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Matrix completion as an inverse problem
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For a fixed sampling pattern, underdetermined system of equations
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Isn't this completely ill posed?

Assumption: Matrix is low rank, depends on = r (m + n) parameters

As long as data > parameters recovery is possible (in principle)
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Matrix cannot be sparse
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Singular vectors cannot be sparse
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Incoherence

The matrix must be incoherent: its singular vectors must be spread out
Forl/y/n<pu<1

max _|Uj| < p
1<i<r,1<j<m

max Vil <
1§i§r,1§j§n| il < p

for the left Ui,..., U, and right V4, ..., V, singular vectors



Measurements

We must see an entry in each row/column at least

11 1 1]

[ S I e §
[ T S I =}

11
77
11
11

[ T S T = ¢

Assumption: Random sampling (usually does not hold in practice!)



Underdetermined inverse problems
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Matrix inner product

The trace of a n X n matrix is defined as
n
Trace (A) := Z Aii
i=1

The inner product between two m x n matrices is defined as
m n
(A,B) = Trace (ATB) = 3° 3 A;B;
i=1 i=1
For any matrices A, B, C with appropriate dimensions

Trace (ABC) = Trace (BCA) = Trace (CAB)



Matrix norm

Let 01 > 0o > ... > o, be the singular values of M € R™*" m > n,

Operator norm

IM]|:= max [IMull = o
2

Frobenius norm

IM||¢ == /Z M2 = \/Trace (MTM) =

Nuclear norm

M, - Za,



Characterization of nuclear norm

Al = sup (A, B)
1BlI<1

Consequence: Nuclear norm satisfies triangle inequality

1A+ Bl < [[All. + [BIl.



Proof of characterization

For any M € R™*" (J € R™*™M V e R"™" if UTU=1, VTV =1 then

[lumMV|| = [|M]|

For any M € R"™*"

max [M;;| < [|M]|
1<i<n



Experiment

Compare rank, operator norm, Frobenius norm and nuclear norm of

05+t 1 1
M(t):=| 05 05 t
0.5 1—t 05

for different values of t



Matrix norms vs rank
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Low-rank matrix estimation

First idea:

_min rank ()?) such that Xq = y
XER'"X"

Q: indices of revealed entries

y: revealed entries

Computationally intractable because of missing entries

Tractable alternative:

X such that )?Q =y

_min

XER’"X" *



Low-rank matrix estimation

If data are noisy

min

~ 2 ~
) Xo || +A[|X
XERmxn 2

*

where X > 0 is a regularization parameter



Matrix completion via nuclear-norm minimization
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Exact recovery

Guarantees by Gross 2011, Candés and Recht 2008, Candés and Tao 2009

“min [|X such that Xq = y
XERan

*

achieves exact recovery with high probability as long as the number of
samples is proportional to r (n + m) up to log terms

The proof is based on the construction of a dual certificate



Subgradient of nuclear norm

Let M = UXVT. Any matrix of the form
G:=UVT+WwW
where

W <1
Urw =0
WV =0

is a subgradient of the nuclear norm at M, so that

1M+ HIl, > [[M]|, + (G, H) for any H



Proof

Follows from

Al = sup (A, B)
1BlI<1



Dual certificate

Let M = UXVT. A dual certificate Q of the optimization problem

X such that )?Q =y

_min

XER’"X" *

is any matrix supported on  such that

Q=UuvT +w

W]l <1
UTw=o0
WV =0



Dual certificate

UVT = Q — W where @ is supported on Q and ||W|| < 1
If U or V are not incoherent, UV'T might have large entries not in Q

Proof of existence relies on concentration bounds
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Proximal gradient method

Method to solve the optimization problem
minimize f (x) + g (x),

where f is differentiable and prox, is tractable

Proximal-gradient iteration:

x(® = arbitrary initialization
x(k 1) = ProX, g (x(k) —a, Vf (x(k))>



Proximal operator of nuclear norm

The solution X to

1
min =

2 _
) )Y—XH +THX
XGR”’X"2 F

*

is obtained by soft-thresholding the SVD of Y

X =D, (Y)
D, (M):=US, (Z)VT  where M=UZVT

i—T ifz,','>7'

0 otherwise

Sy (2);i = {



Proximal gradient method

Proximal gradient method for the problem

~ 2 ~
Xy A X

min
XeRmxn

*

X0 = arbitrary initialization
MO = XK _ (Xg(zk) - y)
Xkt —p (M(k))
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Low-rank matrix completion

Intractable problem
min rank ()?) such that Xg ~ y

XeRmxn

Nuclear norm: convex (®) but computationally expensive (®)
due to SVD computations



Alternative

» Fix rank k beforehand
» Parametrize the matrix as AB where A € R™*k and B € Rkxn
» Solve

min
ZGR"’X",EER"X"

(48)5 1.

by alternating minimization



Alternating minimization

Sequence of least-squares problems (much faster than computing SVDs)

» To compute A fix B(k=1) and solve

(Z\B(k—l))

min
ZeRmxk

2,

» To compute BK) fix AK) and solve

(498), 1],

Theoretical guarantees: Jain, Netrapalli, Sanghavi 2013

min
BeRkxn
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Collaborative filtering
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SVD
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First left singular vector

D. Knight Sp. 3 Love Act. B.J.’s Diary  P. Woman Sup. 2
U = (—0.4082 —0.4082  0.4082 0.4082 0.4082 —0.4082)

Interpretations:
» Score atom: Centered scores for each person are proportional to U;

» Coefficients: They cluster movies into action (-) and romantic (+)



First right singular vector

Bob Molly Mary Larry
Vi=(05 05 —05 -05)

Interpretations:
» Score atom: Centered scores for each movie are proportional to V;

» Coefficients: They cluster people into action (-) and romantic (+)



Outliers

Bob Molly Mary Larry

5 1 5 5 The Dark Knight
1 1 5 5 Spiderman 3
A-— 5 5 1 1 Love Actually
5 5 1 1 Bridget Jones's Diary
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1 1 5 1 Superman 2



SVD
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First left singular vector

D. Knight Sp. 3 Love Act. B.J.'s Diary
Ui = (-0.2610 —0.4647  0.4647 0.4647

Without outliers

D. Knight Sp. 3 Love Act. B.J.’s Diary
U = (—0.4082 —0.4082 0.4082 0.4082

P. Woman
0.4647

P. Woman
0.4082

Sup. 2
—0.2610)

Sup. 2
—0.4082)



First right singular vector

Bob Molly Mary Larry
Vi= (0.4352 05573 —0.5573 —0.4352)

Without outliers

Bob Molly Mary Larry
Vi= (05 05 -05 -0.5)



PCA without outliers




PCA with outliers
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Low rank + sparse model

Sum of a low-rank component L and a sparse component S




Low-rank component cannot be sparse
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Incoherence

Low-rank component must be incoherent

ForL=UXVT

max _ |Uj| < p
1<i<r1<j<m

max |V <p
1<i<r.1<j<n

where 1//n < p <1



Sparse component cannot be low rank
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Assumption: Support distributed uniformly at random
(doesn’t hold in practice!)
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Nuclear norm + ¢;-norm

We want to promote a low-rank L and a sparse S

L

*+>\H§H1 suchthat L+ S=Y

. min
L,ScRmxn

Here ||-||; is the £1 norm of the vectorized matrix



Choice of A
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Choice of A
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Exact recovery

Guarantees by Candés, Li, Ma, Wright 2011

min L

LgeRan

+)\H§H1 such that L+ S =Y
*

achieves an exact decomposition with high probability for

» rank (L) of order n if L is incoherent

> a sparsity level of S of order n? if its support is random

The proof is based on the construction of a dual certificate



Dual certificate

Let L = UZVT and Q be the support of S
A dual certificate @ of the optimization problem

L

_min

N +)\H§H suchthat L+ S=Y
L7S€Rm><n * 1

is any matrix such that

Q=UVT + W = \sign(S)+F
wj<1 U'W=0 WV=0

Fo=0 [|[Flloo <A
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Convex program with equality constraints

Canonical problem with linear equality constraints

minimize  f (x)

subject to Ax =y
Lagrangian
L(x,z) :=1f(x)+ (z, Ax —y)
z is a Lagrange multiplier
Dual function

g(z):= i?(ff(x) +(z, Ax —y)



Convex program with equality constraints

If strong duality holds for the optimal x* and z*

f(x)=g(z")
= ir;fﬁ (x,2%)

<f(x7)

If x* is unique and we know z*, we can compute x* by solvin
y

minimize L (x,z")



Dual-ascent method

Find z* using gradient ascent

Iterations:

» Primal variable update
xk) = arg mXin L <x, z(k))
» Compute gradient of dual function at z(k)
Ve (29) = Ay

» Dual variable update

k) = (0 | Ky (z(k))



Augmented Lagrangian

Aim: Make dual-ascent method more robust
Augmented Lagrangian

L,(x,2) = f(x)+ (z,Ax — y) + g 1Ax — y|I3
Lagrangian of modified problem

minimize  f (x) + g ||Ax — Y|’§

subject to Ax =y



Method of multipliers

Iterations:

» Primal variable update
xk) = argmin L, <x, z(k))

» Compute z(k*1) such that

VL (X(k), z(kH)) =0



Dual update

We have

VL, (X(k),z(k)> =0
VL, (X(k), z(k)> = V., f <x(k)) + AT (z(k) + p(Ax — y))

VL (x(k),z(k) + p(Ax — y)) = Vif (x(k)> + AT (z(k) + p(Ax — y))

So we can use the dual-ascent update with o = p

20D = (0 4 ) (Ax —y)



Alternating direction method of multipliers (ADMM)

Apply same ideas to

minimize £ (x1) + f2 (x2)
subject to Ax;+ Bxo =y



Alternating direction method of multipliers (ADMM)

Iterations:

» Primal variable updates

{0 (k=1) (k)

= argmin L, (XaXZ ’ )
9 g min £, ()ék))sz(k))

» Dual variable update

2(k+1) — (k) +p (Axfk) + Bx2(k) — y)



ADMM for robust PCA

Robust PCA problem

min ||L]|, + A||S]|; suchthat L+S=Y
L,SeRnxn

Augmented Lagrangian

P
1Ll + ISl +(Z L+ S = Y)+ S [IL+S = M}



Primal updates

L) arg min £, (,_, Slk—1) Z(k)>
=argmin L]+ (209,0) + 5|1+ 5w

SU) = argmin £, (5, L0, 24)
ot (20.5) 5

1
=Sy, (pz(“ + L) — I\/I>



ADMM for robust PCA

Iterations:

» Primal variable updates

W —p,, (1 200 4 glk-1) _ M)
0

sk —s,, (1 200 4 10 _ M)
P\p
» Dual variable update

zUD) = Zz(0 4 (L(k) 4+ stk I\/I)



Matrix completion
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Background subtraction



Background subtraction
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Low-rank component




Sparse component




Frame 42




Low-rank component




Sparse component




Frame 75




Low-rank component




Sparse component
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