Lecture notes 9 May 2, 2016

Low-rank models

1 Matrix completion

1.1 The matrix-completion problem

The Netflix Prizel was a contest organized by Netflix from 2007 to 2009 in which teams of
data scientists tried to develop algorithms to improve the prediction of movie ratings. The
problem of predicting ratings can be recast as that of completing a matrix from some of its
entries, as illustrated in Figure [l This problem is known as matriz completion.

At first glance, the problem of completing a matrix such as this one
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may seem completely ill posed. We can just fill in the missing entries arbitrarily! In more

mathematical (and perhaps slightly pedantic) terms, the completion problem is equivalent
to an underdetermined system of equations
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In order to solve the problem, we need to make an assumption on the structure of the matrix
that we aim to complete. Recall that in compressed sensing we made the assumption that
the original signal was sparse. Even though the recovery problem in compressed sensing
is also underdetermined, recovery is possible as long as the number of measurements is
proportional to the number of nonzero entries (up to logarithmic factors). In the case of
matrix completion, we will make the assumption that the original matrix is low rank. This
implies that there exists a high correlation between the entries of the matrix, which may
make it possible to infer the missing entries from the observations. As a very simple example,


http://en.wikipedia.org/wiki/Netflix_Prize

Figure 1: A depiction of the Netflix challenge in matrix form. Each row corresponds to a user
that ranks a subset of the movies, which correspond to the columns. The figure is due to Mahdi
Soltanolkotabi.

consider the following matrix

111171
111111
111111 (3)
711111
Setting the missing entries to 1 yields a rank 1 matrix, whereas setting them to any other

number yields a rank 2 or rank 3 matrix.

The low-rank assumption implies that if the matrix has dimensions m x n then it can be
factorized into two matrices that have dimensions m x r and r x n. This factorization allows
to encode the matrix using r (m + n) parameters. If the number of observed entries is larger
than 7 (m + n) parameters then it may be possible to recover the missing entries. However,
this is not enough to ensure that the problem is well posed, as we will see in the following
section.

1.2 When does matrix completion make sense?

The results of matrix completion will obviously depend on the subset of entries that are
observed. For example, completion is impossible unless we observe at least one entry in each



row and column. To see why let us consider a rank 1 matrix for which we don’t observe the
second row,
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As long as we set the missing row to equal the same value, we will obtain a rank-1 matrix
consistent with the measurements. In this case, the problem is not well posed.

In general, we need samples that are distributed across the whole matrix. This may be
achieved by sampling entries uniformly at random. Although this model does not completely
describe matrix completion problems in practice (some users tend to rate more movies, some
movies are very popular and are rated by many people), making the assumption that the
revealed entries are random simplifies theoretical analysis and avoids dealing with adversarial
cases designed to make deterministic patterns fail.

We now turn to the question of what matrices can be completed from a subset of entries
samples uniformly at random. Intuitively, matrix completion can be achieved when the
information contained in the entries of the matrix is spread out across multiple entries. If
the information is very localized then it will be impossible to reconstruct the missing entries.
Consider a simple example where the matrix is sparse
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If we don’t observe the nonzero entry, we will naturally assume that it was equal to zero.

The problem is not restricted to sparse matrices. In the following matrix the last row does
not seem to be correlated to the rest of the rows,

(6)
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This is revealed by the singular-value decomposition of the matrix, which allows to decompose



it into two rank-1 matrices.

M=UxVT (7)
0.5

0.5

— |05
0.5

0

0.5
0.5

=8 (05| [0.5 0.5 0.5 0.5]+6
0.5
0

= O'1U1‘/1T+0'2U2‘/2T. (10)

8 0105 05 05 0.5 (8)
0 6 (-05 05 0.5 0.5

_ o O O O

[-0.5 05 —0.5 0.5] (9)

_ o O O O

The first rank-1 component of this decomposition has information that is very spread out,
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The reason is that most of the entries of V; are nonzero and have the same magnitude, so
that each entry of U; affects every single entry of the corresponding row. If one of those
entries is missing, we can still recover the information from the other entries.

In contrast, the information in the second rank-1 component is very localized, due to the
fact that the corresponding left singular vector is very sparse,

0 0 0 0
00 0 0
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Each entry of the right singular vector only affects one entry of the component. If we don’t
observe that entry then it will be impossible to recover.

This simple example shows that sparse singular vectors are problematic for matrix comple-
tion. In order to quantify to what extent the information is spread out across the low-rank
matrix we define a coherence measure that depends on the singular vectors.



Definition 1.1 (Coherence). Let U XVT be the singular-value decomposition of an n x n
matriz M with rank r. The coherence v of M is a constant such that
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This condition was first introduced in [3]. Its exact formulation is not too important. The
point is that matrix completion from uniform samples only makes sense for matrices which
are incoherent, and therefore do not have spiky singular values. There is a direct analogy
with the super-resolution problem, where sparsity is not a strong enough constraint to make
the problem well posed and the class of signals of interest has to be further restricted to
signals with supports that satisfy a minimum separation.

1.3 The nuclear norm

In compressed sensing and super-resolution we penalize the ¢; norm of the recovered signal
to promote sparse estimates. Similarly, for matrix completion we penalize a certain matrix
norm to promote low-rank structure.

First, let us introduce the trace operator and an inner product for matrices.

Definition 1.2 (Trace). The trace of an n X n matriz is defined as

trace (M) := Z M;;. (15)
i=1
Definition 1.3 (Matrix inner product). The inner product between two m X n matrices A
and B 1s
(A, B) := trace (A" B) (16)
=> ) AyBy. (17)
i=1 i=1

Note that this inner product is equivalent to the inner product of the matrices if we vectorize
them.

We now define three matrix norms.



Definition 1.4 (Matrix norms). Let oy > 09 > ... > 0, be the singular values of M € R™*",
m > n. The operator norm is equal to the mazimum singular value

[|M]|:= max [[Mul], (18)

[lull;<1

= 07. (19)

The Frobenius norm is the norm induced by the inner product from Definition[1.5. It is equal
to the €5 norm of the vectorized matrix, or equivalently to the {5 norm of the singular values

|M|[p = ‘/Z (20)

= /trace (MTM) (21)
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The nuclear norm is equal to the {1 norm of the singular values

||M]], 522%‘- (23)
i=1

(22)

The following proposition, proved in Section of the appendix, is analogous to Holder’s
inequality for vectors.

Proposition 1.5. For any matriz A € R™*",
|A[|, = sup (A, B). (24)

l1BlI<1

A direct consequence of the proposition is that the nuclear norm satisfies the triangle in-
equality. This implies that it is a norm (it clearly satisfies the other properties of a norm)
and hence a convex function.

Corollary 1.6. For any m X n matrices A and B

1A+ BIl, < [[All, + Bl - (25)
Proof.
|A+ Bll,= sup (A+B,C) (26)
{Cllcl<1y

= sup (A,C)+ sup (B, D) (27)

[IClI<1 [I1D]1<1
= 1Al + Bl - (28)
0
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Figure 2: Values of different norms for the matrix M (t) defined by (29). The rank of the matrix
for each t is marked in orange.

Penalizing the nuclear norm induces low-rank structure, just like penalizing the ¢; norm of
a vector induces sparse structure. A justification for this is that the nuclear norm is the ¢,
norm of the singular values and therefore minimizing it tends to set most of them to zero.
In order to provide a more concrete example, let us consider the following matrix

05+t 1 1
M@#)=1| 05 05 t]|, (29)
05 1—t 05

which is parametrized by the parameter t. In Figure 2| we compare the rank, the operator
norm, the Frobenius norm and the nuclear norm of M (t) for different values of ¢. The value
of ¢ that minimizes the rank is the same as the one that minimizes the nuclear norm. In
contrast, the values of ¢ that minimize the operator and Frobenius norms are different. This
justifies using the nuclear norm as a proxy for the rank.

As we discussed in the previous sections, we are interested in recovering low-rank matrices
from a subset of their entries. Let y be a vector containing the revealed entries and let ) be
the corresponding entries. Ideally, we would like to select the matrix with the lowest rank
that corresponds to the measurements,

min rank ()?) such that Xq = y. (30)

XeRmxn



Unfortunately, this optimization problem is computationally hard to solve. Substituting the
rank with the nuclear norm yields a tractable alternative:

such that Xq = y. (31)

X

min
X eRmxn

The cost function is convex and the constraint is linear, so this is a convex program. In
practice, the revealed entries are usually noisy. They do not correspond exactly to entries
from a low-rank matrix. We take this into account by removing the equality constraint and
adding a data-fidelity term penalizing the fo-norm error over the revealed entries in the cost
function,

1

~ 2 -
min - ‘XQ—y +)\HX , (32)
XcRmxn 2 2 *
where A\ > 0 is a regularization parameter.
We now apply this method to the following completion problem:
Bob Molly Mary Larry
1 ? 5 4 The Dark Knight
Spiderman 3
Love Actually (33)

Bridget Jones’s Diary
Pretty Woman
Superman 2

— o O
N O = Ot =
NN N
Tt DN = 0 Ot

In more detail we apply the following steps:

1. We compute the average observed rating and subtract it from each entry in the matrix.
We denote the vector of centered ratings by y.

2. We solve the optimization problem ({31)).

3. We add the average observed rating to the solution of the optimization problem and
round each entry to the nearest integer.

The result is pretty good,
Bob Molly Mary Larry

1 2 (1) 5 4\ The Dark Knight
2 (2) 1 4 5 Spiderman 3
4 5 2 2 (1) | Love Actually (34)
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 (5) 5 Superman 2

For comparison the original ratings are shown in brackets.



1.4 Theoretical guarantees

In this section we will explain how to establish theoretical guarantees for matrix completion
via nuclear norm minimization. The following theorem is proved in [6].

Theorem 1.7 (Matrix completion). If the matriz M has rank r and coherence i, the solution
to the optimization problem

X such that Xq =y (35)

min
)?E]Rmx n

*

achieves exact recovery with high probability as long as the number of samples is proportional
to pr (n+m) (up to logarithmic terms).

For matrices that are incoherent, the coherence parameter is equal to a constant, so that
nuclear norm allows to reconstruct the matrix from a minimal number of measurements
(recall that a low-rank matrix depends on r (n 4+ m) parameters), up to logarithmic factorg]

In order to prove that a certain matrix is the solution to the optimization problem we use
the same technique that we used to analyze compressed sensing and super-resolution: we
build a dual certificate. The dual certificate is a subgradient with a certain structure, so we
first define the subgradients of the nuclear norm.

Proposition 1.8 (Subgradients of the nuclear norm). Let M = UXVT be the singular-value
decomposition of M. Any matriz of the form

G:=UVi4+w W] <1, (36)
U™W =0, (37)
WV =0 (38)

15 a subgradient of the nuclear norm at M.

Proof. Note that by definition ||G|| < 1. For any matrix H

||M + H||, > (G,M + H) by Proposition [L.5 (39)
= (UV",M) + (G, H) (40)

— ||M]||, + (G, H) asin (137). (41)

[l

The following proposition provides a dual certificate for the nuclear-norm minimization prob-
lem.

'In fact, one can show that a multiplicative logarithmic factor is necessary in order to make sure that all
rows and columns are sampled. See [4].



Proposition 1.9 (Dual certificate for nuclear-norm minimization). Let M = UXVT be the
singular-value decomposition of M. A matriz QQ supported on €, i.e. such that

Qoc =0, (42)

1 a dual certificate of the optimization problem

“min || X such that Xq =y (43)
XeRrmxn *
as long as
Q=0vi+w, W] <1, (44)
UTW =0, (45)
WV =0. (46)

Proof. By Proposition @ is a subgradient of the nuclear norm at M. Any matrix that
is feasible for the optimization problem can be expressed as M + H where Hg = 0 because
the revealed entries must be equal to Mq. This immediately implies that (Q, H) = 0. We
conclude that

|M + HI|, > [IM]], +(Q, H) (47)
= |[M]],.. (48)

This proves that M is a solution. A variation of this argument that uses the strict inequality
in establishes that if @ exists then M is the unique solution [3]. O

In order to show that matrix completion via nuclear-norm minimization succeeds, we need
to show that such a dual certificate exists with high probability. For this we will need the
matrix to be incoherent, since otherwise UVT may have large entries which are not in €.
This would make it very challenging to construct @ in a way that UVT = Q — W for a matrix
W with bounded operator norm. The first guarantees for matrix completion were obtained
by constructing such a certificate in 3] and [4]. Subsequently, the results were improved
in [6], where it is shown that an approzimate dual certificate also allows to establish exact
recovery, and simplifies the proofs significantly.

1.5 Algorithms

In this section we describe a proximal-gradient method to solve Problem [32 Recall that
proximal-gradient methods allow to solve problems of the form

minimize f (z) + g (z), (49)

10



where f is differentiable and we can apply the proximal operator prox, efficiently.

Recall that the proximal operator norm of the ¢; norm is a soft-thresholding operator. Analo-
gously, the proximal operator of the nuclear norm is applied by soft-thresholding the singular
values of the matrix. The result is proved in Section of the appendix.

Proposition 1.10 (Proximal operator of the nuclear norm). The solution to

min ’Y XH +7“ (50)
Sermxn 2
is D, (Y), obtained by soft-thresholding the singular values of Y = U XVT
D, (Y)=US, (%)V7, (51)
i — f Yo > T,
8 (®) =T BT (52)
0 otherwise.

Algorithm 1.11 (Proximal-gradient method for nuclear-norm regularization). Let Y be a
matrix such that Yo =y and let us abuse notation by interpreting Xg()k) as a matrixz which is

zero on Q. We set the initial point X© to Y. Then we iterate the update
X(k+1) — Dak)\ <X(’€) — oy (Xs()k) _ Y)) ’ (53)

where oy, > 0 is the step size.

1.6 Alternating minimization

Minimizing the nuclear norm to recover a low-rank matrix is an effective method but it has a
drawback: it requires repeatedly computing the singular-value decomposition of the matrix,
which can be computationally heavy for large matrices. A more efficient alternative is to
parametrize the matrix as AB where A € R™* and B € R**", which requires fixing a
value for the rank of the matrix k (in practice this can be set by cross validation). The two
components A and B can then be fit by solving the optimization problem

(38), -

This nonconvex problem is usually tackled by alternating minimization. Indeed, if we fix
B = B the optimization problem over Alis just a least-squares problem

(38), ] g

min
AeRmxk BeRkxn

(54)

‘ 2

min
AeRmxk

and the same is true for the optimization problem over B if we fix A = A. [teratively
solving these least-squares problems allows to find a local minimum of the cost function.
Under certain assumptions, one can even show that a certain initialization coupled with this
procedure guaranteees exact recovery, see [8] for more details.

11



Figure 3: Principal components of a dataset before and after the inclusion of an outlier.

2 Low rank + sparse model

2.1 The effect of outliers on principal-component analysis

It is well known that outliers may severely distort the results of applying principal-component
analysis to a dataset. Figure[3|shows the dramatic effect that just one outlier can have on the
principal components. Equivalently, if several entries of a matrix are entirely uncorrelated
with the rest, this may disrupt any low-rank structure that might be present. To illustrate
this consider a rank-1 matrix of movie ratings

Bob Molly
1 1
1 1
5 5
5 5
5 5
1 1

Mary Larry
) )
) )
1 1
1 1
1 1
) )

12

The Dark Knight

Spiderman 3

Love Actually (56)
Bridget Jones’s Diary

Pretty Woman

Superman 2



Now imagine that Bob randomly assigns a 5 instead of a 1 to The Dark Knight by mistake
and that Larry hates Superman 2 because one of the actresses reminds him of his ex,

Bob Molly Mary Larry

5 1 ) 5t The Dark Knight

1 1 5 5 Spiderman 3

5 5 1 1 Love Actually (57)
5 ) 1 1 Bridget Jones’s Diary

5) ) 1 1 Pretty Woman

1 1 ) 1 Superman 2

Now let us compare the singular-value decomposition after subtracting the mean rating with

8.543 0 0 0
T 0 4.000 0 0 T
Uvxve =vU 0 0 2649 0 v (58)
0 0 0 0
and without outliers
9798 0 0 O
- 0 0 00
i T _ T
A—A=UXV U 0 00 0 V. (59)
0 0 00

The matrix is now rank 3 instead of rank 1. In addition, the first left singular vector,

D. Knight Sp. 3 Love Act.  B.J.s Diary ~ P. Woman Sup. 2
U= (—0.2610 —0.4647  0.4647 0.4647 0.4647  —0.2610)  (60)

does not allow to cluster the movies as effectively as when there are no outliers

D. Knight Sp. 3 Love Act. B.J.s Diary  P. Woman Sup. 2
Ur = (-0.4082 —0.4082  0.4082 0.4082 0.4082  —0.4082).  (61)

2.2 Low rank + sparse model

In order to tackle situations where a low-rank matrix may be corrupted with outliers, we
define a low-rank + sparse model where the matrix is modeled as the sum of a low-rank
component L and a sparse component S. Figure [4/shows an example with simulated data. If
we are able to separate the two components from the data, we can apply PCA to L in order

13
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Figure 4: M is obtained by summing a low-rank matrix L and a sparse matrix S.

to retrieve the low-rank structure that is distorted by the presence of S. The problem of
separating both components is very related to matrix completion: if we knew the location of
the outliers then we could just apply a matrix-completion method to the remaining entries

in order to recover the low-rank component.

We now consider under what assumptions the decomposition of a low rank and a sparse
component is unique. Clearly the low-rank component cannot be sparse, otherwise there

can be many possible decompositions
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0 0 0
0 0 0
0 0 0 (62)
0 47 0

(63)
0 0 0
23 0 0
0 0 0 (64)
0 47 0

We can avoid this by considering low-rank components with low coherence.

Similarly, the sparse component cannot be low rank. This occurs when its support is highly
concentrated on a small number of columns or rows,
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A simple assumption that precludes the support of the sparse component from being too
concentrated is that it is distributed uniformly at random. As in the case of the revealed
entries in matrix completion, this assumption doesn’t usually hold in practice but it often
provides a good approximation.

2.3 Robust principal-component analysis

Following the ideas that we discussed in previous lecture notes and in Section[1.3], we compute
the decomposition by penalizing the nuclear norm of L, which induces low-rank structure,
and the /1 norm of S, which induces sparse structure.

Cmin ||Z]| +x H§ such that L + S = M, (68)
L,Sermxn * 1
where M is the matrix of data. To be clear, ||-||, is the ¢; norm of the vectorized matrix and

A > 0 is a regularization parameter. This algorithm introduced by [2l/5] is often called robust
PCA, since it aims to obtain a low-rank component that is not affected by the presence of
outliers.

The regularization parameter A\ determines the weight of the two structure-inducing norms.
It may be chosen by cross validation, but its possible values may be restricted by considering
some simple examples. If the matrix that we are decomposing is equal to a rank-1 matrix,
then the sparse component should be set to zero. Since

1111 1111
111 1| 1111l

111 1] =™ 111 1] =™ (69)
111 1|, 111 1]

we must have A\ > % for this to be the case. In contrast, if the matrix contains just one
nonzero entry then the low-rank component should be set to zero. Since

0000 0000
0100 0100
000 ol =h 000 ol =1 (70)
00 0 0], 00 0 0]]]

this will be the case if A < 1. Finally, if the matrix just has a row of ones it is unclear
whether we should assign it to the low-rank or the sparse component, so the value of the
two terms in the cost function should have a similar value. Since

1111 1111
0000 0000
000 oll =V™ 000 o0l =" (71)
00 0 0] 000 0ff,

15
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Figure 5: Results of solving Problem for different values of the regularization parameter.

this suggests setting \ ~ \/Lﬁ

Figure [5 shows the results of solving Problem for different values of A. If X is too small,
then it is cheap to increase the content of the sparse component, which won’t be very sparse
as a result. Similarly, if A is too large, then the low-rank component won’t be low-rank,

as the nuclear-norm term has less influence. Setting A\ correctly allows to achieve a perfect
decomposition.
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2.4 Theoretical guarantees

The following theorem from [2] provides theoretical guarantees for the decomposition of low-
rank and sparse matrices using convex optimization. We omit some details in the statement
of the result, which can be found in [2].

Theorem 2.1 (Exact decomposition via convex programming). Let M = L+ S be an xn
matriz where L is rank r and has coherence p and the support of S is distributed uniformly
at random. Problem with A = 1/y/n recovers L and S ezactly as long as the rank of L
is of order n/p up to logarithmic factors and the sparsity level of S is bounded by a certain

constant times n?.

As long as the low-rank component is incoherent and the support of the sparse component
is uniformly distributed, convex programming allows to obtain a perfect decomposition up
to values of the rank of L and the sparsity level of S that are essentially optimal.

The proof of this result is based on the construction of an approximate dual certificate. This
certificate approximates the certificate described in the following proposition.

Proposition 2.2 (Dual certificate for robust PCA). Let M = L + S, where L = ULVT s
the singular-value decomposition of L and ) is the support of S. A matriz QQ of the form

Q=UVT +W = \sign(S) + F (72)

where
W <1, U'W =0, WV =0, (73)
Fo =0, I1F|l. < A, (74)

is a dual certificate of the optimization problem

L such that L+ S = M. (75)

_ min
L,SeRmxn

*+AH§

1

Proof. Let us consider a feasible pair L+ L' and S+5’. Since L+S = M, L+L'+S+5 = M
implies L' + 5" = 0. The conditions on @ imply that @ is a subgradient of the nuclear norm
at L and that %Q is a subgradient of the /1 norm at .S, which implies

/ ! !/ 1 !/
2+ L+ A+ ST 2 2L+ QL)+ AlSL +A(3.8) (79
= ILIL + AlISIy + (@, L + ) (77)
= [ILIL + ISl (78)

Modifying the argument slightly to use the strict inequalities in and allows to prove
that L and S are the unique solution. O

17



2.5 Algorithms

In order to derive an algorithm to solve Problem ([68)), we will begin by considering a canonical
problem with linear equality constraints

minimize  f (2) (79)
subject to Az =y. (80)

The Lagrangian of this problem is
L(x,z) = f(z)+(z, Az —y), (81)

where z is a Lagrange multiplier or dual variable. The dual function is obtained by mini-
mizing the Lagrangian over the primal variable z,

g(z):= ir;ff () + (z, Az — y) . (82)

If strong duality holds, for a primal solution x* and a dual solution z* we have

fa") =g(=%) (83)
= igfﬁ (x,2%) (84)
< f(z%). (85)

This implies that if we know z*, we can compute x* by solving
minimize L (z,2%). (86)

The dual-ascent method tries to find a solution to the dual problem by using gradient ascent
on the dual function. In more detail, to compute the gradient of the dual function at z
we first minimize the Lagrangian over the primal variable to obtain the minimizer z. The
gradient is then equal to

Vg(z)= Az —y. (87)

Algorithm 2.3 (Dual ascent). We set an initial value 9. Then we iterate between updating
the primal and the dual variables.

e Primal-variable update

2™ = argmin £ (z, 2). (88)

e Dual-variable update

for a step size a'® > 0.

18



It turns out that the dual-ascent method is not very stable [1]. This may be tackled by
defining an augmented Lagrangian

Ly (2,2) = f (@) + (2, Az — ) + £ || Az — ][5, (90)

which corresponds to the Lagrangian of the modified (yet equivalent) problem
minimize  f () + 2 || Az — I (91)
subject to Az =y, (92)

where p > 0 is a parameter. Applying dual ascent using the augmented Lagrangian yields
the method of multipliers.

Algorithm 2.4 (Method of multipliers). We set an initial value z». Then we iterate
between updating the primal and the dual variables.
e Primal-variable update

2™ = argmin £, (z,2"). (93)

e Dual-variable update

2D = 20 4 p (AxPz —y) . (94)

Note that in the dual-variable update we have set the step size to p. This can be justified
as follows. Setting z(**1) so that

V.L (x(k), z(kﬂ)) =0 (95)

means that the Lagrangian of the original problem is minimized in each iteration. Given
that

V.L, (Z‘(k), z(k)) =V.f (x(k)) + AT (Z(k) +p(Az —y)) (96)
and
V.L, (2™, 2W) =0, (97)
setting z**1) as in yields
V.L (:c(k), z(k“)) =V.f (x(k)) + AT (z(k) + p(Az —y)) (98)
= 0. (99)
Applying the same ideas to a composite objective function
minimize  fi (1) + fo (22) (100)
subject to Axy + Bra =y (101)

yields the alternating direction method of multipliers (ADMM).
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Algorithm 2.5 (Alternating direction method of multipliers). We set an initial value z(©.
Then we iterate between updating the primal and the dual variables.

e Primal-variable updates

wgk) =argmin L, (a:,xék_l), z(k)> , (102)
2 = argmin L, (a:gk), x, z(k)) . (103)

e Dual-variable update
S ) ( Az® 4 Ba® y> - (104)

This description of ADMM is drawn from the review article [1], to which we refer the
interested reader for more details. We now apply the method to Problem . In this case
the augmented Lagrangian is of the form

LI+ AISH, + (2, L+ S = Y) + S lIL+5 = M3 (105)

The primal update for the low-rank component is obtained by applying Proposition [1.10]

L® = arg min £, (L,s*1, Zz®) (106)
. k P k—1 2
= argmin ||L|, + (2", L) + || L + 5% — M|, (107)
1
=Dy, <—Z(’“) + Stk M) . (108)
P

The primal update for the sparse component is obtained by recalling that softhresholding is
the proximal operator for the /; norm.

Sk = arg min £, (S, Lk, Zk)) (109)
: k P k-1 2
:argms}n)\||5|]1+<Z(),S>+§HL( )+S—MHF (110)
1
=S\, (—Z(’“) + L") — M> . (111)
P

This yields ADMM for robust PCA, also described under the name ALM (augmented La-
grangian method) in the literature [9).

Algorithm 2.6 (ADMM for robust PCA). We set an initial value Z¥). Then we iterate
between updating the primal and the dual variables.
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Figure 6: Background subtraction results from a video. This example is due to Stephen Becker.
The code is available at http://cvxr.com/tfocs/demos/rpca.

e Primal-variable updates

1

LK) — Dy <—Z(k) + g1 _ M) 7 (112)
p
1

S® =Sy, (—Z“f) + L™ — M) . (113)
p

e Dual-variable update
704D = 70 4 (LW 4 §® — pp) (114)

2.6 Background subtraction

In computer vision, the problem of background subtraction is that of separating the back-
ground and foreground of a video sequence. Imagine that we take a video of a static back-
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ground. We then stack the video frames in a matrix M, where each column corresponds to
a vectorized frame. If the background is completely static, then all the frames are equal to
a certain vector f € R™ (m is the number of pixels in each frame) and the matrix is rank 1

M=[f f - fl=f[1 1 - 1]. (115)

If the background is not completely static, but instead experiences gradual changes, then
the matrix containing the frames will be approximately low rank. Now, assume that there
are sudden events in the foreground. If these events occupy a small part of the field of view
and do not last very long, then the corresponding matrix can be modeled as sparse (most
entries are equal to zero). These observations motivate applying the robust PCA method
to background subtraction. We stack the frames as columns of a matrix and separate the
matrix into a low-rank and a sparse component. The results of applying this method to a
real video sequence are shown in Figure [6]
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A  Proofs

A.1 Proof of Proposition [1.5

The following simple lemma will be very useful. We omit the proof.

Lemma A.1. For any m X n matrices A and B

trace (AB) = trace (BA) . (116)

The proof relies on the following two lemmas.
Lemma A.2. For any Q € R™", U ¢ R™*™ V ¢ RV if UTU =T and VTV = I then
TRV = 1Q]l. (117)

Proof. By the definition of the operator norm,

vV = s IUQVell, (118)
= Hs.‘1|1p1 VaTVIQTUTUQV x (119)
zll,=
= ||S‘1|lp1 2TVTQTQV x (120)
oll,=
= s VITQTQy becnuse e, = 1Vl (121)
=@l (122)
]

Lemma A.3. For any @) € R™*"

max |Qy] < [|Q]]. (123)

1<i<n
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Proof. We denote the standard basis vectors by e;, 1 <1i < n. Since ||e;]], = 1,

| <
max |Qi| < max

= max ||Qeill

< sup ||Qxl],.

[lz||,=1

By Lemma if the singular value decomposition of A is UX VT then
sup tr (ATB) = sup tr (VE UTB)
IBl|<1 1BlI<1

= sup tr (E BUTV).
IB][<1

(124)

(125)
(126)

(127)

(128)

By Lemma BUTV has operator norm equal to ||B|| = 1. By Lemma this implies

that its diagonal entries have magnitudes bounded by one. We conclude that

sup tr (ATB) < sup tr (X M)
< sup Z M;; o;

{M| max1§¢§n|Mii|S1} i=1

(129)

(130)

(131)

(132)

To complete the proof, we need to show that the equality holds. Note that UV” has operator
norm equal to one because its r singular values (recall that r is the rank of A) are equal to

one. We have

<A, UVT> = trace (ATUVT)
= trace (V by UTUVT)
= trace (V'V ¥) by Lemma
= trace (X)
= [IA]],-
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A.2 Proof of Proposition [1.10

Due to the Frobenius norm term, the cost function is strictly convex. This implies that
any point at which there exists a subgradient that is equal to zero is the solution to the
optimization problem. The subgradients of the cost function at X are of the form,

X -Y +1G, (138)

where G is a subgradient of the nuclear norm at X. If we can show that

Yo - b, vy (139)

-
is a subgradient of the nuclear norm at D, (Y) then D, (Y) is the solution.

Let us separate the singular-value decomposition of Y into the singular vectors corresponding
to singular values greater than 7, denoted by U, and V; and the rest

Y =UxV’ (140)

~ [0 v 3 o] % Wl ()

Note that D, (Y) = Uy (3o — 71) VT, so that

1 1
—(Y =D, (V) =UVL + ;UlzlvlT. (142)

T

By construction all the singular values of U;%;V/! are smaller than 7, so

1
H;U&VF <1 (143)

In addition, by definition of the singular-value decomposition Ul U; = 0 and V' V; = 0. As
a result, (142)) is a subgradient of the nuclear norm at D, (V') and the proof is complete.
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