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Abstract

This paper develops a mathematical theory of super-resolution. Broadly speaking, super-
resolution is the problem of recovering the fine details of an object—the high end of its spectrum—
from coarse scale information only—from samples at the low end of the spectrum. Suppose we
have many point sources at unknown locations in [0, 1] and with unknown complex-valued am-
plitudes. We only observe Fourier samples of this object up until a frequency cut-off fc. We
show that one can super-resolve these point sources with infinite precision—i.e. recover the
exact locations and amplitudes—by solving a simple convex optimization problem, which can
essentially be reformulated as a semidefinite program. This holds provided that the distance
between sources is at least 2/fc. This result extends to higher dimensions and other models. In
one dimension for instance, it is possible to recover a piecewise smooth function by resolving the
discontinuity points with infinite precision as well. We also show that the theory and methods
are robust to noise. In particular, in the discrete setting we develop some theoretical results
explaining how the accuracy of the super-resolved signal is expected to degrade when both the
noise level and the super-resolution factor vary.

Keywords. Diffraction limit, deconvolution, stable signal recovery, sparsity, sparse spike trains,
`1 minimization, dual certificates, interpolation, super-resolution, semidefinite programming..

1 Introduction

1.1 Super-resolution

Super-resolution is a word used in different contexts mainly to design techniques for enhancing the
resolution of a sensing system. Interest in such techniques comes from the fact that there usually
is a physical limit on the highest possible resolution a sensing system can achieve. To be concrete,
the spatial resolution of an imaging device may be measured by how closely lines can be resolved.
For an optical system, it is well known that resolution is fundamentally limited by diffraction. In
microscopy, this is called the Abbe diffraction limit and is a fundamental obstacle to observing
sub-wavelength structures. This is the reason why resolving sub-wavelength features is a crucial
challenge in fields such as astronomy [32], medical imaging [22], and microscopy [28]. In electronic
imaging, limitations stem from the lens and the size of the sensors, e. g. pixel size. Here, there is an
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inflexible limit to the effective resolution of a whole system due to photon shot noise which degrades
image quality when pixels are made smaller. Some other fields where it is desirable to extrapolate
fine scale details from low-resolution data—or resolve sub-pixel details—include spectroscopy [23],
radar [29], non-optical medical imaging [25] and geophysics [26]. For a survey of super-resolution
techniques in imaging, see [30] and the references therein.

This paper is about super-resolution, which loosely speaking is the process whereby the fine scale
structure of an object is retrieved from coarse scale information only.1 A useful mathematical model
may be of the following form: start with an object x(t1, t2) of interest, a function of two spatial
variables, and the point-spread function h(t1, t2) of an optical instrument. This instrument acts as
a filter in the sense that we may observe samples from the convolution product

y(t1, t2) = (x ∗ h)(t1, t2).

In the frequency domain, this equation becomes

ŷ(ω1, ω2) = x̂(ω1, ω2)ĥ(ω1, ω2), (1.1)

where x̂ is the Fourier transform of x, and ĥ is the modulation transfer function or simply transfer
function of the instrument. Now, common optical instruments act as low-pass filters in the sense
that their transfer function ĥ vanishes for all values of ω obeying |ω| ≥ Ω in which Ω is a frequency
cut-off; that is,

|ω| :=
√
ω2

1 + ω2
2 > Ω ⇒ ĥ(ω1, ω2) = 0.

In microscopy with coherent illumination, the bandwidth Ω is given by Ω = 2πNA/λ where NA is
the numerical aperture and λ is the wavelength of the illumination light. For reference, the transfer
function in this case is simply the indicator function of a disk and the point-spread function has
spherical symmetry and a radial profile proportional to the ratio between the Bessel function of the
first order and the radius. In microscopy with incoherent light, the transfer function is the Airy
function and is proportional to the square of the coherent point-spread function. Regardless, the
frequency cut-off induces a physical resolution limit which is roughly inversely proportional to Ω
(in microscopy, the Rayleigh resolution distance is defined to be 0.61× 2π/Ω).

The daunting and ill-posed super-resolution problem then consists in recovering the fine-scale or,
equivalently, the high-frequency features of x even though they have been killed by the measure-
ment process. This is schematically represented in Figure 1, which shows a highly resolved signal
together with a low-resolution of the same signal obtained by convolution with a point-spread
function. Super-resolution aims at recovering the fine scale structure on the left from coarse scale
features on the right. Viewed in the frequency domain, super-resolution is of course the problem
of extrapolating the high-end and missing part of the spectrum from the low-end part, as seen
in Figure 2. For reference, this is very different from a typical compressed sensing problem [6] in
which we wish to interpolate—and not extrapolate—the spectrum.

This paper develops a mathematical theory of super-resolution, which is not developed at all de-
spite the abundance of empirical work in this area, see Section 1.8 for some references. Our theory
takes multiple forms but a simple and appealing incarnation is as follows. Suppose we wish to

1We discuss here computational super-resolution methods as opposed to instrumental techniques such as interfer-
ometry.
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(a) (b)

Figure 1: Schematic illustration of the super-resolution problem in the spatial domain. (a)
Highly resolved signal. (b) Low-pass version of signal in (a). Super-resolution is about recov-
ering the signal in (a) by deconvolving the data in (b).

(a) (b)

Figure 2: Schematic illustration of the super-resolution problem in the frequency domain. (a)
Real part of the Fourier transform in Figure 1(a). (b) In red, portion of the observed spectrum.
Super-resolution is about extrapolating the red fragment to recover the whole curve.
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super-resolve a spike-train signal as in Figure 1, namely, a superposition of pointwise events. Our
main result is that we can recover such a signal exactly from low-frequency samples by tractable
convex optimization in which one simply minimizes the continuous analog to the `1 norm for dis-
crete signals subject to data constraints. This holds as long as the spacing between the spikes is
on the order of the resolution limit. Furthermore, the theory shows that this procedure is robust
in the sense that it degrades smoothly when the measurements are contaminated with noise. In
fact, we shall quantify quite precisely the error one can expect as a function of the size of the input
noise and of the resolution one wishes to achieve.

1.2 Models and methods

For concreteness, consider a continuous-time model in which the signal of interest is a weighted
superposition of spikes

x =
∑
j

ajδtj , (1.2)

where {tj} are locations in [0, 1] and δτ is a Dirac measure at τ . The amplitudes aj may be complex
valued. Expressed differently, the signal x is an atomic measure on the unit interval putting complex
mass at time points t1, t2, t3 and so on. The information we have available about x is a sample of
the lower end of its spectrum in the form of the lowest 2fc + 1 Fourier series coefficients (fc is an
integer):

y(k) =

∫ 1

0
e−i2πktx(dt) =

∑
j

aje
−i2πktj , k ∈ Z, |k| ≤ fc. (1.3)

For simplicity, we shall use matrix notations to relate the data y and the object x and will write
(1.3) as y = Fn x where Fn is the linear map collecting the lowest n = 2fc+1 frequency coefficients.
It is important to bear in mind that we have chosen this model mainly for ease of exposition. Our
techniques can be adapted to settings where the measurements are modeled differently, e. g. by
sampling the convolution of the signal with different low-pass kernels. The important element is
that just as before, the frequency cut-off induces a resolution limit inversely proportional to fc;
below we set λc = 1/fc for convenience.

To recover x from low-pass data we shall find, among all measures fitting the observations, that with
lowest total variation. The total variation of a complex measure (see Section A in the Appendix for
a rigorous definition) can be interpreted as being the continuous analog to the `1 norm for discrete
signals. In fact, with x as in (1.2), ||x||TV is equal to the `1 norm of the amplitudes ||a||1 =

∑
j |aj |.

Hence, we propose solving the convex program

min
x̃
||x̃||TV subject to Fn x̃ = y, (1.4)

where the minimization is carried out over the set of all finite complex measures x̃ supported on
[0, 1]. Our first result shows that if the spikes or atoms are sufficiently separated, at least 2λc apart,
the solution to this convex program is exact.

Definition 1.1 (Minimum separation) Let T be the circle obtained by identifying the endpoints
on [0, 1] and Td the d-dimensional torus. For a family of points T ⊂ Td, the minimum separation
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is defined as the closest distance between any two elements from T ,

∆(T ) = inf
(t,t′)∈T : t6=t′

|t− t′|, (1.5)

where |t − t′| is the `∞ distance (maximum deviation in any coordinate). To be clear, this is the
wrap-around distance so that for d = 1, the distance between t = 0 and t′ = 3/4 is equal to 1/4.

Theorem 1.2 Let T = {tj} be the support of x. If the minimum distance obeys

∆(T ) ≥ 2 /fc := 2λc, (1.6)

then x is the unique solution to (1.4). This holds with the proviso that fc ≥ 128. If x is known to
be real-valued, then the minimum gap can be lowered to 1.87λc.

We find this result particularly unexpected. The total-variation norm makes no real assumption
about the structure of the signal. Yet, not knowing that there are any spikes, let alone how many
there are, total-variation minimization locates the position of those spikes with infinite precision!
Even if we knew that (1.4) returned a spike train, there is no reason to expect that the locations
of the spikes would be infinitely accurate from coarse scale information only. In fact, one would
probably expect the fitted locations to deviate at least a little from the truth. This is not what
happens.

The theorem does not depend on the amplitudes and applies to situations where we have both
very large and very small spikes. The information we have about x is equivalent to observing
the projection of x onto its low-frequency components, i.e. the constraint in (1.4) is the same as
Pnx̃ = Pnx, where Pn = F∗nFn. As is well known, this projection is the convolution with the
Dirichlet kernel, which has slowly decaying side lobes. Hence, the theorem asserts that total-
variation minimization will pull out the small spikes even though they may be completely buried in
the side lobes of the large ones as shown in Figure 3. To be sure, by looking at the curves in Figure
3, it seems a priori impossible to tell how many spikes there are or roughly where they might be.

An interesting aspect of this theorem is that it cannot really be tested numerically. Indeed, one
would need a numerical solver with infinite precision to check that total-variation minimization
truly puts the spikes at exactly the right locations. Although this is of course not available, Section
4 shows how to solve the minimum total-variation problem (1.4) by using ideas from semidefinite
programming and allowing recovery of the support with very high precision. Also, we demonstrate
through numerical simulations in Section 5 that Theorem 1.2 is fairly tight in the sense that a
necessary condition is a separation of at least λc = 1/fc.

Viewed differently, one can ask: how many spikes can be recovered from n = 2fc + 1 low-frequency
samples? The answer given by Theorem 1.2 is simple. At least n/4 provided we have the minimum
separation discussed above. A classical argument shows that any method whatsoever would at least
need two samples per unknown spike so that the number of spikes cannot exceed half the number
of samples, i. e. n/2. This is another way of showing that the theorem is reasonably tight.

1.3 Super-resolution in higher dimensions

Our results extend to higher dimensions and reveal the same dependence between the minimum
separation and the measurement resolution as in one dimension. For concreteness, we discuss the
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Figure 3: Low-frequency projection of a signal corresponding to a signal with three (left) and
seven (right) spikes. The blue curve represents the available data while the red ticks represent
the unknown locations and relative amplitudes of the spikes. The locations of the spikes obey
the condition of Theorem 1.2. Yet, by looking at the curves, it seems a priori impossible to
tell how many spikes there are or roughly where they might be.

2-dimensional setting and emphasize that the situation in d dimensions is similar. Here, we have a
measure

x =
∑
j

ajδtj ,

as before but in which the tj ∈ [0, 1]2. We are given information about x in the form of low-frequency
samples of the form

y(k) =

∫
[0,1]2

e−i2π〈k,t〉x(dt) =
∑
j

aje
−i2π〈k,tj〉, k = (k1, k2) ∈ Z2, |k1| , |k2| ≤ fc. (1.7)

This again introduces a physical resolution of about λc = 1/fc. In this context, we may think
of our problem as imaging point sources in the 2D plane—such as idealized stars in the sky—
with an optical device with resolution about λc—such as a diffraction limited telescope. Our next
result states that it is possible to locate the point sources without any error whatsoever if they are
separated by a distance of 2.38λc simply by minimizing the total variation.

Theorem 1.3 Let T = {tj} ⊂ [0, 1]2 identified with T2 be the support of x obeying the separation
condition2

∆(T ) ≥ 2.38 /fc = 2.38λc. (1.8)

Then if x is real valued, it is the unique minimum total-variation solution among all real objects
obeying the data constraints (1.7). Hence, the recovery is exact. For complex measures, the same
statement holds but with a slightly different constant.

Whereas we have tried to optimize the constant in one dimension3, we have not really attempted to
do so here in order to keep the proof reasonably short and simple. Hence, this theorem is subject
to improvement.

2Recall that distance is measured in `∞.
3This is despite the fact that the authors have a proof—not presented here—of a version of Theorem 1.2 with a

minimum separation at least equal to 1.85λc.
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Theorem 1.3 is proved for real-valued measures in Section C of the Appendix. However, the proof
techniques can be applied to higher dimensions and complex measures almost directly. In details,
suppose we observe the discrete Fourier coefficients of a d-dimensional object at k = (k1, . . . , kd) ∈
Zd corresponding to low frequencies 0 ≤ |k1|, . . . , |kd| ≤ fc. Then the minimum total-variation
solution is exact provided that the minimum distance obeys ∆(T ) ≥ cd λc, where cd is some positive
numerical constant depending only on the dimension. Finally, as the proof makes clear, extensions
to other settings, in which one observes Fourier coefficients if and only if the `2 norm of k is less or
equal to a frequency cut-off, are straightforward.

1.4 Discrete super-resolution

Our continuous theory immediately implies analogous results for finite signals. Suppose we wish
to recover a discrete signal x ∈ CN from low-frequency data. Just as before, we could imagine
collecting low-frequency samples of the form

yk =

N−1∑
t=0

xte
−i2πkt/N , |k| ≤ fc; (1.9)

the connection with the previous sections is obvious since x might be interpreted as samples of a
discrete signal on a grid {t/N} with t = 0, 1, . . . , N − 1. In fact, the continuous-time setting is
the limit of infinite resolution in which N tends to infinity while the number of samples remains
constant (fc fixed). Instead, we can choose to study the regime in which the ratio between the
actual resolution of the signal 1/N and the resolution of the data defined as 1/fc is constant. This
gives the corollary below.

Corollary 1.4 Let T ⊂ {0, 1, . . . , N − 1} be the support of {xt}N−1
t=0 obeying

min
t,t′∈T :t6=t′

1

N

∣∣t− t′∣∣ ≥ 2λc = 2 /fc. (1.10)

Then the solution to
min ||x̃||1 subject to Fnx̃ = y (1.11)

in which Fn is the partial Fourier matrix in (1.9) is exact.

1.5 The super-resolution factor

In the discrete framework, we wish to resolve a signal on a fine grid with spacing 1/N . However, we
only observe the lowest n = 2fc + 1 Fourier coefficients so that in principle, one can only hope to
recover the signal on a coarser grid with spacing only 1/n as shown in Figure 4. Hence, the factor
N/n, or equivalently, the ratio between the spacings in the coarse and fine grids, can be interpreted
as a super-resolution factor (SRF). Below, we set

SRF = N/n ≈ N/2fc; (1.12)

when the SRF is equal to 5 as in the figure, we are looking for a signal at a resolution 5 times
higher than what is stricto senso permissible. One can then recast Corollary 1.4 as follows: if the
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1/N

1/n

λc

Figure 4: Fine grid with spacing 1/N . We only observe frequencies between −fc and fc,
fc/N ≈ 1

2SRF−1, so that the highest frequency sine wave available has wavelength 1/fc = λc.
These data only allow a Nyquist sampling rate of λc/2 ≈ 1/n. In this sense, we can interpret
the super-resolution factor N/n as the ratio between these two resolutions.

nonzero components of {xt}N−1
t=0 are separated by at least 4× SRF, perfect super-resolution via `1

minimization occurs.

The reason for introducing the SRF is that with inexact data, we obviously cannot hope for infinite
resolution. Indeed, noise will ultimately limit the resolution one can ever hope to achieve and,
therefore, the question of interest is to study the accuracy one might expect from a practical
super-resolution procedure as a function of both the noise level and the SRF.

1.6 Stability

To discuss the robustness of super-resolution methods vis a vis noise, we examine in this paper
the discrete setting of Section 1.4. In this setup, we could certainly imagine studying a variety of
deterministic and stochastic noise models, and a variety of metrics in which to measure the size
of the error. For simplicity, we study a deterministic scenario in which the projection of the noise
onto the signal space has bounded `1 norm but is otherwise arbitrary and can be adversarial. The
observations are consequently of the form

y = Fnx+ w,
1

N
||F ∗nw||1 ≤ δ (1.13)

for some δ ≥ 0, where Fn is as before. Letting Pn be the orthogonal projection of a signal onto
the first n Fourier modes, Pn = 1

NF
∗
nFn, we can view (1.13) as an input noise model since with

w = Fnz, we have
y = Fn(x+ z), ||z||1 ≤ δ, z = Pnz.

Another way to write this model with arbitrary input noise z ∈ CN is

y = Fn(x+ z), ||Pnz||1 ≤ δ

since the high-frequency part of z is filtered out by the measurement process. Finally, with s =
N−1F ∗ny, (1.13) is equivalent to

s = Pnx+ Pnz, ||Pnz||1 ≤ δ. (1.14)
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In words, we observe a low-pass version of the signal corrupted with an additive low-pass error
whose `1 norm is at most δ. In the case where n = N , Pn = I, and our model becomes

s = x+ z, ‖z‖1 ≤ δ.

In this case, one cannot hope for a reconstruction x̂ with an error in the `1 norm less than the
noise level δ. We now wish to understand how quickly the recovery error deteriorates as the super-
resolution factor increases.

We propose studying the relaxed version of the noiseless problem (1.11)

min
x̃
||x̃||1 subject to ||Pnx̃− s||1 ≤ δ. (1.15)

We show that this recovers x with a precision inversely proportional to δ and to the square of the
super-resolution factor.

Theorem 1.5 Assume that x obeys the separation condition (1.6). Then with the noise model
(1.14), the solution x̂ to (1.15) obeys

||x̂− x||1 ≤ C0 SRF2 δ, (1.16)

for some positive constant C0.

This theorem, which shows the simple dependence upon the super-resolution factor and the noise
level, is proved in Section 3. Clearly, plugging in δ = 0 in (1.16) gives Corollary 1.4.

Versions of Theorem 1.5 hold in the continuous setting as well, where the locations of the spikes
are not assumed to lie on a given fine grid but can take on a continuum of values. The arguments
are more involved than those needed to establish (1.16) and we leave a detailed study to a future
paper.

1.7 Sparsity and stability

Researchers in the field know that super-resolution under sparsity constraints alone is hopelessly
ill posed. In fact, without a minimum distance condition, the support of sparse signals can be
very clustered, and clustered signals can be nearly completely annihilated by the low-pass sensing
mechanism. The extreme ill-posedness can be understood by means of the seminal work of Slepian
[36] on discrete prolate spheroidal sequences. This is surveyed in Section 3.2 but we give here a
concrete example to drive this point home.

To keep things simple, we consider the ‘analog version’ of (1.14) in which we observe

s = PW (x+ z);

PW (x) is computed by taking the discrete-time Fourier transform y(ω) =
∑

t∈Z xte
−i2πωt, ω ∈

[−1/2, 1/2], and discarding all ‘analog’ frequencies outside of the band [−W,W ]. If we set

2W = n/N = 1/SRF,
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we essentially have PW = Pn where the equality is true in the limit where N → ∞ (technically,
PW is the convolution with the sinc kernel while Pn uses the Dirichlet kernel). Set a mild level of
super-resolution to fix ideas,

SRF = 4.

Now the work of Slepian shows that there is a k-sparse signal supported on [0, . . . , k − 1] obeying

PWx = λx, λ ≈ 5.22
√
k + 1 e−3.23(k+1). (1.17)

For k = 48,
λ ≤ 7× 10−68. (1.18)

Even knowing the support ahead of time, how are we going to recover such signals from noisy
measurements? Even for a very mild super-resolution factor of just SRF = 1.05 (we only seek to
extend the spectrum by 5%), (1.17) becomes

PWx = λx, λ ≈ 3.87
√
k + 1 e−0.15(k+1), (1.19)

which implies that there exists a unit-norm signal with at most 256 consecutive nonzero entries such
that ||PWx||2 ≤ 1.2 × 10−15. Of course, as the super-resolution factor increases, the ill-posedness
gets worse. For large values of SRF, there is x obeying (1.17) with

log λ ≈ −(0.4831 + 2 log(SRF))k. (1.20)

It is important to emphasize that this is not a worst case analysis. In fact, with k = 48 and
SRF = 4, Slepian shows that there is a large dimensional subspace of signals supported on Ck
spanned by orthonormal eigenvectors with eigenvalues of magnitudes nearly as small as (1.18).

1.8 Comparison with related work

The use of `1 minimization for the recovery of sparse spike trains from noisy bandlimited mea-
surements has a long history and was proposed in the 1980s by researchers in seismic prospect-
ing [8, 27, 35]. For finite signals and under the rather restrictive assumption that the signal is real
valued and nonnegative, [20] and [12] prove that k spikes can be recovered from 2k + 1 Fourier
coefficients by this method. The work [9] extends this result to the continuous setting by using
total-variation minimization. In contrast, our results require a minimum distance between spikes
but allow for arbitrary complex amplitudes, which is crucial in applications. The only theoretical
guarantee we are aware of concerning the recovery of spike trains with general amplitudes is very
recent and due to Kahane [24]. Kahane offers variations on compressive sensing results in [6] and
studies the reconstruction of a function with lacunary Fourier series coefficients from its values in
a small contiguous interval, a setting that is equivalent to that of Corollary 1.4 when the size N of
the fine grid tends to infinity. With our notation, whereas we require a minimum distance equal
to 4× SRF, this work shows that a minimum distance of 10× SRF

√
log SRF is sufficient for exact

recovery. Although the log factor might seem unimportant at first glance, it in fact precludes ex-
tending Kahane’s result to the continuous setting of Theorem 1.2. Indeed, by letting the resolution
factor tend to infinity so as to approach the continuous setting, the spacing between consecutive
spikes would need to tend to infinity as well.
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As to results regarding the robustness of super-resolution in the presence of noise, Donoho [10]
studies the modulus of continuity of the recovery of a signed measure on a discrete lattice from
its spectrum on the interval [−fc, fc], a setting which is also equivalent to that of Corollary 1.4
when the size N of the fine grid tends to infinity. More precisely, if the support of the measure
is constrained to contain at most ` elements in any interval of length 2/(` fc), then the modulus
of continuity is of order O

(
SRF2`+1

)
as SRF grows to infinity (note that for ` = 1 the constraint

reduces to a minimum distance condition between spikes, which is comparable to the separation
condition (1.6)). This means that if the `2 norm of the difference between the measurements
generated by two signals satisfying the support constraints is known to be at most δ, then the `2
norm of the difference between the signals may be of order O

(
SRF2`+1 δ

)
. This result suggests that,

in principle, the super-resolution of spread-out signals is not hopelessly ill-conditioned. Having said
this, it does not propose any practical recovery algorithm (a brute-force search for sparse measures
obeying the low-frequency constraints would be computationally intractable).

Finally, we would like to mention an alternative approach to the super-resolution of pointwise events
from coarse scale data. Leveraging ideas related to error correction codes and spectral estimation,
[15] shows that it is possible to recover trains of Dirac distributions from low-pass measurements
at their rate of innovation (in essence, the density of spikes per unit of time). This problem,
however, is extraordinarily ill posed without a minimum separation assumption as explained in
Sections 1.7 and 3.2. Moreover, the proposed reconstruction algorithm in [15] needs to know the
number of events ahead of time, and relies on polynomial root finding. As a result, it is highly
unstable in the presence of noise as discussed in [37], and in the presence of approximate sparsity.
Algebraic techniques have also been applied to the location of singularities in the reconstruction
of piecewise polynomial functions from a finite number of Fourier coefficients (see [1, 2, 18] and
references therein). The theoretical analysis of these methods proves their accuracy up to a certain
limit related to the number of measurements. Corollary 1.6 takes a different approach, guaranteeing
perfect localization if there is a minimum separation between the singularities.

1.9 Connections to sparse recovery literature

Theorem 1.2 and Corollary 1.4 can be interpreted in the framework of sparse signal recovery. For
instance, by swapping time and frequency, Corollary 1.4 asserts that one can recover a sparse
superposition of tones with arbitrary frequencies from n time samples of the form

yt =
N−1∑
j=0

xje
−i2πtωj , t = 0, 1, . . . , n− 1

where the frequencies are of the form ωj = j/N . Since the spacing between consecutive frequencies
is not 1/n but 1/N , we may have a massively oversampled discrete Fourier transform, where the
oversampling ratio is equal to the super-resolution factor. In this context, a sufficient condition for
perfectly super-resolving these tones is a minimum separation of 4/n. In addition, Theorem 1.2
extends this to continuum dictionaries where tones ωj can take on arbitrary real values.

In the literature, there are several conditions that guarantee perfect signal recovery by `1 mini-
mization. The results obtained from their application to our problem are, however, very weak.

• The matrix with normalized columns fj = {e−i2πtωj/
√
n}n−1

t=0 does not obey the restricted
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isometry property [7] since a submatrix composed of a very small number of contiguous
columns is already very close to singular, see [36] and Section 3.2 for related claims. For ex-
ample, with N = 512 and a modest SRF equal to 4, the smallest singular value of submatrices
formed by eight consecutive columns is 3.32 10−5.

• Applying the discrete uncertainty principle proved in [11], we obtain that recovery by `1
minimization succeeds as long as

2 |T | (N − n) < N.

If n < N/2, i.e. SRF > 2, this says that |T | must be zero. In other words, to recover one
spike, we would need at least half of the Fourier samples.

• Other guarantees based on the coherence of the dictionary yield similar results. A popular
condition [39] requires that

|T | < 1

2
(M−1 + 1), (1.21)

where M is the coherence of the system defined as maxi 6=j |〈fi, fj〉|. When N = 1024 and
SRF = 4, M ≈ 0.9003 so that this becomes |T | ≤ 1.055, and we can only hope to recover one
spike.

There are slightly improved versions of (1.21). In [13], Dossal studies the deconvolution of spikes
by `1 minimization. This work introduces the weak exact recovery condition (WERC) defined as

WERC (T ) =
β (T )

1− α (T )
,

where
α(T ) = sup

i∈T

∑
j∈T/{i}

|〈fi, fj〉| , β(T ) = sup
i∈T c

∑
j∈T
|〈fi, fj〉| .

The condition WERC (T ) < 1 guarantees exact recovery. Considering three spikes and using Taylor
expansions to bound the sine function, the minimum distance needed to ensure that WERC (T ) < 1
may be lower bounded by 24SRF3/π3 − 2SRF. This is achieved by considering three spikes at
ω ∈ {0,±∆}, where ∆ = (k + 1/2)/n for some integer k; we omit the details. If N = 20, 000 and
the number of measurements is 1, 000, this allows for the recovery of at most 3 spikes, whereas
Corollary 1.4 implies that it is possible to reconstruct at least n/4 = 250. Furthermore, the cubic
dependence on the super-resolution factor means that if we fix the number of measurements and
let N → ∞, which is equivalent to the continuous setting of Theorem 1.2, the separation needed
becomes infinite and we cannot guarantee the recovery of even two spikes.

Finally, we would also like to mention some very recent work on sparse recovery in highly coherent
frames by modified greedy compressed sensing algorithms [16, 19]. Interestingly, these approaches
explicitly enforce conditions on the recovered signals that are similar in spirit to our minimum
distance condition. As opposed to `1-norm minimization, such greedy techniques may be severely
affected by large dynamic ranges (see [19]) because of the phenomenon illustrated in Figure 3.
Understanding under what conditions their performance may be comparable to that of convex
programming methods is an interesting research direction.
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1.10 Extensions

Our results and techniques can be extended to super-resolve many other types of signals. We just
outline such a possible extension. Suppose x : [0, 1] → C is a periodic piecewise smooth function
with period 1, defined by

x(t) =
∑
tj∈T

1(tj−1,tj)pj(t);

on each time interval (tj−1, tj), x is polynomial of degree `. For ` = 0, we have a piecewise constant
function, for ` = 1, a piecewise linear function and so on. Also suppose x is globally ` − 1 times
continuously differentiable (as for splines). We observe

yk =

∫
[0,1]

x(t) e−i2πktdt , |k| ≤ fc.

The (`+ 1)th derivative of x (in the sense of distributions) denoted by x(`+1) is an atomic measure
supported on T and equal to

x(`+1) =
∑
j

ajδtj , aj = p
(`)
j+1(tj)− p(`)

j (tj).

Hence, we can imagine recovering x(`+1) by solving

min ‖x̃(`+1)‖TV subject to Fnx̃ = y. (1.22)

Standard Fourier analysis gives that the kth Fourier coefficient of this measure is given by

y
(`+1)
k = (i2πk)`+1 yk, k 6= 0. (1.23)

Hence, we observe the Fourier coefficients of x(`+1) except that corresponding to k = 0, which must
vanish since the periodicity implies

∫ 1
0 x

(`+1)(dt) = 0 =
∫ 1

0 x
(j)(t)dt, 1 ≤ j ≤ `. Hence, it follows

from Theorem 1.2 that (1.22) recovers x(`+1) exactly as long as the discontinuity points are at least
2λc apart. Because x is ` − 1 times continuously differentiable and periodic, x(`+1) determines x
up to a shift in function value, equal to its mean. However, we can read the mean value of x off
y0 =

∫ 1
0 x(t)dt and, therefore, (1.22) achieves perfect recovery.

Corollary 1.6 If T = {tj} obeys (1.6), x is determined exactly from y by solving (1.22).

Extensions to non-periodic functions, other types of discontinuities and smoothness assumptions
are straightforward.

1.11 Organization of the paper

The remainder of the paper is organized as follows. We prove our main noiseless result in Section 2.
There, we introduce our techniques which involve the construction of an interpolating low-frequency
polynomial. Section 3 proves our stability result and argues that sparsity constraints cannot be
sufficient to guarantee stable super-resolution. Section 4 shows that (1.4) can be cast as a finite
semidefinite program. Numerical simulations providing a lower bound for the minimum distance
that guarantees exact recovery are presented in Section 5. We conclude the paper with a short
discussion in Section 6.
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Figure 5: (a) Low-frequency polynomial interpolating a sign pattern in which the support
is well separated, and obeying the off-support condition (2.2). In (b), we see that if the
spikes become very near, we would need a rapidly (high-frequency) interpolating polynomial
in order to achieve (2.2). This is the reason why there must be a minimum separation between
consecutive spikes.

2 Noiseless Recovery

This section proves the noiseless recovery result, namely, Theorem 1.2. Here and below, we write
∆ = ∆(T ) ≥ ∆min = 2λc. Also, we identify the interval [0, 1) with the circle T.

2.1 Dual polynomials

In the discrete setting, the compressed sensing literature has made clear that the existence of a
certain dual certificate guarantees that the `1 solution is exact [6]. In the continuous setting, a
sufficient condition for the success of the total-variation solution is this: for any v ∈ C|T | with
|vj | = 1, there exists a low-frequency trigonometric polynomial

q(t) =

fc∑
k=−fc

cke
i2πkt (2.1)

obeying the following properties {
q(tj) = vj , tj ∈ T,
|q(t)| < 1, t ∈ T \ T.

(2.2)

This result follows from elementary measure theory and is included in Section A of the Appendix
for completeness. Constructing a bounded low-frequency polynomial interpolating the sign pattern
of certain signals becomes increasingly difficult if the minimum distance separating the spikes is too
small. This is illustrated in Figure 5, where we show that if spikes are very near, it would become
in general impossible to find an interpolating low-frequency polynomial obeying (2.2).
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2.2 Proof of Theorem 1.2

Theorem 1.2 is a direct consequence of the proposition below, which establishes the existence of a
valid dual polynomial provided the elements in the support are sufficiently spaced.

Proposition 2.1 Let v ∈ C|T | be an arbitrary vector obeying |vj | = 1. Then under the hypotheses
of Theorem 1.2, there exists a low-frequency trigonometric polynomial (2.1) obeying (2.2).

The remainder of this section proves this proposition. Our method consists in interpolating v on
T with a low-frequency kernel and correcting the interpolation to ensure that the derivative of the
dual polynomial is zero on T . The kernel we employ is

K(t) =

sin
((

fc
2 + 1

)
πt
)

(
fc
2 + 1

)
sin (πt)

4

, 0 < t < 1, (2.3)

and K(0) = 1. If fc is even, K(t) is the square of the Fejér kernel which is a trigonometric
polynomial with frequencies obeying |k| ≤ fc/2. As a consequence, K is of the form (2.1). The
careful reader might remark that the choice of the interpolation kernel seems somewhat arbitrary.
In fact, one could also use the Fejér kernel or any other power of the Fejér kernel using almost
identical proof techniques. We have found that the second power nicely balances the trade-off
between localization in time and in frequency, and thus yields a good constant.

To construct the dual polynomial, we interpolate v with both K and its derivative K ′,

q(t) =
∑
tj∈T

αjK(t− tj) + βjK
′(t− tj), (2.4)

where α, β ∈ C|T | are coefficient sequences. The polynomial q is as in (2.1) and in order to obey
q(tk) = vk, we impose

q(tk) =
∑
tj∈T

αjK (tk − tj) + βjK
′ (tk − tj) = vk, ∀tk ∈ T, (2.5)

whereas in order to obey |q(t)| < 1 for t ∈ T c, we impose q′(tk) = 0,

q′(tk) =
∑
tj∈T

αjK
′ (tk − tj) + βjK

′′ (tk − tj) = 0, ∀tk ∈ T. (2.6)

As we will see, this implies that the magnitude of q reaches a local maximum at those points, which
in turn can be used to show that (2.2) holds.

The proof of Proposition 2.1 consists of three lemmas, which are the object of the following section.
The first one establishes that if the support is spread out, it is possible to interpolate any sign
pattern exactly.

Lemma 2.2 Under the hypotheses of Proposition 2.1, there exist coefficient vectors α and β obeying

||α||∞ ≤ α
∞ := 1 + 8.824 10−3,

||β||∞ ≤ β
∞ := 3.294 10−2 λc,

(2.7)
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such that (2.5)–(2.6) hold. Further, if v1 = 1,

Reα1 ≥ 1− 8.824 10−3,

|Imα1| ≤ 8.824 10−3.
(2.8)

To complete the proof, Lemmas 2.3 and 2.4 show that |q (t) | < 1.

Lemma 2.3 Fix τ ∈ T . Under the hypotheses of Proposition 2.1, |q(t)| < 1 for |t− τ | ∈
(0, 0.1649λc].

Lemma 2.4 Fix τ ∈ T . Then under the hypotheses of Proposition 2.1, |q(t)| < 1 for |t− τ | ∈
[0.1649λc,∆/2]. This can be extended as follows: letting τ+ be the closest spike to the right,
i. e. τ+ = min{t ∈ T : t > τ}. Then |q(t)| < 1 for all t obeying 0 < t− τ ≤ (τ+− τ)/2, and likewise
for the left side.

Finally, we record a useful lemma to derive stability results.

Lemma 2.5 If ∆ (T ) ≥ 2.5λc, then for any τ ∈ T ,

|q (t)| ≤ 1− 0.3353f2
c (t− τ)2 , for all t : |t− τ | ≤ 0.1649λc. (2.9)

Further, for minτ∈T |t− τ | > 0.1649λc, |q (t)| is upper bounded by the right-hand side above eval-
uated at 0.1649λc.

Section 2.5 describes how the proof can be adapted to obtain a slightly smaller bound on the
minimum distance for real-valued signals.

2.3 Proofs of Lemmas

The proofs of the three lemmas above make repeated use of the fact that the interpolation kernel
and its derivatives decay rapidly away from the origin. The intermediate result below proved in
Section B of the Appendix quantifies this.

Lemma 2.6 For ` ∈ {0, 1, 2, 3}, let K(`) be the `th derivative of K (K = K(0)). For 1
2f
−1
c =

1
2λc ≤ t ≤

1
2 , we have

∣∣∣K(`)(t)
∣∣∣ ≤ B`(t) =

B̃`(t) = π`H`(t)
(fc+2)4−` t4

, 1
2λc ≤ t ≤

√
2/π,

π`H∞`
(fc+2)4−` t4

,
√

2/π ≤ t < 1
2 ,

where H∞0 = 1, H∞1 = 4, H∞2 = 18, H∞3 = 77,

H0(t) = a4(t),

H1(t) = a4(t) (2 + 2b(t)) ,

H2(t) = a4(t)
(
4 + 7b(t) + 6b2(t)

)
,

H3(t) = a4(t)
(
8 + 24b(t) + 30b2(t) + 15b3(t)

)
,
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and

a(t) =
2

π
(

1− π2t2

6

) , b(t) =
1

fc

a(t)

t
.

For each `, the bound on the magnitude of B`(t) is nonincreasing in t and B̃`(∆− t) + B̃`(∆ + t)
is increasing in t for 0 ≤ t < ∆/2 if 0 ≤ ∆ + t ≤

√
2/π.

This lemma is used to control quantities of the form
∑

ti∈T\{τ} |K (t− ti)| (τ ∈ T ) as shown below.

Lemma 2.7 Suppose 0 ∈ T . Then for all t ∈ [0,∆/2],

∑
ti∈T\{0}

∣∣∣K(`) (t− ti)
∣∣∣ ≤ F` (∆, t) = F+

` (∆, t) + F−` (∆, t) + F∞` (∆min),

where

F+
` (∆, t) = max

{
max

∆≤t+≤3∆min

∣∣∣K(`) (t− t+)
∣∣∣ , B` (3∆min − t)

}
+

20∑
j=2

B̃`(j∆min − t),

F−` (∆, t) = max

{
max

∆≤t−≤3∆min

∣∣∣K(`) (t−)
∣∣∣ , B` (3∆min)

}
+

20∑
j=2

B̃`(j∆min + t),

F∞` (∆min) =
κπ`H∞`

(fc + 2)4−`∆4
min

, κ =
π4

45
− 2

19∑
j=1

1

j4
≤ 8.98 10−5.

Moreover, F` (∆, t) is nonincreasing in ∆ for all t, and F` (∆min, t) is nondecreasing in t.

Proof We consider the sum over positive ti ∈ T first and denote by t+ the positive element in T
closest to 0. We have∑

ti∈T : 0<ti≤1/2

∣∣∣K(`) (t− ti)
∣∣∣ =

∣∣∣K(`) (t− t+)
∣∣∣+

∑
ti∈T\{t+}: 0<ti≤1/2

∣∣∣K(`) (t− ti)
∣∣∣ . (2.10)

Let us assume t+ < 2∆min (if t+ > 2∆min the argument is very similar). Note that the assumption
that fc ≥ 128 implies 21∆min < 0.33 <

√
2/π. By Lemma 2.6 and the minimum separation

condition, this means that the second term in the right-hand side is at most

20∑
j=2

B̃`(j∆min − t) +
π`

(fc + 2)4−`

∞∑
j=21

H∞`
(j∆min ± t)4 , (2.11)

which can be upper bounded using the fact that

∞∑
j=21

H∞`
(j∆min ± t)4 ≤

∞∑
j=20

H∞`
(j∆min)4 =

H∞`
∆4

min

 ∞∑
j=1

1

j4
−

19∑
j=1

1

j4

 =
H∞`
∆4

min

π4

90
−

19∑
j=1

1

j4

 =
κH∞`
2∆4

min

;
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the first inequality holds because t < ∆min and the last because the Riemann zeta function is equal
to π4/90 at 4. Also,

∣∣∣K(`) (t− t+)
∣∣∣ ≤ {max∆≤t+≤3∆min

∣∣K(`) (t− t+)
∣∣ , t+ ≤ 3∆min,

B`(3∆min − t), t+ > 3∆min.

Hence, the quantity in (2.10) is bounded by F+
` (∆, t) + F∞` (∆min)/2. A similar argument shows

that the sum over negative ti ∈ T is bounded by F−` (∆, t) + F∞` (∆min)/2.

To verify the claim about the monotonicity w.r.t. ∆, observe that both terms

max

{
max

∆≤t+≤3∆min

∣∣∣K(`) (t− t+)
∣∣∣ , B` (3∆min − t)

}
and max

{
max

∆≤t−≤3∆min

∣∣∣K(`) (t−)
∣∣∣ , B` (3∆min)

}
are nonincreasing in ∆.

Fix ∆ = ∆min now. Since B̃` (j∆− t) + B̃` (j∆ + t) is increasing in t for j ≤ 20 (recall that
21∆min <

√
2/π), we only need to check that the first term in the expression for F+

` is nondecreasing
in t. To see this, rewrite this term (with ∆ = ∆min) as

max

{
max

∆min−t≤u≤3∆min−t

∣∣∣K(`) (u)
∣∣∣ , B` (3∆min − t)

}
.

Now set t′ > t. Then by Lemma 2.6,

B`
(
3∆min − t′

)
≥

{
B` (3∆min − t) ,
|K(u)| , u ≥ 3∆min − t′.

Also, we can verify that

max
∆min−t′≤u≤3∆min−t′

∣∣∣K(`) (u)
∣∣∣ ≥ max

∆min−t≤u≤3∆min−t′

∣∣∣K(`) (u)
∣∣∣ .

This concludes the proof.

In the proof of Lemmas 2.3 and 2.4, it is necessary to find a numerical upper bound on F`(∆min, t)
at t ∈ {0, 0.1649λc, 0.4269λc, 0.7559λc} (for the last two, we only need bounds for ` = 0, 1). For a
fixed t, it is easy to find the maximum of

∣∣K(`) (t− t+)
∣∣ where t+ ranges over [∆min, 3∆min] since

we have expressions for the smooth functions K(`) (see Section B of the Appendix). For reference,
these functions are plotted in Figure 6. The necessary upper bounds are gathered in Table 1.

Finally, a last fact we shall use is that K (0) = 1 is the global maximum of K and |K ′′ (0)| =∣∣−π2fc (fc + 4) /3
∣∣ the global maximum of |K ′′|.

2.3.1 Proof of Lemma 2.2

Set
(D0)jk = K (tj − tk) , (D1)jk = K ′ (tj − tk) , (D2)jk = K ′′ (tj − tk) ,
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t/λc F0 (1.98λc, t) F1 (1.98λc, t) F2 (1.98λc, t) F3 (1.98λc, t)

0 6.253 10−3 7.639 10−2fc 1.053 f2
c 8.078 f3

c

0.1649 6.279 10−3 7.659 10−2fc 1.055 f2
c 18.56 f3

c

0.4269 8.029 10−3 0.3042fc

0.7559 5.565 10−2 1.918fc

Table 1: Numerical upper bounds on F`(1.98λc, t).
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Figure 6:
∣∣K(`) (t)

∣∣ for t ∈ [∆min, 3∆min]. The scaling of the x-axis is in units of λc.
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where j and k range from 1 to |T |. With this, (2.5) and (2.6) become[
D0 D1

D1 D2

][
α

β

]
=

[
v

0

]
.

A standard linear algebra result asserts that this system is invertible if and only if D2 and its Schur
complement D0 −D1D

−1
2 D1 are both invertible. To prove that this is the case we can use the fact

that a symmetric matrix M is invertible if

||I−M ||∞ < 1, (2.12)

where ‖A‖∞ is the usual infinity norm of a matrix defined as ‖A‖∞ = max‖x‖∞=1 ‖Ax‖∞ =

maxi
∑

j |aij |. This follows from M−1 = (I −H)−1 =
∑

k≥0H
k, H = I −M , where the series is

convergent since ||H||∞ < 1. In particular,∣∣∣∣M−1
∣∣∣∣
∞ ≤

1

1− ||I−M ||∞
. (2.13)

We also make use of the inequalities below, which follow from Lemma 2.7

||I−D0||∞ ≤ F0 (∆min, 0) ≤ 6.253 10−3, (2.14)

||D1||∞ ≤ F1 (∆min, 0) ≤ 7.639 10−2 fc, (2.15)∣∣∣∣∣∣K ′′ (0)
∣∣ I−D2

∣∣∣∣
∞ ≤ F2 (∆min, 0) ≤ 1.053 f2

c . (2.16)

Note that D2 is symmetric because the second derivative of the interpolation kernel is symmetric.
The bound (2.16) and the identity K ′′ (0) = −π2fc (fc + 4) /3 give∣∣∣∣∣∣∣∣I− D2

|K ′′ (0)|

∣∣∣∣∣∣∣∣
∞
< 1,

which implies the invertibility of D2. The bound (2.13) then gives∣∣∣∣D−1
2

∣∣∣∣
∞ ≤

1

|K ′′ (0)| − |||K ′′ (0)| I−D2||∞
≤ 0.4275

f2
c

. (2.17)

Combining this with (2.14) and (2.15) yields∣∣∣∣I− (D0 −D1D
−1
2 D1

)∣∣∣∣
∞ ≤ ||I−D0||∞ + ||D1||2∞

∣∣∣∣D−1
2

∣∣∣∣
∞

≤ 8.747 10−3 < 1. (2.18)

Note that the Schur complement of D2 is symmetric because D0 and D2 are both symmetric
whereas DT

1 = −D1 since the derivative of the interpolation kernel is odd. This shows that the
Schur complement of D2 is invertible and, therefore, the coefficient vectors α and β are well defined.

There just remains to bound the interpolation coefficients, which can be expressed as[
α

β

]
=

[
I

−D−1
2 D1

]
C−1v, C := D0 −D1D

−1
2 D1,
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where C is the Schur complement. The relationships (2.13) and (2.18) immediately give a bound
on the magnitude of the entries of α

||α||∞ =
∣∣∣∣C−1v

∣∣∣∣
∞ ≤

∣∣∣∣C−1
∣∣∣∣
∞ ≤ 1 + 8.824 10−3.

Similarly, (2.15), (2.17) and (2.18) allow to bound the entries of β:

||β||∞ ≤
∣∣∣∣D−1

2 D1C
−1
∣∣∣∣
∞

≤
∣∣∣∣D−1

2

∣∣∣∣
∞ ||D1||∞

∣∣∣∣C−1
∣∣∣∣
∞ ≤ 3.294 10−2 λc.

Finally, with v1 = 1, we can use (2.18) to show that α1 is almost equal to 1. Indeed,

α1 = 1− γ1, γ1 = [(I− C−1)v]1,

|γ1| ≤
∣∣∣∣I− C−1

∣∣∣∣
∞, and∣∣∣∣I− C−1

∣∣∣∣
∞ =

∣∣∣∣C−1(I− C)
∣∣∣∣
∞ ≤

∣∣∣∣C−1
∣∣∣∣
∞ ||I− C||∞ ≤ 8.824 10−3.

This concludes the proof.

2.3.2 Proof of Lemma 2.3

We assume without loss of generality that τ = 0 and q(0) = 1. By symmetry, it suffices to show
the claim for t ∈ (0, 0.1649λc]. Since q′(0) = 0, local strict concavity would imply that |q (t)| < 1
near the origin. We begin by showing that the second derivative of |q| is strictly negative in the
interval (0, 0.1649λc). This derivative is equal to

d2 |q|
dt2

(t) = −
(qR (t) q′R (t) + qI (t) q′I (t))2

|q (t)|3
+
|q′ (t)|2 + qR (t) q′′R (t) + qI (t) q′′I (t)

|q (t)|
,

where qR is the real part of q and qI the imaginary part. As a result, it is sufficient to show that

qR (t) q′′R (t) +
∣∣q′ (t)∣∣2 + |qI (t)|

∣∣q′′I (t)
∣∣ < 0, (2.19)

as long as |q (t)| is bounded away from zero. In order to bound the different terms in (2.19), we
use the series expansions of the interpolation kernel and its derivatives around the origin to obtain
the inequalities, which hold for all t ∈ [−1/2, 1/2],

K (t) ≥ 1− π2

6
fc (fc + 4) t2, (2.20)∣∣K ′ (t)∣∣ ≤ π2

3
fc (fc + 4) t, (2.21)

K ′′ (t) ≤ −π
2

3
fc (fc + 4) +

π4

6
(fc + 2)4 t2, (2.22)∣∣K ′′ (t)∣∣ ≤ π2

3
fc (fc + 4) , (2.23)∣∣K ′′′ (t)∣∣ ≤ π4

3
(fc + 2)4 t. (2.24)
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The lower bounds are decreasing in t, while the upper bounds are increasing in t, so we can evaluate
them at 0.1649λc to establish that for all t ∈ [0, 0.1649λc],

K (t) ≥ 0.9539, K ′′ (t) ≤ −2.923 f2
c ,∣∣K ′ (t)∣∣ ≤ 0.5595 fc,

∣∣K ′′ (t)∣∣ ≤ 3.393 f2
c ,

∣∣K ′′′ (t)∣∣ ≤ 5.697 f3
c .

(2.25)

We combine this with Lemmas 2.7 and 2.2 to control the different terms in (2.19) and begin with
qR (t). Here,

qR (t) =
∑
tj∈T

Re (αj)K (t− tj) + Re (βj)K
′ (t− tj)

≥ Re (α1)K (t)− ||α||∞
∑

tj∈T\{0}

|K (t− tj)| − ||β||∞
∑
tj∈T

∣∣K ′ (t− tj)∣∣
≥ Re (α1)K (t)− α∞F0 (∆, t)− β∞

(∣∣K ′ (t)∣∣+ F1 (∆, t)
)

≥ Re (α1)K (t)− α∞F0 (∆min, t)− β∞
(∣∣K ′ (t)∣∣+ F1 (∆min, t)

)
≥ 0.9182. (2.26)

The third inequality follows from the monotonicity of F` in ∆, and the last from (2.25) together
with the monotonicity of F1 (∆min, t) in t, see Lemma 2.7, so that we can plug in t = 0.1649λc.
Observe that this shows that q is bounded away from zero since |q (t)| ≥ qR (t) ≥ 0.9198. Very
similar computations yield

|qI (t)| =

∣∣∣∣∣∣
∑
tj∈T

Im (αj)K (t− tj) + Im (βj)K
′ (t− tj)

∣∣∣∣∣∣
≤ |Im (α1)|+ ||α||∞

∑
tj∈T\{0}

|K (t− tj)|+ ||β||∞
∑
tj∈T

∣∣K ′ (t− tj)∣∣
≤ |Im (α1)|+ α∞F0 (∆min, t) + β∞

(∣∣K ′ (t)∣∣+ F1 (∆min, t)
)
≤ 3.611 10−2

and

q′′R (t) =
∑
tj∈T

Re (αj)K
′′ (t− tj) +

∑
tj∈T

Re (βj)K
′′′ (t− tj)

≤ Re (α1)K ′′ (t) + ||α||∞
∑

tj∈T\{0}

∣∣K ′′ (t− tj)∣∣+ ||β||∞
∑
tj∈T

∣∣K ′′′ (t− tj)∣∣
≤ Re (α1)K ′′ (t) + α∞F2 (∆min, t) + β∞

(∣∣K ′′′ (t)∣∣+ F3 (∆min, t)
)
≤ −1.034 f2

c . (2.27)

Similarly,

∣∣q′′I (t)
∣∣ =

∣∣∣∣∣∣
∑
tj∈T

Im (αj)K
′′ (t− tj) +

∑
tj∈T

Im (βj)K
′′′ (t− tj)

∣∣∣∣∣∣
≤ Im (α1)

∣∣K ′′ (t)∣∣+ ||α||∞
∑

tj∈T\{0}

∣∣K ′′ (t− tj)∣∣+ ||β||∞
∑
tj∈T

∣∣K ′′′ (t− tj)∣∣
≤ Im (α1)

∣∣K ′′ (t)∣∣+ α∞F2 (∆min, t) + β∞
(∣∣K ′′′ (t)∣∣+ F3 (∆min, t)

)
≤ 1.893 f2

c
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and

∣∣q′ (t)∣∣ =

∣∣∣∣∣∣
∑
tj∈T

αjK
′ (t− tj) + βjK

′′ (t− tj)

∣∣∣∣∣∣
≤ ||α||∞

∑
tj∈T

∣∣K ′ (t− tj)∣∣+ ||β||∞
∑
tj∈T

∣∣K ′′ (t− tj)∣∣
≤ α∞

∣∣K ′ (t)∣∣+ α∞F1 (∆min, t) + β∞
(∣∣K ′′ (t)∣∣+ F2 (∆min, t)

)
≤ 0.7882 fc.

These bounds allow us to conclude that |q|′′ is negative on [0, 0.1649λc] since

qR (t) q′′R (t) +
∣∣q′ (t)∣∣2 + |qI (t)|

∣∣q′′I (t)
∣∣ ≤ −9.291 10−2f2

c < 0.

This completes the proof.

2.3.3 Proof of Lemma 2.4

As before, we assume without loss of generality that τ = 0 and q(0) = 1. We use Lemma 2.7 again
to bound the absolute value of the dual polynomial on [0.1649λc,∆/2] and write

|q (t)| =
∣∣∣∑
tj∈T

αjK (t− tj) + βjK
′ (t− tj)

∣∣∣
≤ ||α||∞

[
|K (t)|+

∑
tj∈T\{0}

|K (t− tj)|
]

+ ||β||∞
[∣∣K ′ (t)∣∣+

∑
tj∈T\{0}

∣∣K ′ (t− tj)∣∣]
≤ α∞ |K (t)|+ α∞F0 (∆min, t) + β∞

∣∣K ′ (t)∣∣+ β∞F1 (∆min, t) . (2.28)

Note that we are assuming adversarial sign patterns and as a result we are unable to exploit
cancellations in the coefficient vectors α and β. To control |K(t)| and |K ′(t)| between 0.1649λc
and 0.7559λc, we use series expansions around the origin which give

K (t) ≤ 1− π2fc (fc + 4) t2

6
+
π4 (fc + 2)4 t4

72∣∣K ′ (t)∣∣ ≤ π2fc (fc + 4) t

3
,

(2.29)

for all t ∈ [−1/2, 1/2]. Put

L1 (t) = α∞
[
1− π2fc (fc + 4) t2

6
+
π4 (fc + 2)4 t4

72

]
+ β∞

π2fc (fc + 4) t

3
,

with derivative equal to

L′1 (t) = −α∞
[π2fc (fc + 4) t

3
− π4 (fc + 2)4 t3

18

]
+ β∞

π2fc (fc + 4)

3
.

This derivative is strictly negative between 0.1649λc and 0.7559λc, which implies that L1 (t) is
decreasing in this interval. Put

L2 (t) = α∞F0 (∆min, t) + β∞F1 (∆min, t) .
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By Lemma 2.7, this function is increasing. With (2.28), this gives the crude bound

|q (t)| ≤ L1 (t) + L2 (t) ≤ L1 (t1) + L2 (t2) for all t ∈ [t1, t2]. (2.30)

Table 2 shows that taking {t1, t2} = {0.1649λc, 0.4269λc} and then {t1, t2} = {0.4269λc, 0.7559λc}
proves that |q(t)| < 1 on [0.1649λc, 0.7559λc]. For 0.7559λc ≤ t ≤ ∆/2, we apply Lemma 2.6 and
obtain

|q(t)| ≤ α∞
[
B0 (t) +B0 (∆− t) +

∞∑
j=1

B0 (j∆min + ∆− t) +

∞∑
j=1

B0 (j∆min + t)
]

+ β∞
[
B1 (t) +B1 (∆− t) +

∞∑
j=1

B1 (j∆min + ∆− t) +
∞∑
j=1

B1 (j∆min + t)
]

≤ α∞
[
B0 (0.7559λc) +

∞∑
j=1

B0 (j∆min − 0.7559λc) +
∞∑
j=1

B0 (j∆min + 0.7559λc)
]

+ β∞
[
B1 (0.7559λc) +

∞∑
j=1

B1 (j∆min − 0.7559λc) +
∞∑
j=1

B1 (j∆min + 0.7559λc)
]

≤ 0.758;

here, the second step follows from the monotonicity of B0 and B1. Finally, for ∆/2 ≤ t ≤ t+/2,
this last inequality applies as well. This completes the proof.

t1/λc t2/λc L1 (t1) L2 (t2)

0.1649 0.4269 0.9818 1.812 10−2

0.4269 0.7559 0.7929 0.2068

Table 2: Numerical quantities used in (2.30).

2.4 Proof of Lemma 2.5

Replacing ∆ = 1.98λc by ∆ = 2.5λc and going through exactly the same calculations as in Sections
2.3.1 and 2.3.2 yields that for any t obeying 0 ≤ |t− τ | ≤ 0.1649λc,

d2 |q|
dt2

(t) ≤ −0.6706 f2
c .

For reference, we have computed in Table 3 numerical upper bounds on F`(2.5λc, t) at t = {0, 0.1649λ}.
Since |q(0)| = 1 and q′(0) = 0, it follows that

|q (t)| ≤ |q (0)| − 1

2
0.6706 f2

c t
2. (2.31)

At a distance of 0.1649λc, the right-hand side is equal to 0.9909. The calculations in Section 2.3.3
with ∆ = 2.5λc imply that the magnitude of q(t) at locations at least 0.1649λc away from an
element of T is bounded by 0.9843. This concludes the proof.
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t/λc F0 (2.5λc, t) F1 (2.5λc, t) F2 (2.5λc, t) F3 (2.5λc, t)

0 5.175 10−3 6.839 10−2fc 0.8946 f2
c 7.644 f3

c

0.1649 5.182 10−3 6.849 10−2fc 0.9459 f2
c 7.647 f3

c

Table 3: Numerical upper bounds on F`(2.5λc, t).

2.5 Improvement for real-valued signals

The proof for real-valued signals is almost the same as the one we have discussed for complex-valued
signals—only simpler. The only modification to Lemmas 2.2 and 2.4 is that the minimum distance
is reduced to 1.87λc, and that the bound in Lemma 2.4 is shown to hold starting at 0.17λc instead
of 0.1649λc. For reference, we provide upper bounds on F`(1.87λc, t) at t ∈ {0, 0.17λc} in Table
4. As to Lemma 2.3, the only difference is that to bound |q| between the origin and 0.17λc, it is
sufficient to show that the second derivative of q is negative and make sure that q > −1. Computing
(2.27) for ∆ = 1.87λc for t ∈ [0, 0.17λc], we obtain q′′ < −0.1181. Finally, (2.26) yields q > 0.9113
in [0, 0.17λc].

t/λc F0 (1.87λc, t) F1 (1.87λc, t) F2 (1.87λc, t) F3 (1.87λc, t)

0 6.708 10−3 7.978 10−2fc 1.078 f2
c 16.01 f3

c

0.17 6.747 10−3 0.1053fc 1.081 f2
c 41.74 f3

c

Table 4: Numerical upper bounds on F`(1.87λc, t).

3 Stability

This section proves Theorem 1.5 and we begin by establishing a strong form of the null-space
property. In the remainder of the paper PT is the orthogonal projector onto the linear space of
vectors supported on T , namely, (PTx)i = xi if i ∈ T and is zero otherwise.

Lemma 3.1 Under the assumptions of Theorem 1.5, any vector h such that Fnh = 0 obeys

||PTh||1 ≤ ρ ||PT ch||1 , (3.1)

for some numerical constant ρ obeying 0 < ρ < 1. This constant is of the form 1 − ρ = α/SRF2

for some positive α > 0. If SRF ≥ 3.03, we can take α = 0.0883.

Proof Let PTht = |PTht| eiφt be the polar decomposition of PTh, and consider the low-frequency
polynomial q(t) in Proposition 2.1 interpolating vt = e−iφt . We shall abuse notations and set
q = {qt}N−1

t=0 where qt = q(t/N). For t /∈ T , |q(t/N)| = |qt| ≤ ρ < 1. By construction q = Pnq, and
thus 〈q, h〉 = 〈q, Pnh〉 = 0. Also,

〈PT q, PTh〉 = ‖PTh‖1.
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The conclusion follows from

0 = 〈q, h〉 = 〈PT q, PTh〉+ 〈PT cq, PT ch〉 ≥ ‖PTh‖1 − ‖PT cq‖∞‖PT ch‖1 ≥ ‖PTh‖1 − ρ‖PT ch‖1.

For the numerical constant, we use Lemma 2.5 which says that if 0 ∈ T and 1/N ≤ 0.1649λc, which
is about the same as 1/SRF ≈ 2fc/N ≤ 2× 0.1649 or SRF > 3.03, we have

|q(1/N)| ≤ 1− 0.3533 (fc/N)2 ≈ 1− 0.0883/SRF2 = ρ.

This applies directly to any other t such that minτ∈T |t− τ | = 1. Also, for all t at distance at least
2 from T , Lemma 2.5 implies that |q(t/N)| ≤ ρ. This completes the proof.

3.1 Proof of Theorem 1.5

The proof is a fairly simple consequence of Lemma 3.1. Set h = x̂ − x and decompose the error
into its low- and high-pass components

hL = Pnh, hH = h− hL.

The high-frequency part is in the null space of Pn and (3.1) gives

||PThH ||1 ≤ ρ ||PT chH ||1 . (3.2)

For the low-frequency component we have

‖hL‖1 = ‖Pn(x̂− x)‖1 ≤ ‖Pnx̂− s‖1 + ‖s− Pnx‖1 ≤ 2δ. (3.3)

To bound ‖PT chH‖1, we exploit the fact that x̂ has minimum `1 norm. We have

||x||1 ≥ ||x+ h||1 ≥ ||x+ hH ||1 − ‖hL‖1
≥ ‖x‖1 − ||PThH ||1 + ||PT chH ||1 − ‖hL‖1
≥ ‖x‖1 + (1− ρ) ||PT chH ||1 − ‖hL‖1,

where the last inequality follows from (3.2). Hence,

||PT chH ||1 ≤
1

1− ρ
‖hL‖1 ⇒ ‖hH‖1 ≤

1 + ρ

1− ρ
‖hL‖1.

To conclude,

‖h‖1 ≤ ‖hL‖1 + ‖hH‖1 ≤
2

1− ρ
‖hL‖1 ≤

4δ

1− ρ
,

where the last inequality follows from (3.3).

Since from Lemma 3.1, we have 1− ρ = α/SRF2 for some numerical constant α, the upper bound
is of the form 4α−1 SRF2 δ. For ∆(T ) ≥ 2.5λc, we have α−1 ≈ 11.235.
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3.2 Sparsity is not enough

Consider the vector space C48 of sparse signals of length N = 4096 supported on a certain interval
of length 48. Figure 7 shows the eigenvalues of the low-pass filter Pn = 1

NFnF
∗
n acting on C48 for

different values of the super-resolution factor. For SRF = 4, there exists a subspace of dimension
24 such that any unit-normed signal (‖x‖2 = 1) belonging to it obeys

‖Pnx‖2 ≤ 2.52 10−15 ⇔ 1√
N
‖Fnx‖2 ≤ 5.02 10−8.

For SRF = 16 this is true of a subspace of dimension 36, two thirds of the total dimension. Such
signals can be completely canceled out by perturbations of norm 5.02 10−8, so that even at signal-
to-noise ratios (SNR) of more than 145 dB, recovery is impossible by any method whatsoever.
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Figure 7: (a) Eigenvalues of Pn acting on signals supported on a contiguous interval of length
48 for super-resolution factors of 2, 4, 8 and 16 and a signal length of 4096. (b) Singular values
of 1√

N
Fn on a logarithmic scale. (c) Same as (b) but on a linear scale. Due to limited numerical

precision (machine precision), the smallest singular values, marked with circular dots on the
graphs, are of course not computed accurately.

Interestingly, the sharp transition shown in Figure 7 between the first singular values almost equal
to one and the others, which rapidly decay to zero, can be characterized asymptotically by using
the work of Slepian on prolate spheroidal sequences [36]. Introduce the operator Tk, which sets
the value of an infinite sequence to zero on the complement of an interval T of length k. With the
notation of Section 1.7, the eigenvectors of the operator PWTk are the discrete prolate spheroidal
sequences {sj}kj=1 introduced in [36],

PWTksj = λjsj , 1 > λ1 ≥ λ2 ≥ . . . ≥ λk > 0. (3.4)

Set vj = Tksj/
√
λj , then by (3.4), it is not hard to see that

TkPW vj = λjvj , ||vj ||2 = 1.

In fact, the vj ’s are also orthogonal to each other [36], and so they form an orthonormal basis of
Ck (which can represent any sparse vector supported on T ). For values of j near k, the value of λj
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is about

Aje
−γ(k+1), Aj =

√
π2

14(k−j)+9
4 α

2(k−j)+1
4 (k + 1)k−j+0.5

(k − j)! (2− α)k−j+0.5
,

where

α = 1 + cos 2πW, γ = log

(
1 +

2
√
α√

2−
√
α

)
.

Therefore, for a fixed value of SRF = 1/2W , and k ≥ 20, the small eigenvalues are equal to zero for
all practical purposes. In particular, for SRF = 4 and SRF = 1.05 we obtain (1.17) and (1.19) in
Section 1.7 respectively. Additionally, a Taylor series expansion of γ for large values of SRF yields
(1.20).

Since ‖PW vj‖L2 =
√
λj , the bound on λj for j near k directly implies that some sparse signals

are essentially zeroed out, even for small super-resolution factors. However, Figure 7 suggests an
even stronger statement: as the super-resolution factor increases not only some, but most signals
supported on T seem to be almost completely suppressed by the low pass filtering. Slepian provides
an asymptotic characterization for this phenomenon. Indeed, just about the first 2kW eigenvalues
of PWTk cluster near one, whereas the rest decay abruptly towards zero. To be concrete, for any
ε > 0 and j ≥ 2kW (1 + ε), there exist positive constants C0, and γ0 (depending on ε and W ) such
that

λj ≤ C0e
−γ0k.

This holds for all k ≥ k0, where k0 is some fixed integer. This implies that for any interval
T of length k, there exists a subspace of signals supported on T with dimension asymptotically
equal to (1− 1/SRF) k, which is obliterated by the measurement process. This has two interesting
consequences. First, even if the super-resolution factor is just barely above one, asymptotically
there will always exist an irretrievable vector supported on T . Second, if the super-resolution
factor is two or more, most of the information encoded in clustered sparse signals is lost. Consider
for instance a random sparse vector x supported on T with i.i.d. entries. Its projection onto a fixed
subspace of dimension about (1− 1/SRF) k (corresponding to the negligible eigenvalues) contains
most of the energy of the signal with high probability. However, this component is practically
destroyed by low-pass filtering. Hence, super-resolving almost any tightly clustered sparse signal in
the presence of noise is hopeless. This justifies the need for a minimum separation between nonzero
components.

4 Minimization via semidefinite programming

At first sight, finding the solution to the total-variation norm problem (1.4) might seem quite
challenging, as it requires solving an optimization problem over an infinite dimensional space. It
is of course possible to approximate the solution by discretizing the support of the signal, but this
could lead to an increase in complexity if the discretization step is reduced to improve precision.
Another possibility is to try approximating the solution by estimating the support of the signal
in an iterative fashion [5]. Here, we take a different route and show that (1.4) can be cast as
a semidefinite program with just (n+ 1)2 /2 variables, and that highly accurate solutions can be
found rather easily. This formulation is similar to that in [3] which concerns a related infinite
dimensional convex program. Our exposition is less formal here than in the rest of the paper.
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The convex program dual to (1.4) is

max
c

Re〈y, c〉 subject to ||F∗n c||∞ ≤ 1; (4.1)

the constraint says that the trigonometric polynomial (F∗n c)(t) =
∑
|k|≤fc cke

i2πkt has a modulus
uniformly bounded by 1 over the interval [0, 1]. The interior of the feasible set contains the origin and
is consequently non empty, so that strong duality holds by a generalized Slater condition [33]. The
cost function involves a finite vector of dimension n, but the problem is still infinite dimensional
due to the constraints. A corollary to Theorem 4.24 in [17] allows to express this constraint as
the intersection between the cone of positive semidefinite matrices {X : X � 0} and an affine
hyperplane.

Corollary 4.1 A causal trigonometric polynomial
∑n−1

k=0 cke
i2πkt with c ∈ Cn is bounded by one in

magnitude if and only if there exists a Hermitian matrix Q ∈ Cn×n obeying[
Q c

c∗ 1

]
� 0,

n−j∑
i=1

Qi,i+j =

{
1, j = 0,

0, j = 1, 2, . . . , n− 1.
(4.2)

To see one direction, note that the positive semidefiniteness constraint is equivalent to Q− cc∗ � 0.
Hence, z∗Qz ≥ |c∗z|2 for all z ∈ Cn. Fix t ∈ [0, 1] and set zk = ei2πkt. The equality constraints in
(4.2) give z∗Qz = 1 and |c∗z|2 = |(F∗nc)(t)|2 so we obtain the desired inequality constraint on the
magnitude of the trigonometric polynomial

∑n−1
k=0 cke

i2πkt.

Returning to (4.1), the polynomial ei2πfct (F∗n c)(t) is causal and has the same magnitude as
(F∗n c)(t). Hence, the dual problem is equivalent to

max
c,Q

Re〈y, c〉 subject to (4.2). (4.3)

To be complete, the decision variables are an Hermitian matrix Q ∈ Cn×n and a vector of coeffi-
cients c ∈ Cn. The finite dimensional semidefinite program can be solved by off-the-shelf convex
programming software.

The careful reader will observe that we have just shown how to compute the optimal value of (1.4),
but not how we could obtain a solution. To find a primal solution, we abuse notation by letting c
be the solution to (4.3) and consider the trigonometric polynomial

p2n−2(ei2πt) = 1− |(F∗nc)(t)|
2 = 1−

2fc∑
k=−2fc

uke
i2πkt, uk =

∑
j

cj c̄j−k. (4.4)

Note that z2fcp2n−2(z), where z ∈ C, is a polynomial of degree 4fc = 2(n− 1) with the same roots
as p2n−2(z)—besides the trivial root z = 0. Hence, p2n−2(ei2πt) has at most 2n − 2 roots. By
construction p2n−2(ei2πt) is a real-valued and nonnegative trigonometric polynomial; in particular,
it cannot have single roots on the unit circle since the existence of single roots would imply that
p2n−2(ei2πt) takes on negative values. Therefore, p2n−2(ei2πt) is either equal to zero everywhere or
has at most n− 1 roots on the unit circle. By strong duality, any solution x̂ to (1.4) obeys

Re〈y, c〉 = Re〈Fn x̂, c〉 = Re〈x̂,F∗n c〉 = Re

[∫ 1

0
(F∗nc) (t) x̂(dt)

]
= ||x̂||TV ,
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Figure 8: The sign of a real atomic measure x is plotted in red. The trigonometric polynomial
F∗nc where c is a solution to the dual problem (4.3) is plotted in blue. Note that F∗nc interpolates
the sign of x. Here, fc = 50 so that we have n = 101 low-frequency coefficients.

which implies that the trigonometric polynomial F∗nc is exactly equal to the sign of x̂ when x̂ is not
vanishing. This is illustrated in Figure 8. Thus, to recover the support of the solution to the primal
problem, we must simply locate the roots of p2n−2 on the unit circle, for instance by computing the
eigenvalues of its companion matrix [31]. As shown in Table 5, this scheme allows to recover the
support with very high precision. Having obtained the estimate for the support T̂ , the amplitudes
of the signal can be reconstructed by solving the system of equations

∑
t∈T̂ e

−i2πktat = yk, |k| ≤ fc,
using the method of least squares. There is a unique solution as we have at most n − 1 columns
which are linearly independent since one can add columns to form a Vandermonde system.4Figure
9 illustrates the accuracy of this procedure; a Matlab script reproducing this example is available
at http://www-stat.stanford.edu/~candes/superres_sdp.m.

fc 25 50 75 100

Average error 6.66 10−9 1.70 10−9 5.58 10−10 2.96 10−10

Maximum error 1.83 10−7 8.14 10−8 2.55 10−8 2.31 10−8

Table 5: Numerical recovery of the support of a sparse signal obtained by solving (4.3) via
CVX [21]. For each value of the cut-off frequency fc, 100 signals were generated with ran-
dom complex amplitudes situated at approximately fc/4 random locations in the unit interval
separated by at least 2/fc. The table shows the errors in estimating the support locations.

In summary, in the usual case when p2n−2 has less than n roots on the unit circle, we have explained
how to retrieve the minimum total-variation norm solution. It remains to address the situation
in which p2n−2 vanishes everywhere. In principle, this could happen even if a primal solution to

4The set of roots contains the support of a primal optimal solution; if it is a strict superset, then some amplitudes
will vanish.
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Figure 9: There are 21 spikes situated at arbitrary locations separated by at least 2λc and
we observe 101 low-frequency coefficients (fc = 50). In the plot, seven of the original spikes
(black dots) are shown along with the corresponding low resolution data (blue line) and the
estimated signal (red line).

1

0

Figure 10: The trigonometric polynomial p2n−2(ei2πt) with random data y ∈ C21 (n = 21
and fc = 10) with i.i.d. complex Gaussian entries. The polynomial has 16 roots.
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(1.4) is an atomic measure supported on a set T obeying |T | < n. For example, let x be a positive
measure satisfying the conditions of Theorem 1.2, which implies that it is the unique solution to
(1.4). Consider a vector c ∈ Cn such that (F∗nc)(t) = 1; i. e., the trigonometric polynomial is
constant. Then

Re〈y, c〉 = Re〈Fn x, c〉 = Re〈x,F∗n c〉 = ||x||TV ,

which shows that c is a solution to the dual (4.3) that does not carry any information about the
support of x. Fortunately, this situation is in practice highly unusual. In fact, it does not occur as
long as

there exists a solution c̃ to (4.3) obeying |(F∗nc̃)(t)| < 1 for some t ∈ [0, 1], (4.5)

and we use interior point methods as in SDPT3 [38] to solve (4.3). (Our simulations use CVX
which in turn calls SDPT3.) This phenomenon is explained below. At the moment, we would
like to remark that Condition (4.5) is sufficient for the primal problem (1.4) to have a unique
solution, and holds except in very special cases. To illustrate this, suppose y is a random vector,
not a measurement vector corresponding to a sparse signal. In this case, we typically observe dual
solutions as shown in Figure 10 (non-vanishing polynomials with at most n− 1 roots). To be sure,
we have solved 400 instances of (4.3) with different values of fc and random data y. In every single
case, condition (4.5) held so that we could construct a primal feasible solution x with a duality gap
below 10−8, see Figure 11. In all instances, the support of x was constructed by determining roots
of p2n−2(z) at a distance at most 10−4 from the unit circle.

Interior point methods approach solutions from the interior of the feasible set by solving a sequence
of optimization problems in which an extra term, a scaled barrier function, is added to the cost
function [4]. To be more precise, in our case (4.3) would become

max
c,Q

Re [y∗c] + t log det

([
Q c

c∗ 1

])
subject to (4.2), (4.6)

where t is a positive parameter that is gradually reduced towards zero in order to approach a
solution to (4.3). Let λk, 1 ≤ k ≤ n, denote the eigenvalues of Q − cc∗. By Schur’s formula
(Theorem 1.1 in [40]) we have

log det

([
Q c

c∗ 1

])
= log det (Q− cc∗) =

n∑
k=1

log λk.

Suppose condition (4.5) holds. Then Corollary 4.1 states that there exists c̃ with the property that
at least one eigenvalue of Q− c̃c̃∗ is bounded away from zero. This is the reason why in the limit
t→ 0, (4.6) will construct a non-vanishing polynomial p2n−2 with at most n− 1 roots on the unit
circle rather than the trivial solution p2n−2 = 0 since in the latter case, all the eigenvalues of Q−cc∗
vanish. Hence, an interior-point method can be said to solve the primal problem (1.4) provided
(4.5) holds.

To conclude, we have merely presented an informal discussion of a semidefinite programming ap-
proach to the minimum-total variation problem (1.4). It is beyond the scope of this paper to
rigorously justify this approach—for example, one would need to argue that the root finding pro-
cedure can be made stable, at least under the conditions of our main theorem—and we leave this
to future work along with extensions to noisy data.
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Figure 11: Primal feasible points x with a duality gap below 10−8 are constructed from
random data y sampled with i.i.d. complex Gaussian entries. A dual gap below 10−8 implies
that ‖x‖TV − ‖x̂‖TV ≤ 10−8, where x̂ is any primal optimal solution. (For reference, the
optimal value ‖x̂‖TV is on the order of 10 in all cases.) Each figure plots the frequency of
occurrence of support cardinalities out of 100 realizations. For example, in (a) we obtained a
support size equal to 44 in 25 instances out of 100. The value of n is the same in each plot
and is marked by a dashed red line; (a) n = 51, (b) n = 101, (c) n = 151, (d) n = 201.
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5 Numerical experiments

To evaluate the minimum distance needed to guarantee exact recovery by `1 minimization of any
signal in CN , for a fixed N , we propose the following heuristic scheme:

• For a super-resolution factor SRF = N/n, we work with a partial DFT matrix Fn with
frequencies up to fc = bn/2c. Fix a candidate minimum distance ∆.

• Using a greedy algorithm, construct an adversarial support with elements separated by at least
∆ by sequentially adding elements to the support. Each new element is chosen to minimize
the condition number formed by the columns corresponding to the selected elements.

• Take the signal x to be the singular vector corresponding to the smallest singular value of Fn
restricted to T .

• Solve the `1-minimization problem (1.11) and declare that exact recovery occurs if the nor-
malized error is below a threshold (in our case 10−4).

This construction of an adversarial signal was found to be better adapted to the structure of our
measurement matrix than other methods proposed in the literature such as [14]. We used this
scheme and a simple binary search to determine a lower bound for the minimum distance that
guarantees exact recovery for N = 4096, super-resolution factors of 8, 16, 32 and 64 and support
sizes equal to 2, 5, 10, 20 and 50. The simulations were carried out in Matlab, using CVX [21] to
solve the optimization problem. Figure 12 shows the results, which suggest that on the discrete
grid we need at least a minimum distance equal to twice the super-resolution factor in order to
guarantee reconstruction of the signal (red curve). Translated to the continuous setting, in which
the signal would be supported on a grid with spacing 1/N , this implies that ∆ & λc is a necessary
condition for exact recovery.

6 Discussion

In this paper, we have developed the beginning of a mathematical theory of super-resolution. In
particular, we have shown that we can super-resolve ‘events’ such as spikes, discontinuity points,
and so on with infinite precision from just a few low-frequency samples by solving convenient convex
programs. This holds in any dimension provided that the distance between events is proportional
to 1/fc = λc, where fc is the highest observed frequency; for instance, in one dimension, a sufficient
condition is that the distance between events is at least 2λc. Furthermore, we have proved that
when such condition holds, stable recovery is possible whereas super-resolution—by any method
whatsoever—is in general completely hopeless whenever events are at a distance smaller than about
λc/2.

6.1 Improvement

In one dimension, Theorem 1.2 shows that a sufficient condition for perfect super-resolution is
∆(T ) ≥ 2λc. Furthermore, the authors of this paper have a proof showing that ∆(T ) ≥ 1.85λc is
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Figure 12: Minimum distances (vertical axis) at which exact recovery by `1 minimization
occurs for the adversarial complex sign patterns against the corresponding super-resolution
factors. At the red curve, the minimum distance would be exactly equal to twice the super-
resolution factor. Signal length is N = 4096.

sufficient. This proof, however, is longer and more technical and, therefore, not presented here. In
fact, we expect that arguments more sophisticated than those presented here would allow to lower
this value even further. On the other hand, our numerical experiments show that we need at least
∆(T ) ≥ λc as one can otherwise find sparse signals which cannot be recovered by `1 minimization.
Hence, the minimum separation needed for success is somewhere between λc and 1.85λc. It would
be interesting to know where this critical value might be.

6.2 Extensions

We have focused in this paper on the super-resolution of point sources, and by extension of discon-
tinuity points in the function value, or in the derivative and so on. Clearly, there are many other
models one could consider as well. For instance, we can imagine collecting low-frequency Fourier
coefficients of a function

f(t) =
∑
j

xjϕj(t),

where {ϕj(t)} are basis functions. Again, f may have lots of high-frequency content but we are
only able to observe the low-end of the spectrum. An interesting research question is this: suppose
the coefficient sequence x is sparse, then under what conditions is it possible to super-resolve f and
extrapolate its spectrum accurately? In a different direction, it would be interesting to extend our
stability results to other noise models and error metrics. We leave this to further research.
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A Background on the recovery of complex measures

With T = [0, 1], the total variation of a complex measure ν on a set B ∈ B (T) is defined by

|ν| (B) = sup

∞∑
j=1

|ν (Bj)| ,

where the supremum is taken over all partitions of B into a finite number of disjoint measurable
subsets. The total variation |ν| is a positive measure on B (T) and can be used to define the
total-variation norm on the space of complex measures on B (T),

||ν||TV = |ν| (T) .

For further details, we refer the reader to [34].

Proposition A.1 Suppose that for any vector v ∈ C|T | with unit-magnitude entries, there exists a
low-frequency polynomial q (2.1) obeying (2.2). Then x is the unique solution to (1.4).

Proof The proof is a variation on the well-known argument for finite signals, and we note that a
proof for continuous-time signals, similar to that below, can be found in [9]. Let x̂ be a solution to
(1.4) and set x̂ = x+ h. Consider the Lebesgue decomposition of h relative to |x|,

h = hT + hT c ,

where (1) hT and hT c is a unique pair of complex measures on B (T) such that hT is absolutely
continuous with respect to |x|, and (2) hT c and |x| are mutually singular. It follows that hT is
concentrated on T while hT c is concentrated on T c. Invoking a corollary of the Radon-Nykodim
Theorem (see Theorem 6.12 in [34]), it is possible to perform a polar decomposition of hT :

hT = ei2πφ(t) |hT | ,

such that φ (t) is a real function defined on T. Assume that there exists q(t) =
∑fc

j=−fc aje
−i2πjt

obeying {
q (tj) = e−i2πφ(tj), ∀tj ∈ T
|q (t)| < 1, ∀t ∈ [0, 1] \ T.

(A.1)

The existence of q suffices to establish a valuable inequality between the total-variation norms of
hT and hT c . Begin with

0 =

∫
T
q(t)h(dt) =

∫
T
q(t)hT (dt) +

∫
T
q(t)hT c(dt) = ||hT ||TV +

∫
T
q(t)hT c(dt)

and observe that ∣∣∣∣∫
T
q(t)hT c(dt)

∣∣∣∣ < ||hT c ||TV

provided hT c 6= 0. This gives
||hT ||TV ≤ ||hT c ||TV

with a strict inequality if h 6= 0. Assuming h 6= 0, we have

||x||TV ≥ ||x+ h||TV = ||x+ hT ||TV + ||hT c ||TV ≥ ||x||TV − ||hT ||TV + ||hT c ||TV > ||x||TV .

This is a contradiction and thus h = 0. In other words, x is the unique minimizer.
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B Proof of Lemma 2.6

The first inequality in the lemma holds due to two lower bounds on the sine function:

|sin (πt)| ≥ 2 |t| , for all t ∈ [−1/2, 1/2] (B.1)

sin (πt) ≥ πt− π3t3

6
=

2t

a(t)
, for all t ≥ 0. (B.2)

The proof for these expressions, which we omit, is based on concavity of the sine function and on
a Taylor expansion around the origin. Put f = fc/2 + 1 for short. Some simple calculations give
K ′(0) = 0 and for t 6= 0,

K ′ (t) = 4π

(
sin (fπt)

f sin (πt)

)3(cos (fπt)

sin (πt)
− sin (fπt) cos (πt)

f sin2 (πt)

)
. (B.3)

Further calculations show that the value of the second derivative ofK at the origin is−π2fc (fc + 4) /3,
and for t 6= 0,

K ′′ (t) =
4π2 sin2 (fπt)

f2 sin4 (πt)

[
3

(
cos (fπt)− sin (fπt) cos (πt)

f sin (πt)

)2

− sin2 (fπt)− sin (2fπt)

f tan (πt)
+

sin2 (fπt)

f2 tan2 (πt)
+

sin2 (fπt)

f2 sin2 (πt)

]
. (B.4)

It is also possible to check that the third derivative of K is zero at the origin, and for t 6= 0,

K ′′′ (t) =
4π3 sin (fπt)

f sin4 (πt)

(
6H1(t) + 9 sin (fπt)H2(t) + sin2 (fπt)H3(t)

)
(B.5)

with

H1(t) =

(
cos (fπt)− sin (fπt) cos (πt)

f sin (πt)

)3

H2(t) =

(
cos (fπt)− sin (fπt) cos (πt)

f sin (πt)

)(
− sin (fπt)− 2 cos (fπt)

f tan (πt)
+

sin (fπt)

f2 tan2 (πt)
+

sin (fπt)

f2 sin2 (πt)

)
H3(t) =

(
3 cos (fπt)

(
1 + cos2 (πt)

)
f2 sin2 (πt)

− cos (fπt) +
3 sin (fπt)

f tan (πt)
− sin (fπt) (1 + 5 cos (πt))

f3 sin3 (πt)

)
.

The remaining inequalities in the lemma are all almost direct consequences of plugging (B.1) and
(B.2) into (B.3), (B.4) and (B.5). The bounds are nonincreasing in t because the derivative of
b(t) is negative between zero and

√
2/π and one can check that H`(

√
2/π) < H∞` for fc ≥ 128.

Additionally, bk(t) is strictly convex for positive t and k ∈ {1, 2, 3}, so the derivative with respect
to τ of bk(∆− τ)+ bk(∆+ τ) is positive for 0 ≤ τ < ∆/2, which implies that B̃`(∆− τ)+ B̃`(∆+ τ)
is increasing in τ .
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C Proof of Theorem 1.3

Theorem 1.3 follows from Proposition C.1 below, which guarantees the existence of a dual certificate.
In this section, we write ∆ = ∆(T ) ≥ ∆min = 2.38λc. Unless specified otherwise, |r − r′| is the ∞
distance.

Proposition C.1 Let T = {r1, r2, . . .} ⊂ T2 be any family of points obeying the minimum distance
condition

|rj − rk| ≥ 2.38λc, rj 6= rk ∈ T.

Assume fc ≥ 512. Then for any vector v ∈ R|T | with |vj | = 1, there exists a trigonometric
polynomial q with Fourier series coefficients supported on {−fc,−fc + 1, . . . , fc}2 with the property{

q(rj) = vj , tj ∈ T,
|q(r)| < 1, t ∈ T2 \ T.

(C.1)

The proof is similar to that of Proposition 2.1 in that we shall construct the dual polynomial q by
interpolation with a low-pass, yet rapidly decaying two-dimensional kernel. Here, we consider

K2D (r) = K (x)K (y) ,

obtained by tensorizing the square of the Fejer kernel (2.3). (For reference, if we had data in which
y(k) is observed if ‖k‖2 ≤ fc, we would probably use a radial kernel.) Just as before, we have fixed
K somewhat arbitrarily, and it would probably be possible to optimize this choice to improve the
constant factor in the expression for the minimum distance. We interpolate the sign pattern using
K2D and its partial derivatives, denoted by K2D

(1,0) and K2D
(0,1) respectively, as follows:

q (r) =
∑
rj∈T

[
αjK

2D (r − rj) + β1jK
2D
(1,0) (r − rj) + β2jK

2D
(0,1) (r − rj)

]
,

and we fit the coefficients so that for all tj ∈ T ,

q (tj) = vj ,

∇q (tj) = 0.
(C.2)

The first intermediate result shows that the dual polynomial is well defined, and also controls the
magnitude of the interpolation coefficients.

Lemma C.2 Under the hypotheses of Proposition C.1, there are vectors α, β1 and β2 obeying
(C.2) and

||α||∞ ≤ 1 + 5.577 10−2,

||β||∞ ≤ 2.930 10−2 λc,
(C.3)

where β = (β1, β2). Further, if v1 = 1,

α1 ≥ 1− 5.577 10−2. (C.4)
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Proposition C.1 is now a consequence of the two lemmas below which control the size of q near a
point r0 ∈ T . Without loss of generality, we can take r0 = 0.

Lemma C.3 Assume 0 ∈ T . Then under the hypotheses of Proposition C.1, |q (r)| < 1 for all
0 < |r| ≤ 0.2447λc.

Lemma C.4 Assume 0 ∈ T . Then under the conditions of Proposition C.1, |q (r)| < 1 for all r
obeying 0.2447λc ≤ |r| ≤ ∆/2. This also holds for all r that are closer to 0 ∈ T (in the ∞ distance)
than to any other element in T .

C.1 Proof of Lemma C.2

To express the interpolation constraints in matrix form, define

(D0)jk = K2D (rj − rk) ,
(
D(1,0)

)
jk

= K2D
(1,0) (rj − rk) ,

(
D(0,1)

)
jk

= K2D
(0,1) (rj − rk) ,(

D(1,1)

)
jk

= K2D
(1,1) (rj − rk) ,

(
D(2,0)

)
jk

= K2D
(2,0) (rj − rk) ,

(
D(0,2)

)
jk

= K2D
(0,2) (rj − rk) .

To be clear, K2D
(`1,`2) means that we are taking `1 and `2 derivatives with respect to the first and

second variables. Note that D0, D(2,0), D(1,1) and D(0,2) are symmetric, while D(1,0) and D(0,1)

are antisymmetric, because K and K ′′ are even while K ′ is odd. The interpolation coefficients are
solutions to 

D0 D(1,0) D(0,1)

D(1,0) D(2,0) D(1,1)

D(0,1) D(1,1) D(0,2)



α

β1

β2

 =


v

0

0

 ⇔

[
D0 −D̃T

1

D̃1 D̃2

][
α

β

]
=

[
v

0

]
, (C.5)

where we have defined two new matrices D̃1 and D̃2. The norm of these matrices can be bounded
by leveraging 1D results. For instance, consider

||I−D0||∞ =
∑

rj∈T\{0}

∣∣K2D (rj)
∣∣ .

We split this sum into different regions corresponding to whether |xj | or |yj | ≤ ∆/2 and to
min(|xj |, |yj |) ≥ ∆/2. First,∑

rj 6=0 : |yj |<∆/2

∣∣K2D (rj)
∣∣ ≤ ∑

rj 6=0 : |yj |<∆/2

B0 (xj) ≤ 2
∑
j≥1

B0(j∆).

This holds because the xj ’s must be at least ∆ apart, B0 is nonincreasing and the absolute value
of K2D is bounded by one. The region {rj 6= 0, |xj | < ∆/2} yields the same bound. Now observe
that Lemma C.5 below combined with Lemma 2.6 gives∑

rj 6=0 : min(xj ,yj)≥∆/2

∣∣K2D (rj)
∣∣ ≤ ∑

rj 6=0 : min(xj ,yj)≥∆/2

B0 (xj)B0 (yj) ≤
[∑
j1≥0

B0(∆/2 + j1∆)
]2
.
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To bound this expression, we apply the exact same technique as for (2.11) in Section 2.3, starting
at j = 0 and setting j0 = 20. This gives

||I−D0||∞ ≤ 4
∑
j≥1

B0(j∆) + 4
[∑
j≥0

B0(∆/2 + j∆)
]2
≤ 4.854 10−2. (C.6)

Lemma C.5 Suppose x ∈ R2
+ and f(x) = f1(x1)f2(x2) where both f1 and f2 are nonincreasing.

Consider any collection of points {xj} ⊂ R2
+ for which |xi − xj | ≥ 1. Then∑

j

f(xj) ≤
∑
j1≥0

f1(j1)
∑
j2≥0

f2(j2).

Proof Consider the mapping x ∈ R2
+ 7→ (bx1c, bx2c). This mapping is injective over our family

of points. (Indeed, two points cannot be mapped to the same pair of integers (j1, j2) as it would
otherwise imply that they are both inside the square [j1+1)×[j2+1), hence violating the separation
condition.) Therefore, the monotonicity assumption gives∑

j

f(xj) ≤
∑
j

f1(bxj,1c)f2(bxj,2c) ≤
∑

j1,j2≥0

f1(j1)f2(j2),

which proves the claim.

Applying the same reasoning, we obtain∣∣∣∣D(1,0)

∣∣∣∣
∞ ≤ 2

∑
j≥1

B1(j∆) + 2‖K ′‖∞
∑
j≥1

B0(j∆) + 4
[∑
j≥0

B0(∆/2 + j∆)
][∑
j≥0

B1(∆/2 + j∆)
]
.

In turn, the same upper-bounding technique yields∣∣∣∣D(1,0)

∣∣∣∣
∞ ≤ 7.723 10−2 fc, (C.7)

where we have used the fact that ‖K ′‖∞ ≤ 2.08 (fc + 2), which follows from combining Lemma 2.6
with (2.21). Likewise,∣∣∣∣D(1,1)

∣∣∣∣
∞ ≤ 4‖K ′‖∞

∑
j≥1

B1(j∆) + 4
[∑
j≥0

B1(∆/2 + j∆)
]2
≤ 0.1576 f2

c , (C.8)

and finally,∣∣∣∣∣∣∣∣∣K2D
(2,0) (0)

∣∣∣ I−D(2,0)

∣∣∣∣∣∣
∞
≤ 2

∑
j≥1

B2(j∆) + 2‖K ′′‖∞
∑
j≥1

B0(j∆)

+ 4
[∑
j≥0

B0(∆/2 + j∆)
][∑
j≥0

B2(∆/2 + j∆)
]
≤ 0.3539 f2

c , (C.9)

since ‖K ′′‖∞ = π2fc (fc + 4) /3, as |K ′′| reaches its global maximum at the origin.
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We use these estimates to show that the system (C.5) is invertible and to show that the coefficient
sequences are bounded. To ease notation, set

S1 = D(2,0) −D(1,1)D
−1
(0,2)D(1,1),

S2 = D(1,0) −D(1,1)D
−1
(0,2)D(0,1),

S3 = D0 + ST2 S
−1
1 S2 −D(0,1)D

−1
(0,2)D(0,1).

Note that S1 is a Schur complement of D(0,2) and that a standard linear algebra identity gives

D̃−1
2 =

[
S−1

1 −S−1
1 D(1,1)D

−1
(0,2)

−D−1
(0,2)D(1,1)S

−1
1 D−1

(0,2) +D−1
(0,2)D(1,1)S

−1
1 D(1,1)D

−1
(0,2)

]
.

Using this and taking the Schur complement of D̃2, which is equal to S3, the solution to (C.5) can
be written as[
α

β

]
=

[
I

−D̃−1
2 D̃1

](
D0 + D̃T

1 D̃
−1
2 D̃1

)−1
v ⇔


α

β1

β2

 =


I

−S−1
1 S2

D−1
(0,2)

(
D(1,1)S

−1
1 S2 −D(0,1)

)
S−1

3 v.

Applying (2.13) from Section 2.3.1, we obtain∣∣∣∣∣∣D−1
(0,2)

∣∣∣∣∣∣
∞
≤ 1∣∣∣K2D

(0,2) (0)
∣∣∣− ∣∣∣∣∣∣∣∣∣K2D

(0,2) (0)
∣∣∣ I−D(0,2)

∣∣∣∣∣∣
∞

≤ 0.3399

f2
c

, (C.10)

which together with K2D
(2,0) (0) = −π2fc (fc + 4) /3 and (C.8) imply∣∣∣∣∣∣∣∣∣K2D

(2,0) (0)
∣∣∣ I− S1

∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣∣∣∣K2D

(2,0) (0)
∣∣∣ I−D(2,0)

∣∣∣∣∣∣
∞

+
∣∣∣∣D(1,1)

∣∣∣∣2
∞

∣∣∣∣∣∣D−1
(0,2)

∣∣∣∣∣∣
∞
≤ 0.33624 f2

c .

Another application of (2.13) then yields∣∣∣∣S−1
1

∣∣∣∣
∞ ≤

1∣∣∣K2D
(2,0) (0)

∣∣∣− ∣∣∣∣∣∣∣∣∣K2D
(2,0) (0)

∣∣∣ I− S1

∣∣∣∣∣∣
∞

≤ 0.3408

f2
c

. (C.11)

Next, (C.7), (C.8) and (C.10) allow to bound S2,

||S2||∞ ≤
∣∣∣∣D(1,0)

∣∣∣∣
∞ +

∣∣∣∣D(1,1)

∣∣∣∣
∞

∣∣∣∣∣∣D−1
(0,2)

∣∣∣∣∣∣
∞

∣∣∣∣D(0,1)

∣∣∣∣
∞ ≤ 8.142 10−2 fc,

which combined with (C.6), (C.7), (C.10) and (C.11) implies

||I− S3||∞ ≤ ||I−D0||∞ + ||S2||2∞
∣∣∣∣S−1

1

∣∣∣∣
∞ +

∣∣∣∣D(0,1)

∣∣∣∣2
∞

∣∣∣∣∣∣D−1
(0,2)

∣∣∣∣∣∣
∞
≤ 5.283 10−2.

The results above allow us to derive bounds on the coefficient vectors by applying (2.13) one last
time, establishing

||α||∞ ≤
∣∣∣∣S−1

3

∣∣∣∣
∞ ≤ 1 + 5.577 10−2,

||β1||∞ ≤
∣∣∣∣S−1

1 S2S
−1
3

∣∣∣∣
∞ ≤

∣∣∣∣S−1
1

∣∣∣∣
∞ ||S2||∞

∣∣∣∣S−1
3

∣∣∣∣
∞ ≤ 2.930 10−2 λc,

α1 = v1 −
((

I− S−1
3

)
v
)

1
≥ 1−

∣∣∣∣S−1
3

∣∣∣∣
∞ ||I− S3||∞ ≥ 1− 5.577 10−2,

where the last lower bound holds if v1 = 1. The derivation for ||β2||∞ is identical and we omit it.
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C.2 Proof of Lemma C.3

Since v is real valued, α, β and q are all real valued. For |r| ≤ 0.2447λc, we show that the Hessian
matrix of q,

H =

[
q(2,0) (r) q(1,1) (r)

q(1,1) (r) q(0,2) (r)

]
is negative definite. In what follows, it will also be useful to establish bounds on the kernel and its
derivatives near the origin. Using (2.20)–(2.24), we obtain

K2D (x, y) ≥
(

1− π2fc (fc + 4)x2

6

)(
1− π2fc (fc + 4) y2

6

)
K2D

(2,0) (x, y) ≤

(
−π

2fc (fc + 4)

3
+

(fc + 2)4 π4x2

6

)(
1− π2fc (fc + 4) y2

6

)
and ∣∣∣K2D

(1,0) (x, y)
∣∣∣ ≤ π2fc (fc + 4)x

3
,

∣∣∣K2D
(1,1) (x, y)

∣∣∣ ≤ π4f2
c (fc + 4)2 xy

9
,∣∣∣K2D

(2,1) (x, y)
∣∣∣ ≤ π4f2

c (fc + 4)2 y

9
,

∣∣∣K2D
(3,0) (x, y)

∣∣∣ ≤ π4 (fc + 2)4 x

3
.

These bounds are all monotone in x and y so we can evaluate them at x = 0.2447λc and y =
0.2447λc to show that for any |r| ≤ 0.2447λc,

K2D (r) ≥ 0.8113
∣∣∣K2D

(1,0) (r)
∣∣∣ ≤ 0.8113 K2D

(2,0) (r) ≤ −2.097 f2
c ,∣∣∣K2D

(1,1) (r)
∣∣∣ ≤ 0.6531 fc,

∣∣∣K2D
(2,1) (r)

∣∣∣ ≤ 2.669 f2
c ,

∣∣∣K2D
(3,0) (r)

∣∣∣ ≤ 8.070 f3
c . (C.12)

The bounds for K2D
(1,0), K

2D
(2,0), K

2D
(2,1) and K2D

(3,0) of course also hold for K2D
(0,1), K

2D
(0,2), K

2D
(1,2) and

K2D
(0,3). Additionally, it will be necessary to bound sums of the form

∑
rj∈T/{0}

∣∣∣K2D
(`1,`2) (r − rj)

∣∣∣
for r such that |r| ≤ ∆/2 and `1, `2 = 0, 1, 2, 3. Consider the case (`1, `2) = (0, 0). Without loss
of generality, let r = (x, y) ∈ R2

+. By Lemma C.5, the contribution of those rj ’s belonging to the
three quadrants {|r| > ∆/2} \ R2

+ obeys∑
|rj |>∆/2,rj /∈R2

+

∣∣K2D (r − rj)
∣∣ ≤ 3

[∑
j≥0

B0(∆/2 + j∆)
]2
.

Similarly, the contribution from the bands where either |rj,1| or |rj,2| ≤ ∆/2 obeys∑
|rj,1|≤∆/2 or |rj,2|≤∆/2

∣∣K2D (r − rj)
∣∣ ≤ 2

∑
j≥1

B0(j∆− |r|).

It remains to bound the sum over rj ’s lying in the positive quadrant {|r| > ∆/2}∩R2
+. To do this,

let f1 (t) be equal to one if |t| ≤ ∆ and to B0(∆t−|r|) otherwise. Taking f2 = f1, Lemma C.5 gives∑
|rj |>∆/2,rj∈R2

+

∣∣K2D (r − rj)
∣∣ ≤∑

j≥1

B0(j∆− |r|) +
[∑
j≥1

B0(j∆− |r|)
]2
.
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We can apply exactly the same reasoning to the summation of K2D
(`1,`2) for other values of `1 and

`2, and obtain that for any r such that |r| ≤ ∆/2,∑
rj∈T\{0}

∣∣∣K2D
(`1,`2) (r − rj)

∣∣∣ ≤ Z(`1,`2) (|r|) ; (C.13)

here, for u ≥ 0,

Z(`1,`2) (u) = 2
∑
j≥1

K(`1)
∞ B`2(j∆− u) + 2K(`2)

∞ B`1(j∆− u) +K(`1)
∞

∑
j≥1

B`2(j∆)

+K(`2)
∞

∑
j≥1

B`1(j∆) + 3
[∑
j≥0

B`1(∆/2 + j∆)
][∑
j≥0

B`2(∆/2 + j∆− u)
]

+
[∑
j≥1

B`1(j∆− u)
][∑
j≥1

B`2(j∆)
]

in which K
(`1)
∞ is a bound on the global maximum of K(`1). The absolute value of the kernel

K and its second derivative reach their global maxima at the origin, so K
(0)
∞ = 1 and K

(2)
∞ =

π2fc (fc + 4) /3. Combining the bounds on |K ′| and |K ′′′| in Lemma 2.6 with (2.21) and (2.24), we

can show that K
(1)
∞ = 2.08 (fc + 2) and K

(3)
∞ = 25.3 (fc + 2)3 if fc ≥ 512. Since Z(`1,`2) = Z(`2,`1),

we shall replace Z(`1,`2) for which `1 > `2 by Z(`2,`1).

Since
q(2,0) (r) =

∑
rj∈T

αjK
2D
(2,0) (r − rj) + β1jK

2D
(3,0) (r − rj) + β2jK

2D
(2,1) (r − rj)

it follows from (C.12) and (C.13) that

q(2,0) (r) ≤ α1K
2D
(2,0) (r) + ||α||∞

∑
rj∈T\{0}

∣∣∣K2D
(2,0) (r − rj)

∣∣∣
+ ||β||∞

[∣∣∣K2D
(3,0) (r)

∣∣∣+
∑

rj∈T\{0}

∣∣∣K2D
(3,0) (r − rj)

∣∣∣+
∣∣∣K2D

(2,1) (r)
∣∣∣+

∑
rj∈T\{0}

∣∣∣K2D
(2,1) (r − rj)

∣∣∣]
≤ α1K

2D
(2,0) (r) + ||α||∞ Z(0,2)(|r|) + ||β||∞

(∣∣∣K2D
(3,0) (r)

∣∣∣+ Z(0,3)(|r|) +
∣∣∣K2D

(2,1) (r)
∣∣∣+ Z(1,2)(|r|)

)
≤ −1.175 f2

c .

The last inequality uses values of Z(`1,`2) (u) at u = 0.2447λc reported in Table 6. By symmetry,
the same bound holds for q(0,2). Finally, similar computations yield∣∣q(1,1)(r)

∣∣ =
∑
rj∈T

αjK
2D
(1,1) (r − rj) + β1jK

2D
(2,1) (r − rj) + β2jK

2D
(1,2) (r − rj)

≤ ||α||∞
[∣∣∣K2D

(1,1) (r)
∣∣∣+ Z(1,1)(|r|)

]
+ ||β||∞

[∣∣∣K2D
(2,1) (r)

∣∣∣+
∣∣∣K2D

(1,2) (r)
∣∣∣+ 2Z(1,2)(|r|)

]
≤ 1.059 f2

c .

Since Tr(H) = q(2,0) + q(0,2) < 0 and det(H) = |q(2,0)||q(0,2)| − |q(1,1)|2 > 0, both eigenvalues of H
are strictly negative.
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Z(0,0)(u) Z(0,1)(u) Z(1,1)(u) Z(0,2)(u) Z(1,2)(u) Z(0,3)(u)

6.405 10−2 0.1047 fc 0.1642 f2
c 0.4019 fc 0.6751 f3

c 1.574f3
c

Table 6: Upper bounds on Z(`1,`2)(u) at 0.2447λc.

We have shown that q decreases along any segment originating at 0. To complete the proof, we
must establish that q > −1 in the square. Similar computations show

q (r) =
∑
rj∈T

αjK
2D (r − rj) + β1jK

2D
(1,0) (r − rj) + β2jK

2D
(0,1) (r − rj)

≥ α1K
2D (r)− ||α||∞ Z(0,0)(|r|)− ||β||∞

(∣∣∣K2D
(0,1) (r)

∣∣∣+
∣∣∣K2D

(1,0) (r)
∣∣∣+ 2Z(0,1)(|r|)

)
≥ 0.6447.

C.3 Proof of Lemma C.4

For 0.2447λc ≤ |r| ≤ ∆/2,

|q| ≤
∣∣∣∑
rj∈T

αjK
2D (r − rj) + β1jK

2D
(1,0) (r − rj) + β2jK

2D
(0,1) (r − rj)

∣∣∣
≤ ||α||∞

[∣∣K2D (r)
∣∣+ Z(0,0)(|r|)

]
+ ||β||∞

[∣∣∣K2D
(1,0) (r)

∣∣∣+
∣∣∣K2D

(0,1) (r)
∣∣∣+ 2Z(0,1)(|r|)

]
.

Using the series expansion around the origin of K and K ′ (2.29), we obtain that for t1 ≤ |r| ≤ t2,

∣∣K2D (r)
∣∣ ≤ (1− π2fc (fc + 4)x2

6
+
π4 (fc + 2)4 x4

72

)(
1− π2fc (fc + 4) y2

6
+
π4 (fc + 2)4 y4

72

)

≤

1−
π2
(

1 + 2
fc

)2
t21

6

1−
π2
(

1 + 2
fc

)2
t22

12




2

,

∣∣∣K2D
(1,0) (r)

∣∣∣ ≤ (π2fc (fc + 4) t2
3

)2

.

The same bound holds for K2D
(0,1). Now set

W (r) = α∞
∣∣K2D (r)

∣∣+ 2β∞
∣∣∣K2D

(1,0) (r)
∣∣∣

where α∞ and β∞ are the upper bounds from Lemma C.2. The quantities reported in Table 7 imply
that setting {t1, t2} to {0.1649λc, 0.27λc}, {0.27λc, 0.36λc}, {0.36λc, 0.56λc} and {0.56λc, 0.84λc}
yields |q| < 0.9958, |q| < 0.9929, |q| < 0.9617 and |q| < 0.9841 respectively in the corresponding
intervals. Finally, for |r| between 0.84λc and ∆/2, applying Lemma (2.6) yields W (r) ≤ 0.5619,
Z(0,0) (0.84λc) ≤ 0.3646 and Z(0,1) (0.84λc) ≤ 0.6502 fc , so that |q| ≤ 0.9850. These last bounds
also apply to any location beyond ∆/2 closer to 0 than to any other element of T because of the
monotonicity of B0 and B1. This concludes the proof.
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t1/λc t2/λc Upper bound on W (r) Z(0,0) (t2) Z(0,1) (t2)

0.2447 0.27 0.9203 6.561 10−2 0.1074

0.27 0.36 0.9099 7.196 10−2 0.1184

0.36 0.56 0.8551 9.239 10−2 0.1540

0.56 0.84 0.8118 0.1490 0.2547

Table 7: Numerical quantities used to bound |q| between 0.2447 and 0.84.
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