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1 Contents

This is the supplementary material for the paper Super-resolution via Transform-invariant Group-
sparse Regularization. It contains the following experimental results that were not included in the
main paper due to lack of space.

1. Comparisons between the proposed method, transform-invariant directional total-variation
regularization abbreviated as TI-DTV, and three other methods: bicubic interpolation, total-
variation regularization (TV) and sparse coding [16] for six additional examples taken from
the SUN database [15].

2. Comparisons between the proposed method and the three methods mentioned above for the
text examples shown in Figure 11 of the paper.

3. Results illustrating the effect of varying the different parameters in the proposed method.

2 Additional examples

For six examples taken from the SUN database [15] we show comparisons to our method with
bicubic interpolation, total-variation regularization (TV) and sparse coding [16]. The upsampling
factor is eight for all examples, except the first figure for Example 1 and the results for the sparse-
coding method because the available code only allows to use an upsampling factor of 4. The results
seem to confirm that transform-invariant directional total-variation regularization is very effective
in super-resolving edges at high upsampling factors without introducing additional artifacts. In
comparison, bicubic interpolation produces overly smooth images, total variation generates artifacts
that distort straight edges and the results of sparse coding are only slightly better than those of
bicubic interpolation, although this method hallucinates some fine-scale random textures more
effectively than the others (this is apparent in the foliage of Example 1).
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2.1 Example 1: Bamboo forest

In the first figure for this example we show the result of super-resolving the image with our method
for different upsampling factors. In the second we show comparisons to the other algorithms.

Input x2 x4 x8

Super-resolution at different upsampling factors using TI-DTV regularization.
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2.2 Example 2: Building façade

Original

Bicubic (x8)

4



TV (x8)

Sparse Coding
(x4)

TI-DTV (x8)

5



2.3 Example 3: Sign
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2.4 Example 3: Palace façade
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2.5 Example 4: Church façade
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2.6 Example 5: Columns
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2.7 Example 6: Airport screens
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3 Text examples: Comparison with other methods

For the four examples in Figure 11 of the paper we show comparisons to our method with bicubic
interpolation, total-variation regularization (TV) and sparse coding [16]. TI-DTV and TV regu-
larization produce significantly sharper results than bicubic interpolation and sparse coding. For
letters with mostly horizontal and vertical strokes TI-DTV regularization is superior to TV regu-
larization, since the latter generates some artifacts. For other letters, the performance between the
two algorithms is similar.
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4 Sensitivity to Regularization Parameters

4.1 Parameter λ

We show the results of applying TI-DTV regularization to the first example in Figure 12 of the
paper for differents values of λ but fixing σ = 5.5 and β = 0.1. Additionally, we also show the
results after being rectified by the transformation learnt by TILT from the low-resolution data.
When λ is small the result tends to be more blurred and similar to the original data. When λ is
large the result does not correspond well to the data and some details may be suppressed. Finally,
for values of λ around three, which was the value used for almost all examples in the paper and
the supplementary material, the results are very stable.
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Results in previous figure after being rectified by the transformation learnt by TILT from the
low-resolution data.
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4.2 Parameters β and σ

We show the results of applying TI-DTV regularization with a fixed λ = 3 to the first example in
Figure 12 of the paper for differents values of the parameters β, which controls the total-variation
term in the cost function, and σ, which corresponds to the standard deviation of the Gaussian
kernel used to model the relation between the low-resolution image and the super-resolved result.
Additionally, we also show the results after being rectified by the transformation learnt by TILT
from the low-resolution data. For small values of β the results are quite similar, although some
small artifacts might appear. These artifacts are a consequence of the fact that the TI-DTV term in
the cost function only acts in the transformed domain and this might not be enough to control the
noise amplification caused by the ill-posedness of the inverse problem. When β is large, artifacts
similar to those observed when only applying total-variation regularization are observed. The value
of β used for almost all examples in the paper and the supplementary material is 0.1. Finally, the
algorithm seems to be quite robust to small changes in σ. In fact, for all examples shown in the
paper and in the supplementary material σ was fixed to 5.5.
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Results in previous figure after being rectified by the transformation learnt by TILT from the
low-resolution data.
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