Super-resolution

Optimization-Based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16

Carlos Fernandez-Granda
3/21/2016

Super-resolution

- Optics: Data-acquisition techniques to overcome the diffraction limit
- Image processing: Methods to upsample images onto a finer grid while preserving edges and hallucinating textures
- This lecture: Signal estimation from low-resolution data

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Super-resolution of point sources

Spatial super-resolution

```
Spectral super-resolution
Deconvolution in reflection seismography
```

Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

$\delta(t-\tau)$

optical system

$h(t-\tau)$

Diffraction imposes a fundamental limit on the resolution of optical systems

Measurement model

Sensing mechanism acts as a low-pass filter

$$
\begin{aligned}
x_{\mathrm{LR}} & :=\phi * x \\
\widehat{x}_{\mathrm{LR}} & =\widehat{\phi} \widehat{x} \\
& =\widehat{\phi} \Pi_{\left[-f_{c}, f_{c}\right]} \widehat{x}
\end{aligned}
$$

High-frequency information is gone

We need prior assumptions to recover the signal

Super-resolution of point sources

Mathematical model

- Signal: Superposition of Dirac measures with support T

$$
x:=\sum_{j} c_{j} \delta_{t_{j}} \quad c_{j} \in \mathbb{C}, t_{j} \in T \subset[0,1]
$$

- Data: Convolution of signal and point-spread function

$$
\begin{aligned}
x_{\mathrm{LR}}(t) & :=\phi * x(t) \\
& =\sum_{t_{j} \in T} c_{j} \phi\left(t-t_{j}\right),
\end{aligned}
$$

Equivalently, low-pass Fourier coeffs with cut-off frequency f_{c}

$$
\begin{aligned}
y & =\mathcal{F}_{c} x \\
y_{k} & =\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t)=\sum_{j} c_{j} e^{-i 2 \pi k t_{j}}, \quad k \in \mathbb{Z},|k| \leq f_{c}
\end{aligned}
$$

Spatial Super-resolution

Spectrum

Signal

Data

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Mathematical model

- Signal: Multisinusoidal signal

$$
\begin{gathered}
g(t):=\sum_{f_{j} \in T} c_{j} e^{-i 2 \pi f_{j} t} \\
\widehat{g}=\sum_{f_{j} \in T} c_{j} \delta_{f_{j}}
\end{gathered}
$$

- Data: n samples measured at Nyquist rate

$$
g(k):=\sum_{f_{j} \in T} c_{j} e^{-i 2 \pi k f_{j}}, \quad 1 \leq k \leq n
$$

Spectral Super-resolution

Spectrum

Signal

Data

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Seismology

Reflection seismology

Geological section
Acoustic impedance
Reflection coefficients

Reflection seismology

Data \approx convolution of pulse and reflection coefficients

Sensing model for reflection seismology

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Compressed sensing vs super-resolution

Estimation of sparse signals from undersampled measurements suggests connections to compressed sensing

Compressed sensing
Super-resolution

spectrum interpolation

spectrum extrapolation

Compressed sensing

Spectrum of x

Compressed sensing

Measurement operator $=$ random frequency samples

Compressed sensing

Compressed sensing

Aim: Study effect of measurement operator on sparse vectors

Compressed sensing

Operator is well conditioned when acting upon any sparse signal (restricted isometry property)

Compressed sensing

Operator is well conditioned when acting upon any sparse signal (restricted isometry property)

Super-resolution

No discretization

Super-resolution

Data: Low-pass Fourier coefficients

Super-resolution

Data: Low-pass Fourier coefficients

Super-resolution

Problem: If the support is clustered, the problem may be ill posed In super-resolution sparsity is not enough!

Super-resolution

If the support is spread out, there is still hope We need conditions beyond sparsity

Minimum separation

The minimum separation Δ of a discrete set T is

$$
\Delta=\inf _{\left(t, t^{\prime}\right) \in T: t \neq t^{\prime}}\left|t-t^{\prime}\right|
$$

Example: 25 spikes, $f_{c}=10^{3}, \Delta=0.8 / f_{c}$

Signals

Data (in signal space)

Example: 25 spikes, $f_{c}=10^{3}, \Delta=0.8 / f_{c}$

Signals
Data (in signal space)

Example: 25 spikes, $f_{c}=10^{3}, \Delta=0.8 / f_{c}$

The difference is almost in the null space of the measurement operator

Difference

Spectrum

Lower bound on Δ

- Above what minimum distance Δ is the problem well posed?
- Numerical lower bound on Δ :

1. Compute singular values of restricted operator for different values of $\Delta_{\text {diff }}$
2. Find $\Delta_{\text {diff }}$ under which the restricted operator is ill conditioned
3. Then $\Delta \geq 2 \Delta_{\text {diff }}$

Singular values of the restricted operator

Number of spikes $=s, f_{c}=10^{3}$

Phase transition at $\Delta_{\text {diff }}=1 / 2 f_{c} \rightarrow \Delta=1 / f_{c}$
Characterized asymptotically by Slepian's prolate spheroidal sequences

Singular values of the restricted operator

Number of spikes $=s, f_{c}=10^{3}$

Phase transition at $\Delta_{\text {diff }}=1 / 2 f_{c} \rightarrow \Delta=1 / f_{c}$
Characterized asymptotically by Slepian's prolate spheroidal sequences

Interpretation of $\lambda_{c}:=1 / f_{c}$

Diameter of point-spread function

$\lambda_{c} / 2$ is the Rayleigh resolution distance

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Periodogram

Spectrum of truncated data in spectral super-resolution

$$
\begin{aligned}
P(t) & =\mathcal{F}_{n}^{*} y \\
& =\sum_{t_{j} \in T} c_{j} D_{f_{c}}\left(t-t_{j}\right),
\end{aligned}
$$

$D_{f_{c}}$ is the periodized sinc or Dirichlet kernel

$$
D_{f_{c}}(t):=\sum_{k=-f_{c}}^{f_{c}} e^{i 2 \pi k t}= \begin{cases}1 & \text { if } t=0 \\ \frac{\sin \left(\left(2 f_{c}+1\right) \pi t\right)}{\left(2 f_{c}+1\right) \sin (\pi t)} & \text { otherwise }\end{cases}
$$

Periodogram

Windowing

Window function $\widehat{w} \in \mathbb{C}^{n}$

$$
\begin{aligned}
y_{\widehat{w}} & =y \cdot \widehat{w} \\
P_{\widehat{w}}(f) & =\mathcal{F}_{n}^{*} y_{\widehat{w}} \\
& =\sum_{t_{j} \in T} c_{j} w\left(t-t_{j}\right),
\end{aligned}
$$

Windowing

-Window function
——Windowed data

Windowing

Minimum separation: Periodogram

$$
\Delta=\frac{0.6}{f_{c}}
$$

$$
\Delta=\frac{1.2}{f_{c}}
$$

Minimum separation: Gaussian periodogram

$$
\Delta=\frac{0.6}{f_{c}}
$$

$$
\Delta=\frac{1.2}{f_{c}}
$$

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Local fitting

Assume only one source

$$
x_{\mathrm{LR}}(t):=c_{1} \phi\left(t-t_{1}\right) .
$$

Estimation via best ℓ_{2}-norm fit

$$
\begin{aligned}
t_{\text {est }} & =\arg \min _{\tilde{t}} \min _{\alpha \in \mathbb{C}} \mid\left\|x_{\mathrm{LR}}-\alpha \phi_{\tilde{t}}\right\|_{2} \\
& =\arg \max _{\tilde{t}}\left|\left\langle x_{\mathrm{LR}}, \phi_{\tilde{t}}\right\rangle\right|
\end{aligned}
$$

If sources are far we can compute local fits

Equivalent to matching pursuit

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Prony polynomial

Signal

$$
x:=\sum_{j} c_{j} \delta_{t_{j}} \quad c_{j} \in \mathbb{C}, t_{j} \in T \subset[0,1]
$$

Data

$$
y_{k}:=\widehat{x}(k), \quad 0 \leq k \leq n-1 .
$$

Prony polynomial

$$
\begin{aligned}
P_{\text {prony }}(t) & :=\prod_{j=1}^{s}\left(1-e^{i 2 \pi\left(t-t_{j}\right)}\right) \\
& =1+\sum_{l=1}^{s} v_{l} e^{i 2 \pi / t}, \quad v_{0}:=1
\end{aligned}
$$

Prony polynomial

Computing the Prony polynomial

By construction

$$
\left\langle P_{\text {prony }}, x\right\rangle=0
$$

By Parseval's Theorem

$$
\begin{aligned}
\left\langle P_{\text {prony }}, x\right\rangle & =\langle v, \widehat{x}\rangle \\
& =\sum_{k=0}^{s} v_{k} \overline{y_{k}} \quad \text { if } s+1 \leq n
\end{aligned}
$$

Computing the Prony polynomial

By construction

$$
\left\langle P_{\text {prony }}, e^{2 \pi k^{\prime} t} x\right\rangle=0
$$

By Parseval's Theorem

$$
\begin{aligned}
\left\langle P_{\text {prony }}, e^{2 \pi k^{\prime} t} x\right\rangle & =\left\langle v, \widehat{x}_{k^{\prime}}\right\rangle \\
& =\sum_{k=0}^{s} v_{k} \overline{y_{k+k^{\prime}}} \quad \text { if } s+k^{\prime} \leq n-1
\end{aligned}
$$

Prony's method

1. Form the system of equations

$$
\left[\begin{array}{cccc}
y_{1} & y_{2} & \ldots & y_{s} \\
y_{2} & y_{3} & \ldots & y_{s+1} \\
\ldots & \ldots & \ldots & \ldots \\
y_{s} & y_{s+1} & \ldots & y_{n-1}
\end{array}\right]\left[\begin{array}{c}
\tilde{v}_{1} \\
\tilde{v}_{2} \\
\cdots \\
\tilde{v}_{s}
\end{array}\right]=-\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\ldots \\
y_{s-1}
\end{array}\right]
$$

2. Solve the system and set $\tilde{v}_{0}=1$
3. Roots of polynomial with coeffs $\tilde{v}_{0}, \ldots, \tilde{v}_{s}: z_{1}, \ldots, z_{s}$
4. For $z_{j}=e^{i 2 \pi \tau}$ include τ in estimated support

Prony's method

$$
\begin{aligned}
{\left[\begin{array}{cccc}
y_{1} & y_{2} & \ldots & y_{s} \\
y_{2} & y_{3} & \ldots & y_{s+1} \\
\ldots & \ldots & \ldots & \ldots \\
y_{s} & y_{s+1} & \ldots & y_{n-1}
\end{array}\right]=} & {\left[\begin{array}{cccc}
e^{-i 2 \pi t_{1}} & e^{-i 2 \pi t_{2}} & \ldots & e^{-i 2 \pi t_{s}} \\
e^{-i 2 \pi 2 t_{1}} & e^{-i 2 \pi 2 t_{2}} & \ldots & e^{-i 2 \pi 2 t_{s}} \\
\ldots & \ldots & \ldots & \ldots \\
e^{-i 2 \pi s t_{1}} & e^{-i 2 \pi s t_{2}} & \ldots & e^{-i 2 \pi s t_{s}}
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
c_{1} & 0 & \ldots & 0 \\
0 & c_{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & c_{s}
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
1 & e^{-i 2 \pi t_{1}} & \ldots & e^{-i 2 \pi(s-1) t_{1}} \\
1 & e^{-i 2 \pi t_{2}} & \ldots & e^{-i 2 \pi(s-1) t_{2}} \\
\ldots & \ldots & \ldots & \ldots \\
1 & e^{-i 2 \pi t_{s}} & \ldots & e^{-i 2 \pi(s-1) t_{s}}
\end{array}\right] }
\end{aligned}
$$

Vandermonde matrix

For any distinct s nonzero $z_{1}, z_{2}, \ldots, z_{s} \in \mathbb{C}$ and any m_{1}, m_{2}, s such that $m_{2}-m_{1}+1 \geq s$

$$
\left[\begin{array}{cccc}
z_{1}^{m_{1}} & z_{2}^{m_{1}} & \cdots & z_{s}^{m_{1}} \\
z_{1}^{m_{1}+1} & z_{2}^{m_{1}+1} & \cdots & z_{s}^{m_{1}+1} \\
z_{1}^{m_{1}+2} & z_{2}^{m_{1}+2} & \cdots & z_{s}^{m_{1}+2} \\
& & \cdots & \\
z_{1}^{m_{2}} & z_{2}^{m_{2}} & \cdots & z_{s}^{m_{2}}
\end{array}\right]
$$

is full rank

No noise

$\mathrm{SNR}=140 \mathrm{~dB}\left(\right.$ relative ℓ_{2} norm of noise $\left.=10^{-8}\right)$

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Alternative interpretation of Prony's method

Prony's method finds nonzero vector in the null space of $Y(s+1)^{T}$

$$
Y(m):=\left[\begin{array}{cccc}
y_{0} & y_{1} & \cdots & y_{n-m} \\
y_{1} & y_{2} & \cdots & y_{n-m+1} \\
\cdots & \cdots & \cdots & \cdots \\
y_{m-1} & y_{m} & \cdots & y_{n-1}
\end{array}\right]
$$

The vector corresponds to the coefficients of the Prony polynomial

Notation: Sinusoidal atoms

For $k>0$

$$
a_{0: k}(t):=\left[\begin{array}{c}
1 \\
e^{-i 2 \pi t} \\
e^{-i 2 \pi 2 t} \\
\cdots \\
e^{-i 2 \pi k t}
\end{array}\right]
$$

$$
A_{0: k}(T):=\left[\begin{array}{llll}
a_{0: k}\left(t_{1}\right) & a_{0: k}\left(t_{2}\right) & \cdots & a_{0: k}\left(t_{s}\right)
\end{array}\right]
$$

Decomposition

$$
\begin{aligned}
Y(m) & =\left[\begin{array}{llll}
a_{0: m-1}\left(t_{1}\right) & a_{0: m-1}\left(t_{2}\right) & \cdots & a_{0: m-1}\left(t_{s}\right)
\end{array}\right] \\
& {\left[\begin{array}{cccc}
c_{1} & 0 & \cdots & 0 \\
0 & c_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & c_{s}
\end{array}\right]\left[\begin{array}{c}
a_{0: n-m}\left(t_{1}\right)^{T} \\
a_{0: n-m}\left(t_{2}\right)^{T} \\
\cdots \\
a_{0: n-m}\left(t_{s}\right)^{T}
\end{array}\right] } \\
& =A_{0: m-1}(T) \subset A_{0: m}(T)^{T}
\end{aligned}
$$

Idea: To estimate T find $a_{0: m-1}(t)$ in the column space of $Y(m)$

Pseudospectrum

To find atoms that are close to the column space of $Y(m)$

- Compute orthogonal complement \mathcal{N} of column space of $Y(m)$
- Locate local maxima of pseudospectrum

$$
P_{\mathcal{N}}(t)=\log \frac{1}{\left|\mathcal{P}_{\mathcal{N}}\left(a_{0: m-1}(t)\right)\right|^{2}}
$$

Empirical covariance matrix

\mathcal{N} is the null space of the empirical covariance matrix

$$
\begin{aligned}
\Sigma(m) & =\frac{1}{n-m+1} Y Y^{*} \\
& =\frac{1}{n-m+1} \sum_{j=0}^{n-m}\left[\begin{array}{c}
y_{j} \\
y_{j+1} \\
\ldots \\
y_{j+m-1}
\end{array}\right]\left[\begin{array}{llll}
\overline{y_{j}} & \overline{y_{j+1}} & \ldots & \overline{y_{j+m-1}}
\end{array}\right]
\end{aligned}
$$

Pseudospectrum

$$
Y(m)=A_{0: m-1}(T) C A_{0: m}(T)^{T}
$$

implies

$$
\begin{array}{ll}
P_{\mathcal{N}}\left(t_{j}\right)=\infty, & \text { for } t_{j} \in T \\
P_{\mathcal{N}}(t)<\infty, & \text { for } t \notin T
\end{array}
$$

Pseudospectrum: No noise

Pseudospectrum: SNR $=140 \mathrm{~dB}, n=2 \mathrm{~s}$

Multiple-signal classification (MUSIC)

1. Build the empirical covariance matrix $\Sigma(m)$
2. Compute the eigendecomposition of $\Sigma(m)$
3. Select $U_{\mathcal{N}}$ corresponding to $m-s$ smallest eigenvalues
4. Estimate support by computing the pseudospectrum

Pseudospectrum: $\mathrm{SNR}=40 \mathrm{~dB}, n=81, m=30$

Pseudospectrum: SNR $=1 \mathrm{~dB}, n=81, m=30$

Probabilistic model: Signal

$$
x=\sum_{t_{j} \in T} c_{j} \delta_{t_{j}}=\sum_{t_{j} \in T}\left|c_{j}\right| e^{i \phi_{j}} \delta_{t_{j}}
$$

The phases ϕ_{j} are independent and uniformly distributed in $[0,2 \pi]$

$$
\begin{aligned}
& \mathrm{E}(x)=0 \\
& \mathrm{E}\left[c c^{*}\right]=D_{c}:=\left[\begin{array}{cccc}
\left|c_{1}\right|^{2} & 0 & \ldots & 0 \\
0 & \left|c_{2}\right|^{2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \left|c_{s}\right|^{2}
\end{array}\right]
\end{aligned}
$$

Probabilistic model: Noise

Noise z is a zero-mean Gaussian vector with covariance $\sigma^{2} /$

$$
\begin{aligned}
\tilde{y}_{k} & :=\int_{0}^{1} e^{-i 2 \pi k t} x(\mathrm{~d} t)+z_{k} \\
& =\sum_{t_{j} \in T} c_{j} e^{-i 2 \pi k t_{j}}+z_{k} \\
\tilde{y} & =A_{0: m-1}(T) c+z
\end{aligned}
$$

Covariance matrix of the data

$$
\mathrm{E}\left[\tilde{y} \tilde{y}^{*}\right]=A_{1: m} D_{c} A_{1: m}^{*}+\sigma^{2} I
$$

Eigendecomposition of covariance matrix

Eigendecomposition of $\mathrm{E}\left[\tilde{y}^{\tilde{y}} \tilde{}^{*}\right]$

$$
\mathrm{E}\left[\tilde{y} \tilde{y}^{*}\right]=\left[\begin{array}{ll}
U_{\mathcal{S}} & U_{\mathcal{N}}
\end{array}\right]\left[\begin{array}{cc}
\Lambda+\sigma^{2} I_{s} & 0 \\
0 & \sigma^{2} I_{n-s}
\end{array}\right]\left[\begin{array}{c}
U_{\mathcal{S}}^{*} \\
U_{\mathcal{N}}^{*}
\end{array}\right],
$$

- $U_{\mathcal{S}} \in \mathbb{C}^{m \times s}$: unitary matrix that spans column space of $A_{1: m}$
- $U_{\mathcal{N}} \in \mathbb{C}^{m \times(m-s)}$: unitary matrix spanning the orthogonal complement
- $\Lambda \in \mathbb{C}^{k \times k}$ is a diagonal matrix with positive entries
$\Delta=\frac{0.6}{f_{c}}, \mathrm{SNR}=20 \mathrm{~dB}, n=81, m=40$

$\Delta=\frac{1.2}{f_{c}}, \mathrm{SNR}=20 \mathrm{~dB}, n=81, m=40$

Different values of m

$\mathrm{SNR}=61 \mathrm{~dB}$

Different values of m

$$
\mathrm{SNR}=21 \mathrm{~dB}
$$

Different values of m

$\mathrm{SNR}=1 \mathrm{~dB}$

Eigenvalues

Eigenvalues

Eigenvalues

Wrong $s(s-1)$

SNR $=21 \mathrm{~dB}$

Wrong $s(s+1)$

$\mathrm{SNR}=21 \mathrm{~dB}$

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Low-rank model

$$
\begin{aligned}
Y_{0} & =\left[\begin{array}{cccc}
y_{0} & y_{1} & \cdots & y_{n-m} \\
y_{1} & y_{2} & \cdots & y_{n-m+1} \\
\cdots & \cdots & \cdots & \cdots \\
y_{m-1} & y_{m} & \cdots & y_{n-1}
\end{array}\right] \\
& =A_{0: m-1}(T) C A_{0: n-m}(T)^{T} \\
& =\sum_{t_{j} \in T} c_{j} a_{0: m-1}\left(t_{j}\right) a_{0: n-m}\left(t_{j}\right)^{T}
\end{aligned}
$$

Matrix pencil

The matrix pencil of two matrices M_{1}, M_{2} is

$$
L_{M_{1}, M_{2}}(\mu):=M_{2}-\mu M_{1}, \quad \mu \in \mathbb{C}
$$

The set of rank-reducing values \mathcal{R} of a matrix pencil satisfy

$$
\operatorname{rank}\left(L_{M_{1}, M_{2}}(\mu)\right)=\operatorname{rank}\left(L_{M_{1}, M_{2}}\left(\mu_{j}\right)\right)+1
$$

for all $\mu_{j} \in \mathcal{R}$ and $\mu \notin \mathcal{R}$

Matrix pencil

We consider the matrix-pencil of Y_{0} and

$$
\begin{aligned}
Y_{1} & =\left[\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n-m+1} \\
y_{2} & y_{3} & \cdots & y_{n-m+2} \\
\cdots & \cdots & \cdots & \cdots \\
y_{m} & y_{m+1} & \cdots & y_{n}
\end{array}\right] \\
& =A_{1: m}(T) C A_{0: n-m}(T)^{T} \\
& =\sum_{t_{j} \in T} c_{j} a_{1: m}\left(t_{j}\right) a_{0: n-m}\left(t_{j}\right)^{T}
\end{aligned}
$$

$\exp (i 2 \pi \tau)$ is a rank-reducing value of $L_{Y_{0}, Y_{1}}$ if and only if $\tau \in T$

Computing the rank-reducing values

Let $Y_{0}=U_{0} \Sigma_{0} V_{0}^{*}$ be the singular-value decomposition of Y_{0}

The s eigenvalues of the matrix

$$
M=V_{0} \Sigma_{0}^{-1} U_{0}^{*} Y_{1}
$$

are equal to $\exp \left(i 2 \pi t_{j}\right)$ for $1 \leq j \leq s$

Proof

$$
a_{1: m}(\tau)=\exp (i 2 \pi \tau) a_{0: m-1}(\tau)
$$

$$
A_{0: m-1}(T)=A_{0: m-1}(T) \Phi
$$

$$
\Phi:=\left[\begin{array}{cccc}
e^{i 2 \pi t_{1}} & 0 & \ldots & 0 \\
0 & e^{i 2 \pi t_{2}} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & e^{i 2 \pi t_{s}}
\end{array}\right]
$$

Proof

$$
\begin{aligned}
& Y_{0}=A_{0: m-1}(T) C A_{0: n-m}(T)^{T} \\
& C A_{0: n-m}(T)^{T}=U \Sigma V^{*} \\
& C A_{0: n-m}(T)^{T} V \Sigma^{-1} U^{*}=1 \\
& Y_{1}=A_{1: m}(T) C A_{0: n-m}(T)^{T} \\
& \quad=A_{0: m-1}(T) \Phi C A_{0: n-m}(T)^{T} \\
& =A_{0: m-1}(T) C A_{0: n-m}(T)^{T} V \Sigma^{-1} U^{*} \Phi C A_{0: n-m}(T)^{T} \\
& =Y_{0} V \Sigma^{-1} U^{*} \Phi U \Sigma V^{*}
\end{aligned}
$$

Proof

$$
\begin{aligned}
& V_{0} \Sigma_{0}^{-1} U_{0}^{*} Y_{0} V
\end{aligned}=V_{0} V_{0}^{*} V=V ~ \begin{aligned}
& V_{0} \Sigma_{0}^{-1} U_{0}^{*} Y_{1}=V_{0} \Sigma_{0}^{-1} U_{0}^{*} Y_{0} V \Sigma^{-1} U^{*} \Phi U \Sigma V^{*} \\
&=V \Sigma^{-1} U^{*} \Phi U \Sigma V^{*} \\
&=P^{-1}\left[\begin{array}{ll}
\Phi & 0 \\
0 & 0
\end{array}\right] P \\
& P:=\left[\begin{array}{ll}
U & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
\Sigma & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
V^{*} \\
V_{\perp}^{*}
\end{array}\right]
\end{aligned}
$$

Spectral super-resolution via matrix pencil

1. Build $Y_{0}=U_{0} \Sigma_{0} V_{0}^{*}$ and Y_{1}
2. Compute the s largest eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ of $V_{0} \Sigma_{0}^{-1} U_{0}^{*} Y_{1}$
3. Output the phase of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ divided by 2π

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Sensing model for reflection seismology

Suggestion of various geophysicists: Minimize ℓ_{1} norm

Deconvolution with the $\boldsymbol{\ell}_{1}$ norm
 Howard L. Taylor,* Stephen C. Banks, ${ }^{\ddagger}$ and John F. McCoy ${ }^{5}$
 LINEAR INVERSION OF BAND-LIMITED REFLECTION SEISMOGRAMS*

FADIL SANTOSA \dagger AND WILLIAM W. SYMES \ddagger

GEOPHYSICS, VOL. 44, NO. 1 (JANUARY 1979)

SIAM J. SCI. Stat. COMPUT.
Vol. 7, No. 4, October 1986

Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution

Shlomo Levy* and Peter K. Fullagar \ddagger

ROBUST MODELING WITH ERRATIC DATA \dagger

GEOPHYSICS, VOL. 46, NO. 9 (SEPTEMBER 1981)

Minimum ℓ_{1}-norm estimate

```
minimize
subject to estimate * pulse = data
|estimate||
```

Reflection coefficients

Estimate

Total-variation norm

- Continuous counterpart of the ℓ_{1} norm
- If $x=\sum_{j} c_{j} \delta_{t_{j}}$ then $\|x\|_{T V}=\sum_{j}\left|c_{j}\right|$
- Not the total variation of a piecewise-constant function
- Formal definition: For a complex measure ν

$$
\|\nu\|_{\mathrm{TV}}=\sup _{\|f\|_{\infty} \leq 1, f \in C(\mathbb{T})} \int_{\mathbb{T}} \overline{f(t)} x(\mathrm{~d} t)
$$

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Super-resolution via convex programming

For data of the form $y=\mathcal{F}_{c} x$, we solve

$$
\min _{\tilde{x}}\|\tilde{x}\|_{T V} \quad \text { subject to } \quad \mathcal{F}_{c} \tilde{x}=y
$$

over all finite complex measures \tilde{x} supported on $[0,1]$

Exact recovery is guaranteed if $\Delta \geq \frac{1.26}{f_{c}}$

Dual certificate

The same as for the ℓ_{1} norm, but now q is a function

$$
\begin{array}{ll}
q:=\mathcal{F}_{c}^{*} v & \\
q_{i}=\operatorname{sign}\left(x_{i}\right) & \text { if } x_{i} \neq 0 \\
\left|q_{i}\right|<1 & \text { if } x_{i}=0
\end{array}
$$

The rows of \mathcal{F}_{c} are low pass sinusoids instead of random sinusoids

Certificate for super-resolution

Aim: Interpolate sign pattern

Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

$$
c(t)=\sum_{i: x_{i} \neq 0} \alpha_{i} K(t-i)
$$

Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

$$
c(t)=\sum_{i: x_{i} \neq 0} \alpha_{i} K(t-i)
$$

Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

$$
c(t)=\sum_{i: x_{i} \neq 0} \alpha_{i} K(t-i)
$$

Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

$$
c(t)=\sum_{i: x_{i} \neq 0} \alpha_{i} K(t-i)
$$

Certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

$$
c(t)=\sum_{i: x_{i} \neq 0} \alpha_{i} K(t-i)
$$

Certificate for super-resolution

Problem: Magnitude of certificate locally exceeds 1

Certificate for super-resolution

Problem: Magnitude of certificate locally exceeds 1
Solution: Add correction term and force the derivative of the certificate to equal zero on the support

$$
c(t)=\sum_{i: x_{i} \neq 0} \alpha_{i} K(t-i)+\beta_{i} K^{\prime}(t-i)
$$

Certificate for super-resolution

Problem: Magnitude of certificate locally exceeds 1
Solution: Add correction term and force the derivative of the certificate to equal zero on the support

$$
c(t)=\sum_{i: x_{i} \neq 0} \alpha_{i} K(t-i)+\beta_{i} K^{\prime}(t-i)
$$

Certificate for super-resolution

Similar construction works for bandpass point-spread functions relevant to reflection seismology

Super-resolution of point sources
Spatial super-resolution
Spectral super-resolution
Deconvolution in reflection seismography
Conditioning of super-resolution
Linear methods
Periodogram
Local fitting
Parametric methods
Prony's method
Subspace methods
Matrix-pencil methods
Super-resolution via convex programming
Exact recovery
Super-resolution from noisy data

Super-resolution from noisy data

Additive-noise model

$$
y=\mathcal{F}_{n} x+z
$$

Relaxed optimization problem

$$
\min _{\tilde{x}}\|\tilde{x}\|_{\text {TV }} \quad \text { subject to } \quad\left\|\mathcal{F}_{n} \tilde{x}-y\right\|_{2}^{2} \leq \delta
$$

δ is an estimate of the noise level

Super-resolution from noisy data

Additive-noise model

$$
y=\mathcal{F}_{n} x+z
$$

Relaxed optimization problem

$$
\min _{\tilde{x}}\|\tilde{x}\|_{\text {TV }} \quad \text { subject to } \quad\left\|\mathcal{F}_{n} \tilde{x}-y\right\|_{2}^{2} \leq \delta
$$

δ is an estimate of the noise level
$\Delta=\frac{0.6}{f_{c}}, \mathrm{SNR}=20 \mathrm{~dB}, f_{c}=40$

$\Delta=\frac{1.2}{f_{c}}, \mathrm{SNR}=20 \mathrm{~dB}, f_{c}=40$

Deconvolution with the ℓ_{1} norm (Taylor, Banks, McCoy '79)

