Low-rank models

Optimization-Based Data Analysis

http://www.cims.nyu.edu/~cfgranda/pages/OBDA_spring16

Carlos Fernandez-Granda

5/2/2016

Matrix completion
The matrix completion problem
Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Matrix completion

The matrix completion problem
Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Netflix Prize

Matrix completion

$$
\begin{array}{cccc}
\text { Bob } & \text { Molly } & \text { Mary } & \text { Larry } \\
\left(\begin{array}{cccc}
1 & ? & 5 & 4 \\
? & 1 & 4 & 5 \\
4 & 5 & 2 & ? \\
5 & 4 & 2 & 1 \\
4 & 5 & 1 & 2 \\
1 & 2 & ? & 5
\end{array}\right) \text { The Dark Knight } \begin{array}{l}
\text { Sove Actually } \\
\text { Bridget Jones's Diary } \\
\text { Pretty Woman } \\
\text { Superman } 2
\end{array}
\end{array}
$$

Matrix completion as an inverse problem

$$
\left[\begin{array}{lll}
1 & ? & 5 \\
? & 3 & 2
\end{array}\right]
$$

For a fixed sampling pattern, underdetermined system of equations

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
M_{11} \\
M_{21} \\
M_{12} \\
M_{22} \\
M_{13} \\
M_{23}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
5 \\
2
\end{array}\right]
$$

Isn't this completely ill posed?

Assumption: Matrix is low rank, depends on $\approx r(m+n)$ parameters
As long as data $>$ parameters recovery is possible (in principle)

$$
\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & ? & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
? & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Matrix cannot be sparse

$$
\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 23 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Singular vectors cannot be sparse

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right]
$$

Incoherence

The matrix must be incoherent: its singular vectors must be spread out

$$
\text { For } 1 / \sqrt{n} \leq \mu \leq 1
$$

$$
\begin{aligned}
& \max _{1 \leq i \leq r, 1 \leq j \leq m}\left|U_{i j}\right| \leq \mu \\
& \max _{1 \leq i \leq r, 1 \leq j \leq n}\left|V_{i j}\right| \leq \mu
\end{aligned}
$$

for the left U_{1}, \ldots, U_{r} and right V_{1}, \ldots, V_{r} singular vectors

Measurements

We must see an entry in each row/column at least

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
? & ? & ? & ? \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
? \\
1 \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

Assumption: Random sampling (usually does not hold in practice!)

Underdetermined inverse problems

Measurements

Compressed sensing

Super-resolution

Matrix
completion

Gaussian, random
Fourier coeffs.

Low pass

Random sampling

Class of signals

Sparse

Signals with min. separation

Incoherent low-rank matrices

Matrix completion

The matrix completion problem

Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Matrix inner product

The trace of a $n \times n$ matrix is defined as

$$
\operatorname{Trace}(A):=\sum_{i=1}^{n} A_{i i}
$$

The inner product between two $m \times n$ matrices is defined as

$$
\langle A, B\rangle=\operatorname{Trace}\left(A^{T} B\right)=\sum_{i=1}^{m} \sum_{i=1}^{n} A_{i j} B_{i j}
$$

For any matrices A, B, C with appropriate dimensions

$$
\operatorname{Trace}(A B C)=\operatorname{Trace}(B C A)=\operatorname{Trace}(C A B)
$$

Matrix norm

Let $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}$ be the singular values of $M \in \mathbb{R}^{m \times n}, m \geq n$,
Operator norm

$$
\|M\|:=\max _{\|u\|_{2} \leq 1}\|M u\|_{2}=\sigma_{1}
$$

Frobenius norm

$$
\|M\|_{\mathrm{F}}:=\sqrt{\sum_{i} M_{i j}^{2}}=\sqrt{\operatorname{Trace}\left(M^{T} M\right)}=\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}
$$

Nuclear norm

$$
\|M\|_{*}:=\sum_{i=1}^{n} \sigma_{i}
$$

Characterization of nuclear norm

$$
\|A\|_{*}=\sup _{\|B\| \leq 1}\langle A, B\rangle
$$

Consequence: Nuclear norm satisfies triangle inequality

$$
\|A+B\|_{*} \leq\|A\|_{*}+\|B\|_{*}
$$

Proof of characterization

For any $M \in \mathbb{R}^{m \times n}, U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$, if $U^{T} U=I, V^{T} V=I$ then

$$
\|U M V\|=\|M\|
$$

For any $M \in \mathbb{R}^{n \times n}$

$$
\max _{1 \leq i \leq n}\left|M_{i i}\right| \leq\|M\|
$$

Experiment

Compare rank, operator norm, Frobenius norm and nuclear norm of

$$
M(t):=\left[\begin{array}{ccc}
0.5+t & 1 & 1 \\
0.5 & 0.5 & t \\
0.5 & 1-t & 0.5
\end{array}\right]
$$

for different values of t

Matrix norms vs rank

Low-rank matrix estimation

First idea:

$$
\min _{\tilde{X} \in \mathbb{R}^{m \times n}} \operatorname{rank}(\widetilde{X}) \quad \text { such that } \tilde{X}_{\Omega}=y
$$

Ω : indices of revealed entries
y : revealed entries
Computationally intractable because of missing entries

Tractable alternative:

$$
\min _{\tilde{X} \in \mathbb{R}^{m \times n}}\|\widetilde{X}\|_{*} \text { such that } \widetilde{X}_{\Omega}=y
$$

Low-rank matrix estimation

If data are noisy

$$
\min _{\tilde{x} \in \mathbb{R}^{m \times n}}\left\|\widetilde{X}_{\Omega}-y\right\|_{2}^{2}+\lambda\|\widetilde{x}\|_{*}
$$

where $\lambda>0$ is a regularization parameter

Matrix completion via nuclear-norm minimization

$$
\begin{gathered}
\text { Bob } \\
\left(\begin{array}{cccc}
1 & \text { Molly } & \text { Mary } & \text { Larry } \\
2(2) & 5 & 4 \\
4 & 1 & 4 & 5 \\
5 & 4 & 2 & 2(1) \\
4 & 5 & 2 & 1 \\
1 & 2 & 5(5) & 5
\end{array}\right) \begin{array}{l}
\text { The Dark Knight } \\
\text { Spiderman 3 } \\
\text { Love Actually } \\
\text { Bridget Jones's Diary } \\
\text { Pretty Woman } \\
\text { Superman 2 }
\end{array}
\end{gathered}
$$

Matrix completion
The matrix completion problem
Nuclear norm

Theoretical guarantees

Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Exact recovery

Guarantees by Gross 2011, Candès and Recht 2008, Candès and Tao 2009

$$
\min _{\widetilde{X} \in \mathbb{R}^{m \times n}}\|\widetilde{X}\|_{*} \quad \text { such that } \widetilde{X}_{\Omega}=y
$$

achieves exact recovery with high probability as long as the number of samples is proportional to $r(n+m)$ up to log terms

The proof is based on the construction of a dual certificate

Subgradient of nuclear norm

Let $M=U \Sigma V^{T}$. Any matrix of the form

$$
G:=U V^{T}+W
$$

where

$$
\begin{aligned}
\|W\| & \leq 1 \\
U^{T} W & =0 \\
W V & =0
\end{aligned}
$$

is a subgradient of the nuclear norm at M, so that

$$
\|M+H\|_{*} \geq\|M\|_{*}+\langle G, H\rangle \quad \text { for any } H
$$

Proof

Follows from

$$
\|A\|_{*}=\sup _{\|B\| \leq 1}\langle A, B\rangle
$$

Dual certificate

Let $M=U \Sigma V^{T}$. A dual certificate Q of the optimization problem

$$
\min _{\widetilde{X} \in \mathbb{R}^{m \times n}}\|\widetilde{X}\|_{*} \quad \text { such that } \widetilde{X}_{\Omega}=y
$$

is any matrix supported on Ω such that

$$
\begin{aligned}
& Q=U V^{T}+W \\
& \|W\|<1 \\
& U^{T} W=0 \\
& W V=0
\end{aligned}
$$

Dual certificate

$U V^{\top}=Q-W$ where Q is supported on Ω and $\|W\|<1$
If U or V are not incoherent, $U V^{\top}$ might have large entries not in Ω
Proof of existence relies on concentration bounds

Matrix completion
The matrix completion problem
Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Proximal gradient method

Method to solve the optimization problem

$$
\operatorname{minimize} f(x)+g(x),
$$

where f is differentiable and prox $_{g}$ is tractable

Proximal-gradient iteration:

$$
\begin{aligned}
& x^{(0)}=\text { arbitrary initialization } \\
& x^{(k+1)}=\operatorname{prox}_{\alpha_{k} g}\left(x^{(k)}-\alpha_{k} \nabla f\left(x^{(k)}\right)\right)
\end{aligned}
$$

Proximal operator of nuclear norm

The solution \widehat{X} to

$$
\min _{\tilde{X} \in \mathbb{R}^{m \times n}} \frac{1}{2}\|Y-\widetilde{X}\|_{F}^{2}+\tau\|\widetilde{X}\|_{*}
$$

is obtained by soft-thresholding the SVD of Y

$$
\begin{aligned}
\widehat{X} & =\mathcal{D}_{\tau}(Y) \\
\mathcal{D}_{\tau}(M) & :=U \mathcal{S}_{\tau}(\Sigma) V^{T} \quad \text { where } M=U \Sigma V^{T} \\
\mathcal{S}_{\tau}(\Sigma)_{i i} & := \begin{cases}\Sigma_{i i}-\tau & \text { if } \Sigma_{i i}>\tau \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Proximal gradient method

Proximal gradient method for the problem

$$
\min _{\widetilde{x} \in \mathbb{R}^{m \times n}}\left\|\widetilde{X}_{\Omega}-y\right\|_{2}^{2}+\lambda\|\widetilde{x}\|_{*}
$$

$X^{(0)}=$ arbitrary initialization

$$
\begin{aligned}
& M^{(k)}=X^{(k)}-\alpha_{k}\left(X_{\Omega}^{(k)}-y\right) \\
& X^{(k+1)}=\mathcal{D}_{\alpha_{k} \lambda}\left(M^{(k)}\right)
\end{aligned}
$$

Matrix completion
The matrix completion problem
Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Low-rank matrix completion

Intractable problem

$$
\min _{\tilde{X} \in \mathbb{R}^{m \times n}} \operatorname{rank}(\widetilde{X}) \quad \text { such that } \widetilde{X}_{\Omega} \approx y
$$

Nuclear norm: convex (©) but computationally expensive ($($) due to SVD computations

Alternative

- Fix rank k beforehand
- Parametrize the matrix as $A B$ where $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$
- Solve

$$
\min _{\tilde{A} \in \mathbb{R}^{m \times k}, \tilde{B} \in \mathbb{R}^{k \times n}}\left\|(\widetilde{A} \widetilde{B})_{\Omega}-y\right\|_{2}
$$

by alternating minimization

Alternating minimization

Sequence of least-squares problems (much faster than computing SVDs)

- To compute $A^{(k)}$ fix $B^{(k-1)}$ and solve

$$
\min _{\tilde{A} \in \mathbb{R}^{m \times k}}\left\|\left(\widetilde{A} B^{(k-1)}\right)_{\Omega}-y\right\|_{2}
$$

- To compute $B^{(k)}$ fix $A^{(k)}$ and solve

$$
\min _{\widetilde{B} \in \mathbb{R}^{k \times n}}\left\|\left(A^{(k)} \widetilde{B}\right)_{\Omega}-y\right\|_{2}
$$

Theoretical guarantees: Jain, Netrapalli, Sanghavi 2013

Matrix completion

The matrix completion problem
Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Matrix completion
The matrix completion problem
Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Collaborative filtering

$$
A:=\left(\begin{array}{cccc}
\text { Bob } & \text { Molly } & \text { Mary } & \text { Larry } \\
\left(\begin{array}{cccc}
1 & 1 & 5 & 5 \\
1 & 1 & 5 & 5 \\
5 & 5 & 1 & 1 \\
5 & 5 & 1 & 1 \\
5 & 5 & 1 & 1 \\
1 & 1 & 5 & 5
\end{array}\right) l \begin{array}{l}
\text { The Dark Knight } \\
\text { Spiderman 3 } \\
\text { Love Actually } \\
\text { Bridget Jones's Diary } \\
\text { Pretty Woman } \\
\text { Superman 2 }
\end{array}
\end{array}\right.
$$

SVD

$$
A-\bar{A}=U \Sigma V^{T}=U\left[\begin{array}{cccc}
9.798 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] V^{T}
$$

First left singular vector

D. Knight	Sp. 3	Love Act.	B.J.'s Diary	P. Woman	Sup. 2
$U_{1}=(-0.4082$	-0.4082	0.4082	0.4082	0.4082	$-0.4082)$

Interpretations:

- Score atom: Centered scores for each person are proportional to U_{1}
- Coefficients: They cluster movies into action (-) and romantic (+)

First right singular vector

$$
\left.\begin{array}{cccc}
& \text { Bob } & \text { Molly } & \text { Mary } \\
V_{1}=\left(\begin{array}{c}
\text { Larry } \\
0.5
\end{array}\right. & 0.5 & -0.5 & -0.5
\end{array}\right)
$$

Interpretations:

- Score atom: Centered scores for each movie are proportional to V_{1}
- Coefficients: They cluster people into action (-) and romantic (+)

Outliers

$$
A:=\left(\begin{array}{cccc}
\text { Bob } & \text { Molly } & \text { Mary } & \text { Larry } \\
5 & 1 & 5 & 5 \\
1 & 1 & 5 & 5 \\
5 & 5 & 1 & 1 \\
5 & 5 & 1 & 1 \\
5 & 5 & 1 & 1 \\
1 & 1 & 5 & 1
\end{array}\right) \begin{aligned}
& \text { The Dark Knight } \\
& \text { Spiderman 3 } \\
& \text { Love Actually } \\
& \text { Bridget Jones's Diary } \\
& \text { Pretty Woman } \\
& \text { Superman } 2
\end{aligned}
$$

SVD

$$
A-\bar{A}=U \Sigma V^{T}=U\left[\begin{array}{cccc}
8.543 & 0 & 0 & 0 \\
0 & 4.000 & 0 & 0 \\
0 & 0 & 2.649 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] V^{T}
$$

Without outliers

$$
A-\bar{A}=U \Sigma V^{T}=U\left[\begin{array}{cccc}
9.798 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] V^{T}
$$

First left singular vector

$\left.\begin{array}{rccccc}\text { D. Knight } & \text { Sp. } 3 & \text { Love Act. } & \text { B.J.'s Diary } & \text { P. Woman } & \text { Sup. 2 } \\ U_{1}=(-0.2610 & -0.4647 & 0.4647 & 0.4647 & 0.4647 & -0.2610\end{array}\right)$

Without outliers

D. Knight	Sp. 3	Love Act.	B.J.'s Diary	P. Woman	Sup. 2
$U_{1}=(-0.4082$	-0.4082	0.4082	0.4082	0.4082	$-0.4082)$

First right singular vector

$$
V_{1}=\left(\begin{array}{cccc}
\text { Bob } & \text { Molly } & \text { Mary } & \text { Larry } \\
0.4352 & 0.5573 & -0.5573 & -0.4352)
\end{array}\right.
$$

Without outliers

$$
\left.\begin{array}{cccc}
\text { Bob } & \text { Molly } & \text { Mary } & \text { Larry } \\
V_{1}=\left(\begin{array}{cc}
0.5 & 0.5
\end{array}\right. & -0.5 & -0.5
\end{array}\right)
$$

PCA without outliers

$$
\frac{\sigma_{1}}{\sqrt{n}}=1.042 \quad \frac{\sigma_{2}}{\sqrt{n}}=0.192
$$

PCA with outliers

$$
\frac{\sigma_{1}}{\sqrt{n}}=1.774 \quad \frac{\sigma_{2}}{\sqrt{n}}=0.633
$$

Matrix completion
The matrix completion problem
Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Low rank + sparse model

Sum of a low-rank component L and a sparse component S

Low-rank component cannot be sparse

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 23 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 47 & 0
\end{array}\right] } \\
&==\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]+\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 23 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 47 & 0
\end{array}\right]
\end{aligned}
$$

Incoherence

Low-rank component must be incoherent
For $L=U \Sigma V^{T}$

$$
\begin{aligned}
& \max _{1 \leq i \leq r, 1 \leq j \leq m}\left|U_{i j}\right| \leq \mu \\
& \max _{1 \leq i \leq r, 1 \leq j \leq n}\left|V_{i j}\right| \leq \mu
\end{aligned}
$$

where $1 / \sqrt{n} \leq \mu \leq 1$

Sparse component cannot be low rank

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] }+\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \\
&=
\end{aligned}
$$

Assumption: Support distributed uniformly at random (doesn't hold in practice!)

Nuclear norm $+\ell_{1}$-norm

We want to promote a low-rank L and a sparse S

$$
\min _{\tilde{L}, \widetilde{S} \in \mathbb{R}^{m \times n}}\|\tilde{L}\|_{*}+\lambda\|\widetilde{S}\|_{1} \quad \text { such that } \tilde{L}+\widetilde{S}=Y
$$

Here $\|\cdot\|_{1}$ is the ℓ_{1} norm of the vectorized matrix

Choice of λ

$$
\begin{gathered}
\left\|\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\right\|_{*}=n \quad\left\|\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\right\|_{1}=n^{2} \\
\lambda>\frac{1}{n}
\end{gathered}
$$

Choice of λ

$$
\left\|\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right\|_{*}=1 \quad\left\|\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right\|_{1}=1
$$

Choice of λ

$$
\begin{gathered}
\left\|\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right\|_{*}=\sqrt{n}\| \|\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \|_{1}=n \\
\lambda \approx \frac{1}{\sqrt{n}}
\end{gathered}
$$

$L+S$

$\lambda=\frac{1}{\sqrt{n}}$

L

S

Large λ

Small λ

L

S

Matrix completion
The matrix completion problem
Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Exact recovery

Guarantees by Candès, Li, Ma, Wright 2011

$$
\min _{\tilde{L}, \widetilde{S} \in \mathbb{R}^{n \times n}}\|\widetilde{L}\|_{*}+\lambda\|\widetilde{S}\|_{1} \quad \text { such that } \tilde{L}+\widetilde{S}=Y
$$

achieves an exact decomposition with high probability for

- rank (L) of order n if L is incoherent
- a sparsity level of S of order n^{2} if its support is random

The proof is based on the construction of a dual certificate

Dual certificate

Let $L=U \Sigma V^{\top}$ and Ω be the support of S
A dual certificate Q of the optimization problem

$$
\min _{\tilde{L}, \tilde{S} \in \mathbb{R}^{m \times n}}\|\tilde{L}\|_{*}+\lambda\|\widetilde{S}\|_{1} \quad \text { such that } \tilde{L}+\widetilde{S}=Y
$$

is any matrix such that

$$
\begin{aligned}
& Q=U V^{\top}+W=\lambda \operatorname{sign}(S)+F \\
& \|W\|<1 \quad U^{T} W=0 \quad W V=0 \\
& F_{\Omega}=0 \quad\|F\|_{\infty}<\lambda
\end{aligned}
$$

Matrix completion
The matrix completion problem
Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Convex program with equality constraints

Canonical problem with linear equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=y
\end{array}
$$

Lagrangian

$$
\mathcal{L}(x, z):=f(x)+\langle z, A x-y\rangle
$$

z is a Lagrange multiplier
Dual function

$$
g(z):=\inf _{x} f(x)+\langle z, A x-y\rangle
$$

Convex program with equality constraints

If strong duality holds for the optimal x^{*} and z^{*}

$$
\begin{aligned}
f\left(x^{*}\right) & =g\left(z^{*}\right) \\
& =\inf _{x} \mathcal{L}\left(x, z^{*}\right) \\
& \leq f\left(x^{*}\right)
\end{aligned}
$$

If x^{*} is unique and we know z^{*}, we can compute x^{*} by solving minimize $\quad \mathcal{L}\left(x, z^{*}\right)$

Dual-ascent method

Find z^{*} using gradient ascent
Iterations:

- Primal variable update

$$
x^{(k)}=\arg \min _{x} \mathcal{L}\left(x, z^{(k)}\right)
$$

- Compute gradient of dual function at $z^{(k)}$

$$
\nabla g\left(z^{(k)}\right)=A x^{(k)}-y
$$

- Dual variable update

$$
z^{(k+1)}=z^{(k)}+\alpha^{(k)} \nabla g\left(z^{(k)}\right)
$$

Augmented Lagrangian

Aim: Make dual-ascent method more robust
Augmented Lagrangian

$$
\mathcal{L}_{\rho}(x, z):=f(x)+\langle z, A x-y\rangle+\frac{\rho}{2}\|A x-y\|_{2}^{2}
$$

Lagrangian of modified problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+\frac{\rho}{2}\|A x-y\|_{2}^{2} \\
\text { subject to } & A x=y
\end{array}
$$

Method of multipliers

Iterations:

- Primal variable update

$$
x^{(k)}=\arg \min _{x} \mathcal{L}_{\rho}\left(x, z^{(k)}\right)
$$

- Compute $z^{(k+1)}$ such that

$$
\nabla_{x} \mathcal{L}\left(x^{(k)}, z^{(k+1)}\right)=0
$$

Dual update

We have

$$
\nabla_{x} \mathcal{L}_{\rho}\left(x^{(k)}, z^{(k)}\right)=0
$$

$$
\nabla_{x} \mathcal{L}_{\rho}\left(x^{(k)}, z^{(k)}\right)=\nabla_{x} f\left(x^{(k)}\right)+A^{T}\left(z^{(k)}+\rho(A x-y)\right)
$$

$\nabla_{x} \mathcal{L}\left(x^{(k)}, z^{(k)}+\rho(A x-y)\right)=\nabla_{x} f\left(x^{(k)}\right)+A^{T}\left(z^{(k)}+\rho(A x-y)\right)$

So we can use the dual-ascent update with $\alpha_{k}=\rho$

$$
z^{(k+1)}=z^{(k)}+\rho(A x-y)
$$

Alternating direction method of multipliers (ADMM)

Apply same ideas to

$$
\begin{array}{ll}
\operatorname{minimize} & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \\
\text { subject to } & A x_{1}+B x_{2}=y
\end{array}
$$

Alternating direction method of multipliers (ADMM)

Iterations:

- Primal variable updates

$$
\begin{aligned}
& x_{1}^{(k)}=\arg \min _{x} \mathcal{L}_{\rho}\left(x, x_{2}^{(k-1)}, z^{(k)}\right) \\
& x_{2}^{(k)}=\arg \min _{x} \mathcal{L}_{\rho}\left(x_{1}^{(k)}, x, z^{(k)}\right)
\end{aligned}
$$

- Dual variable update

$$
z^{(k+1)}=z^{(k)}+\rho\left(A x_{1}^{(k)}+B x_{2}^{(k)}-y\right)
$$

ADMM for robust PCA

Robust PCA problem

$$
\min _{L, S \in \mathbb{R}^{n \times n}}\|L\|_{*}+\lambda\|S\|_{1} \quad \text { such that } L+S=Y
$$

Augmented Lagrangian

$$
\|L\|_{*}+\lambda\|S\|_{1}+\langle Z, L+S-Y\rangle+\frac{\rho}{2}\|L+S-M\|_{F}^{2}
$$

Primal updates

$$
\begin{aligned}
L^{(k)} & =\arg \min _{L} \mathcal{L}_{\rho}\left(L, S^{(k-1)}, Z^{(k)}\right) \\
& =\arg \min _{L}\|L\|_{*}+\left\langle Z^{(k)}, L\right\rangle+\frac{\rho}{2}\left\|L+S^{(k-1)}-M\right\|_{\mathrm{F}}^{2} \\
& =\mathcal{D}_{1 / \rho}\left(\frac{1}{\rho} Z^{(k)}+S^{(k-1)}-M\right)
\end{aligned}
$$

$$
S^{(k)}=\arg \min _{S} \mathcal{L}_{\rho}\left(S, L^{(k-1)}, Z^{(k)}\right)
$$

$$
=\arg \min _{S} \lambda\|S\|_{1}+\left\langle Z^{(k)}, S\right\rangle+\frac{\rho}{2}\left\|L^{(k-1)}+S-M\right\|_{F}^{2}
$$

$$
=\mathcal{S}_{\lambda / \rho}\left(\frac{1}{\rho} Z^{(k)}+L^{(k)}-M\right)
$$

ADMM for robust PCA

Iterations:

- Primal variable updates

$$
\begin{aligned}
L^{(k)} & =\mathcal{D}_{1 / \rho}\left(\frac{1}{\rho} Z^{(k)}+S^{(k-1)}-M\right) \\
S^{(k)} & =\mathcal{S}_{\lambda / \rho}\left(\frac{1}{\rho} Z^{(k)}+L^{(k)}-M\right)
\end{aligned}
$$

- Dual variable update

$$
Z^{(k+1)}=Z^{(k)}+\rho\left(L^{(k)}+S^{(k)}-M\right)
$$

Matrix completion
The matrix completion problem
Nuclear norm
Theoretical guarantees
Algorithms
Alternating minimization

Robust PCA
Outliers
Low rank + sparse model
Theoretical guarantees
Algorithms
Background subtraction

Background subtraction

Frame 17

Low-rank component

Sparse component

Frame 42

Low-rank component

Sparse component

Frame 75

Low-rank component

Sparse component

