Sept 11, 2019
Annancements: HW I de Monday, in class
Last time: *Inhomogeneous equations with integrating frectos:

$$
y^{\prime}+a y=b \Rightarrow \mu y^{\prime}+a \mu y=\mu b
$$

choose μ such that $\mu y^{\prime}+a \mu y=(\mu y)^{\prime}$

- Separable equation:

$$
\frac{d y}{d t}=\frac{g(t)}{f(y)} \Rightarrow f(y) d y / d t=g(t)
$$

Rewrite as: $\left.\frac{d}{d t}(F \mid y)\right)=g(t)$ when F is anti-derivantic of f

$$
\Rightarrow F(y)=\int g(t) d t+C
$$

Add initial conditions via integmtion: $\quad\left(v \operatorname{sing} y\left(t_{0}\right)=y_{0}\right)$

$$
\begin{aligned}
& \underbrace{\int_{0}^{t} \frac{d}{d \tau} F(y(\tau)) d \tau}_{t_{0}}=\int_{b_{0}}^{t} g(\tau) d \tau \\
& =F(y(t))-F\left(y\left(t_{0}\right)\right) \\
& =F(y)-F\left(y_{0}\right) \\
& =\int_{y_{0}}^{y} f(w) d w .
\end{aligned}
$$

- Application: Racioactin dating:

$$
N(t)=N_{0} \lambda \Rightarrow N(t)=N_{0} e^{-\lambda\left(t-t_{0}\right)}
$$

- Failure of soluhi to exist aside save interval:

$$
\begin{aligned}
& y^{\prime}=1+y^{2} \\
& y(0)=1
\end{aligned} \quad \Rightarrow \quad y=\tan t \quad| |_{\vdots}^{\vdots}
$$

Another method of failure:
Ex:

$$
\begin{aligned}
y y^{\prime}+\left(1+y^{2}\right) \sin t & =0 \\
y(0) & =1
\end{aligned}
$$

Separating we han:

$$
\begin{aligned}
& \text { han: } \quad \frac{d y}{d t} \frac{y}{1+y^{2}}=-\sin t \\
& \Rightarrow \quad \int_{1}^{y} \frac{w}{1+w^{2}} d w=-\int_{0}^{t} \sin \tau d \tau \\
& \left.\Rightarrow \quad \frac{1}{2} \log \left(1+w^{2}\right)\right|_{1} ^{y}=\left.\cos \tau\right|_{0} ^{t} \\
& \Rightarrow \quad \frac{1}{2} \log \left(1+y^{2}\right)-\frac{1}{2} \log 2=\cos t-1 \\
& \Rightarrow \quad \log \left(\frac{1+y^{2}}{2}\right)=2(\cos t-1) \\
& \quad y^{2}=2 e^{2(\cos t-1)}-1 \\
& \Rightarrow \quad y= \pm \sqrt{2 e^{2(\cot t-1)}-1} \quad \text { which branch? } \pm ?
\end{aligned}
$$

Since $y(0)=1$, it must be the + branch

$$
=\sqrt{2 e^{2(\cot t-1)}-1}
$$

Furtherman, the solution is only ral-valud when

$$
\begin{aligned}
2 e^{2(\cot -1)}-1 & >0 \\
\Rightarrow \quad e^{2(\cot t)}> & >\frac{1}{2} \\
\Rightarrow \quad 2(\cot t-1) & >-\log 2 \\
(0) t-1 & >-\frac{1}{2} \log 2 \\
(0) t & >\underbrace{-\frac{1}{2} \log 2+1}_{\approx .65}
\end{aligned}
$$

solutivi only exists in this internal

We can sa this by rewrity the orijinal $D E$ as

$$
y^{\prime}=\frac{-\left(1+y^{2}\right) \sin t}{y r} \quad y_{\text {when }}^{\prime} y=0, y^{\prime} \rightarrow \infty
$$

Two types of sulution to separable equations:

Ex:

$$
\begin{aligned}
\left(1+e^{y}\right) y^{\prime} & =\cos t \\
y\left(\frac{\pi}{2}\right) & =3
\end{aligned}
$$

Integratij:

$$
\begin{aligned}
& \Rightarrow \quad \int_{3}^{y}\left(1+e^{w}\right) d w=\int_{\pi / 2}^{t} \cos \tau d \tau \\
& \Rightarrow \quad w+\left.e^{w}\right|_{3} ^{y}=\left.\sin \tau\right|_{\pi / 2} ^{t} \\
& \left.\Rightarrow y+e^{y}=\sin t+2+e^{3}\right] \text { Implicit solution. }
\end{aligned}
$$

Application - orthogonal trijectorisi
Charged partich tmul perpendicidr to magnetic fiéd lins.

$$
\begin{aligned}
\text { Differentate: } \frac{d}{d x} F(x, y, c)= & \frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0 \\
& \Rightarrow y^{\prime}=\frac{-F_{x}}{F_{y}}
\end{aligned}
$$

Thenfon orthoyanal trajection is the solutivin to

$$
y^{\prime}=F_{y} F_{x}
$$

Ex: A family of parabolas:

$$
\begin{aligned}
& F(x, y, c)=x-c y^{2} \\
& \Rightarrow x=c y^{2} \\
& \text { Differcentiatj } \Rightarrow 1=2 c y y^{\prime} \\
& \Rightarrow y^{\prime}=\frac{1}{2 c y}=\frac{1}{2 y} \frac{1}{x / y^{2}}=\frac{y}{2 x}
\end{aligned}
$$

Orthogonal trajectris an gavin by

$$
\begin{aligned}
y^{\prime} & =\frac{-2 x}{y} \quad \Rightarrow \quad y y^{\prime}=-2 x \\
\int y y^{\prime} d x=-\int 2 x d x+C & \Rightarrow \frac{1}{2} y^{2}+x^{2}=C \\
& \Rightarrow 2 x^{2}+y^{2}=C \text { new constant }
\end{aligned}
$$

equation of an ellipse.
Exact equations \& 1.9
The form of differential equation we have studied so fur is gevenlly: $\quad \frac{d}{d t}(m)=g(t)$.

C this "something" has growly been assumed to be only a function of y
E.g. (1) $y^{\prime}+a y=0 \Rightarrow \frac{y^{\prime}}{y}=-a \Rightarrow \frac{d}{d t} \log |y|=-a$
(2) $\frac{d y}{d t}=\frac{g(t)}{f(y)} \Rightarrow \frac{d}{d t} F(y)=g(t)$.

The most genes form of this problem is:

$$
\frac{d}{d t} \varphi(t, y)=0 \quad \Rightarrow \quad \varphi(t, y)=c \text {, then }
$$ solve for y above.

Example:

$$
2 t \sin y+y^{3} e^{t}+\left(t^{2} \cos y+3 y^{2} e^{t}\right) d y / d t=0
$$

Note that: $\frac{d}{d t}\left(t^{2} \sin y+y^{3} e^{t}\right)=2 t \sin y+y^{3} e^{t}$

$$
\frac{d}{d y}\left(t^{2} \sin y+y^{3} e^{t}\right)=t^{2} \cos y+3 y^{2} e^{t}
$$

and thenfore $\frac{d}{d t}\left(t^{2} \sin y+y^{3} e^{t}\right)=\Phi(t, y)=\frac{d}{d t} \varphi(t, y)$.
The existence of q, given Φ is generally not obvious,
Recall:

$$
\begin{aligned}
\frac{d}{d t} \varphi(t, y)= & \frac{\partial \varphi}{\partial t} \\
& +\frac{\partial \varphi}{\partial y} \frac{d y}{d t} \\
& \hat{\text { partial decivatius. }}
\end{aligned}
$$

Therefore:
The differential equation $M(t, y)+N(t, y) y^{\prime}=0$ can be written as $\frac{d}{d t} \varphi(t, y)=0$ if and only if there is some φ such that $\frac{\partial \varphi}{\partial t}=M$ and $\frac{\partial \varphi}{\partial y}=N$

