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Magnetic resonance imaging



Images are sparse/compressible

Wavelet coefficients



Magnetic resonance imaging

Data: Samples from spectrum

Problem: Sampling is time consuming (annoying, patient might move)

Images are compressible (≈ sparse)

Can we recover compressible signals from less data?



Compressed sensing

1. Undersample data randomly

2. Solve the optimization problem

minimize ||wavelet transform of estimate||1
subject to frequency samples of estimate = data



Compressed sensing in MRI

x2 Undersampling



Compressed sensing (basic model)

1. Undersample the spectrum randomly

Signal Spectrum

Data
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subject to frequency samples of estimate = data

Signal Estimate
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Theoretical questions

1. Is the problem well posed?

2. When can we guarantee that `1-norm minimization works?
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What is the effect of the measurement operator on sparse vectors?
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Restricted isometry property (RIP)

An m × n matrix A satisfies the restricted isometry property if there is
0 < δ < 1 such that for any s-sparse vector x

(1− δ) ||x ||2 ≤ ||Ax ||2 ≤ (1 + δ) ||x ||2

Random Fourier matrices satisfy the RIP with high probability
if s is O (measurements) up to log factors (Candès, Tao 2006)

2s-RIP implies that for any s-sparse signals x1, x2

||Ax2 − Ax1||2

= ||A (x2 − x1)||2
≥ (1− δ) ||x2 − x1||2
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Theoretical questions

1. Is the problem well posed?

2. When can we guarantee that `1-norm minimization works?



Characterizing the minimum `1-norm estimate

I Aim: Show that the original signal x is the solution of

minimize
∣∣∣∣x ′
∣∣∣∣

1

subject to A x ′ = y

I This is guaranteed by the existence of a dual certificate



Dual certificate

q ∈ Cm is a dual certificate associated to x if

v := A∗q

satisfies

vi =
xi
|xi |

if xi 6= 0

|vi | < 1 if xi = 0



Example of v

Linear combination of row vectors that interpolates the sign of the signal



Dual certificate

v is a subgradient of the `1 norm at x

For any other feasible point x + h such that Ah = 0

||x + h||1

≥ ||x ||1 + 〈v ,h〉
= ||x ||1 + 〈A∗q,h〉
= ||x ||1 + 〈q,Ah〉
= ||x ||1

By a (slightly) more complicated argument x is the unique solution
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v is a subgradient of the `1 norm at x

For any other feasible point x + h such that Ah = 0

||x + h||1 ≥ ||x ||1 + 〈v ,h〉
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Dual certificate for compressed sensing

Aim: Show that a dual certificate exists for any sparse support
and sign pattern



Certificate for compressed sensing

Idea: Minimum-energy interpolator has closed-form solution



Certificate for compressed sensing

Valid certificate if the sparsity is O (measurements) up to log factors

(Candès, Romberg, Tao 2006)



Compressed sensing

Spectral super-resolution

Spectral super-resolution in the presence of outliers

Demixing via semidefinite programming

Greedy demixing + local optimization



Spectral super-resolution

Goal: Estimate the spectrum of a multisinusoidal signal from a
finite number of samples

Fundamental problem in signal processing

Classic techniques:

I Linear nonparametric methods: windowed periodogram
I Prony-based methods: MUSIC, matrix pencil, ESPRIT...

This talk: optimization-based spectral super-resolution



Spectral super-resolution

Signal Spectrum

g (t) :=
∑k

j=1 xj exp (i2πfj t) µ :=
∑k

j=1 xj δ (f − fj)



Spectral super-resolution

Signal Spectrum

Data: g (1) , g (2) , · · · g (n)



Spectral super-resolution

Data Spectrum

Data: g (l) =
∫ 1
0 exp (i2πfl) dµ (f ), 1 ≤ l ≤ n



Underdetermined linear system: y = Fn µ

=. . .

exp (i2πf )

exp (i2π2f )

exp (i2πnf )

Fn µ y



Theoretical questions

1. Is the problem well posed?

2. When can we guarantee that optimization-based approaches work?
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Is the problem well posed?

=. . .

exp (i2πf )

exp (i2π2f )

exp (i2πnf )

Submatrix can be very ill conditioned!



Is the problem well posed?

=. . .

exp (i2πf )

exp (i2π2f )

exp (i2πnf )

If the support is spread out there is hope



Minimum separation

The minimum separation ∆ of the support T of µ is

∆ = inf
(f ,f ′) ∈ support(µ) : f 6=f ′

|f − f ′|



Conditioning of submatrix with respect to ∆

I If ∆ < 2/ (n − 1) the problem is ill posed
I If ∆ > 2/ (n − 1) the problem becomes well posed
I Proved asymptotically by Slepian and non-asymptotically by Moitra

2/ (n − 1) is the diameter of the main lobe of the impulse response
of the measurement operator (twice the Rayleigh distance in optics)



Example: 25 spectral lines, n = 2001, ∆ = 1.6/ (n − 1)
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Example: 25 spectral lines, n = 2001, ∆ = 1.6/ (n − 1)

The difference is almost in the null space of the measurement operator
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Theoretical questions

1. Is the problem well posed?

2. When can we guarantee that optimization-based approaches work?



Total-variation norm

I Continuous counterpart of the `1 norm

I If µ =
∑

j xjδfj then ||µ||TV = ||x ||1
I Not the total variation of a piecewise-constant function

I Formal definition: For a complex measure ν

||ν||TV = sup
∞∑

j=1

|ν (Bj)| ,

(supremum over all finite partitions Bj of [0, 1])



Estimation via convex programming

For data of the form y = Fn µ, we solve

min
µ̃
||µ̃||TV subject to Fn µ̃ = y ,

over all finite complex measures µ̃ supported on [0, 1]



Dual certificate

A dual certificate q ∈ Cn of the TV norm at

µ :=
k∑

j=1

xjδfj x ∈ Ck , fj ∈ T

satisfies

Q (f ) := F∗n q (f ) =
n∑

l=1

qle
−i2πlf

Q (fj) =
xj
|xj |

if fj ∈ T

|Q (f )| < 1 if f /∈ T

We call Q a dual polynomial



Dual polynomial

1

0

−1

Linear combination of low-pass sinusoids interpolating the sign



Dual certificate

Q is a subgradient of the TV norm at µ, in the sense that

||µ+ ν||TV ≥ ||µ||TV + 〈Q, ν〉 , 〈Q, ν〉 := Re

[∫

[0,1]
Q (f ) dν (f )

]

For any µ+ ν such that Fnν = 0

||µ+ ν||TV

≥ ||µ||TV + 〈Q, ν〉
= ||µ||TV + 〈F∗n q, ν〉
= ||µ||TV + 〈q,Fnν〉
= ||µ||TV

Existence of Q actually implies that µ is the unique solution
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Certificate for super-resolution

1

0

−1

Aim: Show that Q exists for any µ under a min. separation condition



Certificate for super-resolution
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1st idea: Interpolation with a low-frequency fast-decaying kernel K̄

Q(f ) =
k∑

j=1

αj K̄ (f − fj)
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Certificate for super-resolution
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Problem: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force the derivative of the certificate to
equal zero on the support

Q(f ) =
k∑

j=1

αj K̄ (f − fj) + βj K̄ ′ (f − fj)
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Guarantees for spectral super-resolution

Theorem [Candès, F. 2012]

If the minimum separation of the spectrum support obeys

∆ ≥ 4
n − 1

then recovery via convex programming is exact

Theorem [Candès, F. 2012]

In 2D convex programming super-resolves spectral lines with a
minimum separation of

∆ ≥ 5.76
n − 1

from samples of the form g (1, 1), g (1, 2), . . . , g (n, n)



Guarantees for spectral super-resolution

Theorem [F. 2016]

If the minimum separation of the spectrum support obeys

∆ ≥ 2.52
n − 1

,

then recovery via convex programming is exact

Theorem [Candès, F. 2012]

In 2D convex programming super-resolves spectral lines with a
minimum separation of

∆ ≥ 5.76
n − 1

from samples of the form g (1, 1), g (1, 2), . . . , g (n, n)



Spectral super-resolution with missing data

Assume we observe a random subset of entries S

New measurement operator FS , for any measure ν

FS ν := (Fn ν)S

Signal: µ :=
∑k

j=1 xj δ (f − fj)

Data: yS := FS µ

Can we still recover the signal?



Compressed sensing off the grid (Tang et al 2013)

Solving

min
µ̃
||µ̃||TV subject to FS µ̃ := yS

achieves exact recovery with high prob. for k = O (|S|) up to log factors
if

x1

|x1|
,

x2

|x2|
, · · · , xk

|xk |

are independent and uniformly distributed on the unit circle and

∆ ≥ 4
n − 1



Dual polynomial for compressed sensing off the grid

The only modification is the adjoint of the measurement operator

Q (f ) := FS∗ q (f ) =
∑

l∈S
qle
−i2πlf

Q (fj) = sign (xj) if fj ∈ T

|Q (f )| < 1 if f /∈ T

Idea: Interpolate with undersampled kernel



Random interpolation kernel

Spectrum (magnitude)

n−s
n K̄

K (real)
K (imag.)

n−s
n K̄
K
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Spectrum (magnitude)
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Random interpolation kernel (derivative)

Spectrum (magnitude)
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Random interpolation kernel (derivative)

Spectrum (magnitude)

10−4

10−2

100

102

104

1

10−2

10−4

n−s
n

∣∣K̄ (1)
∣∣

∣∣K (1)
∣∣

n−s
n K̄ (1)

K (1)



Dual polynomial for compressed sensing off the grid

Construct dual polynomial via interpolation

Q(f ) =
k∑

j=1

αj K (f − fj) + βj K ′ (f − fj)

Valid dual polynomial with high probability as long as

x1

|x1|
,

x2

|x2|
, · · · , xk

|xk |

are independent and uniformly distributed on the unit circle
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Spectral super-resolution in the presence of outliers

g (t) :=
∑k

j=1 xj exp (i2πfj t) µ :=
∑k

j=1 xj δ (f − fj)



Spectral super-resolution in the presence of outliers

Fn µ =
[
g (1) g (2) · · · g (n)

]T



Spectral super-resolution in the presence of outliers

Fn µ =
[
g (1) g (2) · · · g (n)

]T



Spectral super-resolution in the presence of outliers

Some samples are completely corrupted by an s-sparse vector z ∈ Cn



Spectral super-resolution in the presence of outliers

Data: y := Fn µ+ z



Linear nonparametric method: Gaussian periodogram

No noise (just sines) Sparse noise (sines + spikes)

Spectrum
Periodogram



Prony-based method: MUSIC

No noise (just sines) Sparse noise (sines + spikes)

Spectrum
Estimate



Optimization-based method (dense-noise model)

No noise (just sines) Sparse noise (sines + spikes)

Spectrum
Estimate



Optimization-based demixing

We incorporate a variable to model the sparse component

We promote sparsity of this component by penalizing its `1 norm

min
µ̃,z̃
||µ̃||TV + λ ||z̃ ||1 subject to Fn µ̃+ z̃ = y

λ > 0 is a regularization parameter



Optimization-based method (dense + sparse noise model)

No noise (just sines) Sparse noise (sines + spikes)

Spectrum
Estimate



Guarantees for demixing

Theorem [F., Tang, Wang, Zheng 2016]

Solving the optimization for λ = 1/
√

n recovers µ and z exactly
with probability 1− ε as long as

k ≤ Ck

(
log

n

ε

)−2
n,

s ≤ Cs

(
log

n

ε

)−2
n,

for fixed numerical constants Ck , Cs

Number of sines and spikes are both O (n) up to logarithmic factors



Assumptions

I The minimum separation of the spectrum support obeys

∆ ≥ 2.52
n − 1

I Each entry of z is nonzero with probability s/n (independently)
I The phases of x

x1

|x1|
,

x2

|x2|
, · · · , xk

|xk |

and of the nonzero entries {i1, . . . , is} of z

zi1
|zi1 |

,
zi2
|zi2 |

, · · · , zis
|zis |

are independent and uniformly distributed on the unit circle



Experiments: s := 10

n = 61 n = 81 n = 101
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Experiments: k := 15

n = 61 n = 81 n = 101
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Experiments: ∆ := 2/(n − 1)

λ = 0.1 λ = 0.15 λ = 0.2
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Dual certificate for demixing

Dual certificate q ∈ Cn and corresponding dual polynomial Q

Q (f ) = F∗n q =
n∑

j=1

qj e−i2πjf

for a measure µ with support T and sparse noise z with support Ω

Q (fj) =
xj
|xj |

, ∀fj ∈ T

|Q (f )| < 1, ∀f ∈ T c

qj = λ
zl
|zl |

, ∀j ∈ Ω,

|qj | < λ, ∀l ∈ Ωc



Dual certificate for demixing

Q (f ) |q|

Real part
Imag. part
sign (xT ) 0

λ



Dual certificate for demixing

Q is a "subgradient" of the TV norm at µ

1
λq is a subgradient of the `1 norm at z

For any other feasible pair (µ′, z ′) such that y = Fn µ
′ + z ′ = Fn µ+ z

∣∣∣∣µ′
∣∣∣∣

TV + λ
∣∣∣∣z ′
∣∣∣∣

1

≥ ||µ||TV +
〈
Q, µ′ − µ

〉
+ λ ||z ||1 + λ

〈
1
λ
q, z ′ − z

〉

≥ ||µ||TV +
〈
F∗n q, µ′ − µ

〉
+ λ ||z ||1 +

〈
q, z ′ − z

〉

= ||µ||TV + λ ||z ||1 +
〈
q,Fn µ

′ + z ′ −Fn µ− z
〉

= ||µ||TV + λ ||z ||1

Existence of Q actually implies that (µ, z) is the unique solution
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Dual certificate for demixing

Q (f ) := Qaux (f ) + R (f )

Qaux (f ) :=
∑

l∈Ωc

ql e−i2πlf

R (f ) := λ
∑

l∈Ω

zl
|zl |

e−i2πlf

Satisfies condition

qj = λ
zl
|zl |

∀j ∈ Ω



R (f )

Spectrum (magnitude)

Real part
Imag. part 0

λ



Dual certificate for demixing

We construct Qaux via interpolation with a random kernel K (coeffs in Ωc)

Qaux(f ) =
k∑

j=1

αj K (f − fj) + βj K ′ (f − fj)

To ensure

Q (fj) =
xj
|xj |

, fj ∈ T ,

Q ′ (fj) = 0, fj ∈ T

we enforce

Qaux (fj) =
xj
|xj |
− R (fj) , fj ∈ T

Q ′aux (fj) = −R ′ (fj) , fj ∈ T



Random interpolation kernel

Spectrum (magnitude)

n−s
n K̄

K (real)
K (imag.)

n−s
n K̄
K



Random interpolation kernel (derivative)

Spectrum (magnitude)

n−s
n K̄ (1)

K (1) (real)
K (1) (imag.)

n−s
n K̄ (1)

K (1)



Qaux (f )

Spectrum (magnitude)

Real part
Imag. part

sign (xT )− R (fT ) (real)
sign (xT )− R (fT ) (imag.) 0

λ



Q (f )

Spectrum (magnitude)

Real part
Imag. part
sign (xT ) 0

λ



Compressed sensing

Spectral super-resolution

Spectral super-resolution in the presence of outliers

Demixing via semidefinite programming

Greedy demixing + local optimization



Practical implementation

I Primal problem:

min
µ̃,z̃
||µ̃||TV + λ ||z̃ ||1 subject to Fn µ̃+ z̃ = y

Infinite-dimensional variable x̃ (measure in [0, 1])

First option: Discretizing + `1-norm minimization

I Dual problem:

max
η∈Cn

〈y ,η〉 subject to ||F∗n η||∞ ≤ 1

||η||∞ ≤ λ
Finite-dimensional variable η, but infinite-dimensional constraint

F∗n η (f ) =
n∑

l=−n
ηle
−i2πlf

Second option: Solving the dual problem



Practical implementation

I Primal problem:

min
µ̃,z̃
||µ̃||TV + λ ||z̃ ||1 subject to Fn µ̃+ z̃ = y

Infinite-dimensional variable x̃ (measure in [0, 1])

First option: Discretizing + `1-norm minimization

I Dual problem:

max
η∈Cn

〈y ,η〉 subject to ||F∗n η||∞ ≤ 1

||η||∞ ≤ λ
Finite-dimensional variable η, but infinite-dimensional constraint

F∗n η (f ) =
n∑

l=−n
ηle
−i2πlf

Second option: Solving the dual problem



Lemma: Semidefinite representation

The Fejér-Riesz Theorem and the semidefinite representation of polynomial
sums of squares imply that

||F∗c η||∞ ≤ 1

is equivalent to

There exists a Hermitian matrix Q ∈ Cn×n such that

[
Q η
η∗ 1

]
� 0,

n−j∑

i=1

Qi ,i+j =

{
1, j = 0,
0, j = 1, 2, . . . , n − 1.

Consequence: The dual problem is a tractable semidefinite program



Support-locating polynomial

How do we obtain an estimator from the dual solution?

Dual solution vector: From strong duality

I η̂ interpolates the sign of the primal solution ẑ

I F∗n η̂ interpolates the sign of the primal solution µ̂



Demixing via semidefinite programming

Re (F∗n η̂) Re (η̂)

Dual
solution

-1

1

−λ

λ

Estimate

Spectrum
Estimate

Spikes
Estimate



Compressed sensing

Spectral super-resolution

Spectral super-resolution in the presence of outliers

Demixing via semidefinite programming

Greedy demixing + local optimization



Spectral super-resolution in the presence of outliers




g (1)
g (2)
· · ·

g (n)


 =




∑k
j=1 xj exp (i2πfj1)∑k
j=1 xj exp (i2πfj2)

· · ·∑k
j=1 xj exp (i2πfjn)


 =

k∑

j=1

xj




exp (i2πfj)
exp (i2π2fj)
· · ·

exp (i2πnfj)






Spectral super-resolution in the presence of outliers

z =
∑

l∈Ω

zl




0
· · ·
1
· · ·
0






Spectral super-resolution in the presence of outliers

y =
k∑

j=1

xj




exp (i2πfj)
exp (i2π2fj)
· · ·

exp (i2πnfj)


+

∑

l∈Ω

zl




0
· · ·
1
· · ·
0






Sinusoidal and spiky atoms

Consider the dictionary

D := {a (f , 0) , f ∈ [0, 1]} ∪ {e (l) , 1 ≤ l ≤ n}

where

a (f ) :=




e i2πf

e i2π2f

· · ·
e i2π(n−1)f

e i2πnf




e (l) :=




0
· · ·
1
· · ·
0




According to our assumptions

y =
k∑

j=1

xja (fj) +
∑

l∈Ω

zle (l)



Greedy demixing

Goal: Find sparse decomposition in the dictionary

1. Initialization: Set residual equal to the data vector y

2. Selection: Choose atom with higher correlation with residual

3. Pruning: Fit the current atoms to the data and discard any with small
contributions, then update the residual



Greedy demixing

Spectrum
Estimate

Data
Outliers
Detected



Greedy demixing with local optimization

1. Initialization

2. Selection

3. Pruning

4. Local optimization: Fix the number of sinusoidal atoms k̂ and
reestimate f1, . . . , fk̂ by minimizing the function

L
(
f1, . . . , fk̂

)
:= min

x̂∈Ck̂ ,ẑ∈C|Ω̂|

∣∣∣∣∣∣

∣∣∣∣∣∣
y −
√

n
k̂∑

j=1

x̂j a (fj , 0)−
∑

l∈Ω̂

ẑl e (l)

∣∣∣∣∣∣

∣∣∣∣∣∣
2

then update the residual



Greedy demixing with local optimization

Spectrum
Estimate

Data
Outliers
Detected



Conclusion

I Convex programming succeeds beyond compressed sensing if we
restrict the class of signals of interest

I A tractable method based on semidefinite programming allows to
perform spectral super-resolution in the presence of outliers

I Fast greedy method combined with nonconvex optimization yields
promising results
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