismology

Ref. coeff. Pulse Data

Spectrum X =




Conditioning of super-resolution



Compressed sensing vs super-resolution

Estimation of sparse signals from undersampled measurements suggests
connections to compressed sensing

Compressed sensing Super-resolution

bt A

spectrum interpolation spectrum extrapolation




Compressed sensing

_ Spectrum
of x




Compressed sensing

— Spectrum
of x

Measurement operator = random frequency samples



Compressed sensing




Compressed sensing

n

Aim: Study effect of measurement operator on sparse vectors




Compressed sensing
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Operator is well conditioned when acting upon any sparse signal

(restricted isometry property)



Compressed sensing

Operator is well conditioned when acting upon any sparse signal

(restricted isometry property)



Super-resolution

Spectrum
of x
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No discretization



Super-resolution

Data: Low-pass Fourier coefficients



Super-resolution

Data: Low-pass Fourier coefficients



Super-resolution

Problem: If the support is clustered, the problem may be ill posed

In super-resolution sparsity is not enough!



Super-resolution
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If the support is spread out, there is still hope

We need conditions beyond sparsity



Minimum separation

The minimum separation A of a discrete set T is

A= inf |t —t']
(t,t/)ET : t#t/




Example: 25 spikes, f. = 103, A = 0.8/,

Signals Data (in signal space)




Example: 25 spikes, f. = 103, A = 0.8/,
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Signals Data (in signal space)



Example: 25 spikes, f. = 103, A = 0.8/,

The difference is almost in the null space of the measurement operator
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Difference Spectrum



Lower bound on A

» Above what minimum distance A is the problem well posed?
» Numerical lower bound on A:

1. Compute singular values of restricted operator for different values of
Agife

2. Find Agisr under which the restricted operator is ill conditioned

3. Then A > 2Aqis




Singular values of the restricted operator

Number of spikes = s, f. = 103
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Phase transition at Agif = 1/2fc = A = 1/f,

Characterized asymptotically by Slepian's prolate spheroidal sequences



Singular values of the restricted operator
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Interpretation of A\ := 1/f-

Diameter of point-spread function

Rayleigh resolution distance

Ac/2 is the Rayleigh resolution distance



Linear methods
Periodogram
Local fitting



Super-resolution of point sources

Conditioning of super-resolution
Linear methods

Periodogram

Parametric methods

Super-resolution via convex programming



Periodogram

Spectrum of truncated data in spectral super-resolution
P(t)=F,y

= Z Cijc (t

tjET

Dy, is the periodized sinc or Dirichlet kernel

ift=0
Dy (t Z e/t — {sm((2f +1)mt) :

k=—f. @Ft1)sin(rt) otherwise



Periodogram

—— Signal (magnitude)
—— Periodogram

IR,




Windowing

Window function w € C”
Yo=Yy W

Pa(f) = Fq ya

=Y qw(t—t),

tjGT



Windowing

—— Data

—— Window function
—— Windowed data




Windowing

—— Signal (magnitude)

— Windowed periodogram

VAR




Minimum separation: Periodogram
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Minimum separation: Gaussian periodogram
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Super-resolution of point sources

Conditioning of super-resolution

Linear methods
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Parametric methods

Super-resolution via convex programming



Local fitting

Assume only one source

XLR (t) = C1¢(t — tl) .

Estimation via best #>-norm fit
test = argminmin ||x.r — a ¢35
f aeC

= argmax |(XR, ¢7)]
t
If sources are far we can compute local fits

Equivalent to matching pursuit



Parametric methods
Prony’'s method
Subspace methods
Matrix-pencil methods



Super-resolution of point sources
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Prony polynomial

Signal
x:=Y ¢y GeC eTcCo1]
J
Data
yi =X (k) , 0<k<n-1

Prony polynomial

s
Porany (1) = [ (1 - €74
j=1

S
=1+ Z v ety =1
=1



Prony polynomial

—— Signal (magnitude)
—— Prony polynomial (magnitude)




Computing the Prony polynomial

By construction
(Pprony, x) = 0
By Parseval's Theorem
(Pprony, X) = (v, X)

S
:kayT ifs+1<n
k=0



Computing the Prony polynomial

By construction
<Pprony, e27rk,tx> =0
By Parseval's Theorem
(Porony: €2™tx) = (v, %)

s
:kayk+k/ ifs+k'§n—1
k=0



Prony's method

1. Form the system of equations

i oy2 ... Y n
Y2 y3 oo Yspif| |2 _
Ys Ys+1 .. Yn-1 Vs

2. Solve the system and set iy = 1

3. Roots of polynomial with coeffs ¥, ..., Vs: z, ...

27T

4. Forzi=e include 7 in estimated support

Yo
b4

Ys—1

vZS



Prony's method

B e—i27rt1 e—i27rt2 e—i27rt,

yi Y2 ... Y
Vo V3 cee Yet1 e—i27r2t1 e—i27r2t2 e—i27r2t,
Vs Vil oo Yn-1 e—i27rst1 e—i27rst2 L e—i27rst,

(5] 0 0
0 Co 0

0 0 ... ¢
1 e—i2mt efi27r(sfl)t1

1 e—i27rt2 e—i27’r(5—1)t2

1 e—i2mts e—i27r(s—1)t,




Vandermonde matrix

For any distinct s nonzero z1, 2, ...,z € C and any my, my, s
suchthat mo—m;y +1>s

mi my m
I 2 Zs !
my1+1 my1+1 m1+1
Zl 22 Zg
my+2 my+2 my+2
4 2 Zs
m2 m2 - mpy
i Zl Z2 Zg ]

is full rank



No noise

—— Signal (magnitude)
—— Prony polynomial (magnitude)




SNR = 140 dB (relative £, norm of noise = 1078 )

—— Signal (magnitude)
—— Prony polynomial (magnitude)




Super-resolution of point sources

Conditioning of super-resolution

Linear methods

Parametric methods
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Super-resolution via convex programming



Alternative interpretation of Prony's method

Prony’s method finds nonzero vector in the null space of ¥ (s +1)"

Yo i Yn—m
Y(m=| L2
Ym—1 Ym Yn—1

The vector corresponds to the coefficients of the Prony polynomial



Notation: Sinusoidal atoms

For k>0
_ . -
e—i27rt
ag-k (t) = e—i27r2t
_e—i27rkt_
AO:k (T) = _aO:k (tl) a0:k (t2) s dok (ts)]



Decomposition

Y (m)= _ao:m—l(tl) ao:m—1(t2) --- aO:m—l(ts)]
a 0 - 0 |agnm(tr)”
0 S I 0 a0:n—m (t2)T
L 0 o - Cs | | 90:n—m (ts)T

= Aom1(T) C Ao (T)T

Idea: To estimate T find ag.m—1 (t) in the column space of Y (m)



Pseudospectrum

To find atoms that are close to the column space of Y (m)

» Compute orthogonal complement N of column space of Y (m)

» Locate local maxima of pseudospectrum

1
Py (a0:m-1(1))I?

Py (t) = log



Empirical covariance matrix

N is the null space of the empirical covariance matrix

1

Em) ="
1 n—m y-yJ
_ j+1 Y7 -
Srmmri | | ]

Yj+m—1



Pseudospectrum

Y (m) = Ao;m_1 (T) CAO:m (T)T

implies

Ppr(t) < o0, fort¢ T



Pseudospectrum: No noise




Pseudospectrum: SNR = 140 dB, n = 2s




Multiple-signal classification (MUSIC)

1. Build the empirical covariance matrix ¥ (m)

N

. Compute the eigendecomposition of ¥ (m)

w

. Select Uy corresponding to m — s smallest eigenvalues

4. Estimate support by computing the pseudospectrum



Pseudospectrum: SNR = 40 dB, n =81, m = 30




Pseudospectrum: SNR =1 dB, n=81, m =30




Probabilistic model: Signal

x= 2 a0y =D lgle®d,

teT teT

The phases ¢; are independent and uniformly distributed in [0, 27]

E(x)=0



Probabilistic model: Noise

Noise z is a zero-mean Gaussian vector with covariance o2/

1
Vi = / e 27kt (dt) + z
0

— § C:je—l27rktj +Zk
tjET

}7 = AO:mfl (T) c+z,

Covariance matrix of the data



Eigendecomposition of covariance matrix

Eigendecomposition of E [y7*]

E[75'] = [Us Uw] [“"2’5 0 HUS}

0 0% U

» Us € C™*s: unitary matrix that spans column space of Ay,
» Uy € C™(m=9): ynitary matrix spanning the orthogonal complement

» A € C*k is a diagonal matrix with positive entries



, SNR =20 dB, n =81, m =40

e Signal
x Estimate




A =22 SNR=20dB, n=81, m=40

e Signal
x Estimate




Different values of m

SNR = 61 dB
T T
OT o
I ll
x  Original
o m=3§
o m=12
A m=16
| | | |

0.35 0.4 0.45 0.5




Different values of m

SNR =21 dB

x  Original
0o m=38

o m=12
A m=16
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Different values of m

SNR=1dB
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Eigenvalues
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Eigenvalues
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Eigenvalues
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Wrong s (s — 1)

SNR =21 dB
T T
*
D
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Wrong s (s + 1)

SNR = 21 dB
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Super-resolution of point sources

Conditioning of super-resolution

Linear methods

Parametric methods

Matrix-pencil methods

Super-resolution via convex programming



Low-rank model

yo )/1 yn_m
Yo= | 2 Y
Ym-1 Ym - Yn-1

= Ao:m—1 (T) CAo:n—m (T)T

- Z G a0.m-1 () a0:n-m (t7)

tjET



Matrix pencil

The matrix pencil of two matrices My, M is

LM1,M2 (M) =My —uMy, pecC

The set of rank-reducing values R of a matrix pencil satisfy

rank (L, v, (1)) = rank (Lagy,my (12)) + 1

forall yje Rand n ¢ R



Matrix pencil

We consider the matrix-pencil of Yy and

y1 Y2 v Yn—m+1
Y, = Y2 y3  Yn—m+2
Ym Ym+1 - Yn

=Aim (T) CAon-m (T)T

= Z G atm (tj) a0:n—m (tj)T

tjGT

exp (i2mT) is a rank-reducing value of Ly, y, if and only if T € T



Computing the rank-reducing values

Let Yo = Up Xo V{ be the singular-value decomposition of Y

The s eigenvalues of the matrix
M=Vt v

are equal to exp (i2nt;) for 1 < j <'s



Proof

a1m (1) = exp (i277) ag:m—1 (7)
Ao:m—1 (T) = Ao:m—1 (T) \

ei2mty o ... 0

® 0 ei?rtz 0

O 0 ei271't5



Proof

Yo = Avm-1 (T) CAonm (T)7

CAonm(T) =UTV

CAonm(T) VEU =1
Ys = Arm (T) CAonm(T)T

= Avm-1(T) & C Agin—m (T)7

= Aom-1(T) CAon-m(T) VE LU S CAgnm(T)"
=YV lturouxv:



Proof

Vgt U YoV = VgV =V

VoSg U Yi= Wt UsYo VE LU o UT V*
—viluyouzv:

[ 0
_ p—1
=" o O]P

[ 1




Spectral super-resolution via matrix pencil

1. Build YO = UO ZO V(;k and Yl
2. Compute the s largest eigenvalues \1, A2, ..., As of Vp Zal U

3. Output the phase of A1, A2, ..., As divided by 27



Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data



Sensing model for reflection seismology

Ref. coeff. Pulse Data

Spectrum X =




Suggestion of various geophysicists: Minimize ¢ norm

Deconvolution with the 81 norm GEOPHYSICS, VOL. 44, NO. 1 (JANUARY 1979)
Howard L. Taylor,* Stephen C. Banks,* and John F. McCoy§

LINEAR INVERSION OF BAND-LIMITED g\ 1 sci Srar. CoMpuT.
REFLECTION SEISMOGRAMS* Vol. 7, No. 4, October 1986

FADIL SANTOSAt AnpD WILLIAM W. SYMES#

Reconstruction of a sparse spike train from a portion of its
spectrum and application to high-resolution deconvolution

Shlomo Levy* and Peter K. Fullagar:

GEOPHYSICS, VOL. 46, NO, % (SEPTEMBER 1981

ROBUST MODELING WITH ERRATIC DATA{ GEOPHYSICS, VOL. 38, NO. 5 (OCTOBER 1973)

JON F. CLAERBOUT® AND FRANCIS MUIR}



Minimum /¢1-norm estimate

minimize ||estimate]|,

subject to estimate * pulse = data

Reflection coefficients Estimate




Total-variation norm

v

Continuous counterpart of the ¢; norm

If x = ZJ- ¢jd; then [|x]||, = Zj <l

Not the total variation of a piecewise-constant function

v

v

v

Formal definition: For a complex measure v

i = s /T (0)x (dt)

Ifllo<L,fEC(T



Super-resolution of point sources

Conditioning of super-resolution

Linear methods

Parametric methods

Super-resolution via convex programming
Exact recovery



Super-resolution via convex programming

For data of the form y = F, x, we solve
min ||X||;y subjectto Fcx =y
X
over all finite complex measures X supported on [0, 1]

Exact recovery is guaranteed if A >

1.26
fe



Dual certificate

The same as for the £; norm, but now ¢ is a function

q:=Flv

qi = sign (x;) if x; #0
]q,-\ <1 if xi=20

The rows of F. are low pass sinusoids instead of random sinusoids



Certificate for super-resolution

Aim: Interpolate sign pattern



Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

c(t)= Y aiK(t—i)

i:x;7£0



Certificate for super-resolution
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i:x;7£0



Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K
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Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

c(t)= Y aiK(t—i)

i:x;7£0



Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

c(t)= Y aiK(t—i)

i:x;7£0



Certificate for super-resolution

Problem: Magnitude of certificate locally exceeds 1



Certificate for super-resolution

Problem: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force the derivative of the certificate to
equal zero on the support

()= Y aiK(t—i) + BiK'(t—1)

i:x;7#0



Certificate for super-resolution

Problem: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force the derivative of the certificate to
equal zero on the support

()= Y aiK(t—i) + BiK'(t—1)

i:x;7#0



Certificate for super-resolution

Similar construction works for bandpass point-spread
functions relevant to reflection seismology



Super-resolution of point sources

Conditioning of super-resolution

Linear methods

Parametric methods

Super-resolution via convex programming

Super-resolution from noisy data



Super-resolution from noisy data

Additive-noise model
y=Fnx+z
Relaxed optimization problem

min ||%||;y  subject to || F,& —y|[3 < 4§
X

d is an estimate of the noise level



Super-resolution from noisy data

Additive-noise model
y=Fnx+z
Relaxed optimization problem

min ||%||;y  subject to || F,& —y|[3 < 4§
X

d is an estimate of the noise level



'SNR = 20 dB, f. = 40

e Signal
x Estimate




A =22 SNR =20 dB, £ =40

e Signal
x Estimate




Deconvolution with the ¢1 norm (Taylor, Banks, McCoy '79)

A
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