- Application: Orthogonal trajectories
- If
$$F(X;y;c) = 0$$
 defines a family of smooth
curves, then these curves satisfy $\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$,
 $=7 \frac{dy}{dx} = -\frac{\partial F/dx}{\partial F/y}$ Octhogonal (perpendicular)
 $curves = \frac{\partial F/dx}{\partial F/y}$ (urn satisfies: $\frac{dy}{dx} = \frac{\partial F/y}{\partial F/y}$

- Exact differential Equations:
These have the form
$$\frac{d}{dt}q[ty] = 0$$
,
and therefore the solution is $q[ty] = C$.
Expand: $\frac{d}{dt}q = \frac{\partial q}{\partial t} + \frac{\partial q}{\partial y} \frac{dy}{dt} = 0$
 $\frac{d}{dt}q = \frac{\partial q}{\partial t} + \frac{\partial q}{\partial y} \frac{dy}{dt} = 0$

Theorem: Let M, N be continuously differentiable in
$$(a,b) \times (c,d)$$
.
There exists a function φ s.t. $M = \frac{\partial \varphi}{\partial t}$ and $N = \frac{\partial \varphi}{\partial y}$
if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial t}$ in $(a,b) \times (c,d)$.

Then, we have that
$$\frac{\partial q}{\partial y} = \int \frac{\partial M}{\partial y} dt + h'$$

Therefore, $\frac{\partial q}{\partial y} = N$ if and only if $N(t_i, y) = \int \frac{\partial M}{\partial y} (t_i y) dt$
or rather $h'(y) = N(t_i y) - \int \frac{\partial M}{\partial y} (t_i y) dt$
function $\frac{d}{dt} - \frac{\partial M}{\partial y} (t_i y) = \frac{\partial M}{\partial y} (t_i y) dt$
This only unakes sense if the RHS is a function of
only γ , so that
 $\frac{\partial}{\partial t} \left(N - \int \frac{\partial M}{\partial y} dt\right) = \frac{\partial N}{\partial t} - \frac{\partial M}{\partial y} = O$
So, if $\frac{\partial N}{\partial t} + \frac{\partial M}{\partial \gamma}$ then no q exists.
If $\frac{\partial N}{\partial t} = \frac{\partial M}{\partial \gamma}$, then $h(y) = \int N dy - \int \int \frac{\partial M}{\partial \gamma} dt dy$ (from about).
Definition The ODE $M(t_i, \gamma) + N(t_i, \gamma) \frac{d_i}{d_i} = O$ is exact
if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial t}$.
 $= \gamma = M + N \frac{dy}{dt}$ is the exact derivation of some function $q = q(t_i, \gamma)$.

Note: $\frac{dy}{dt} = f(t,y)$ can always be written in the above form by $\frac{-f(t,y)}{N} + 1.\frac{dy}{dt} = 0$.

How do we compute q for exact ODEs?
Option 1': Shild vich M= 295e. This determines q up to
an arbitrary function d y:
M:
$$\frac{\partial q}{\partial t} = 7$$
 $q^2 \int M dt + h(y)$.
Next solve $h'(y) = N - \int \frac{\partial n}{\partial y} dt$
Option 2: Vice versa, $N = \frac{\partial q}{\partial y}$ implies funt
 $q = \int N dy + k(t)$
then sivic $M = \frac{\partial g}{dt} = 7$ $M = \int \frac{\partial N}{\partial t} dy + k'$,
comple $k = \int M dy - \int \int \frac{\partial N}{\partial t} dy dt + C$
Option 3: By inspector, note that
 $q(try) = \int M(ty) dt + h(y)$
 $= \int N(try) dy + k(t)$
Example Find general solution to
 $\frac{\partial y}{\partial t} + \frac{d}{dy} = 3$
 $\int \frac{\partial N}{\partial t} = 3$
Option 1 : We have $cp(try) = \int M dt + h(y)$
 $= 3ty + et + (hy) = -3t$
 $= N - 3t = cosy = 7 h(y) = sing y$
 $= 7 q = 3ty + e^{t} + sing + C$,

By inspection:

$$q(H_{12}) = \int H \, dt + h(y) = \int H \, dt + h(y) = \int H \, dy + k(y) + k(y) + k(y) = \int H \, dy + k(y) + k(y) + k(y) + k(y) = \int H \, dy + k(y) + k(y) + k(y) + k(y) + k(y) = \int H \, dy + k(y) + k(y)$$

$$= \frac{1}{N} \frac{\partial M}{\partial y} = \frac{\partial A}{\partial t} N + \mu \frac{\partial N}{\partial t}$$

$$= \frac{\partial M}{\partial t} = \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial t}\right) M. = \frac{1}{M} = \frac{\partial M}{N} \frac{\partial M}{\partial y} - \frac{\partial N}{\partial t}$$

$$= \frac{\partial M}{\partial t} = \left(\frac{\partial M}{N} \frac{\partial y}{\partial t} - \frac{\partial N}{\partial t}\right) M. = \frac{1}{M} = \frac{\partial M}{N} \frac{\partial M}{\partial t} - \frac{\partial M}{\partial t}$$

$$= \frac{\partial M}{dt} = \frac{\partial M}{N} \frac{\partial M}{dt} = \frac{\partial M}{N} \frac{\partial M}{dt} = \frac{\partial M}{N} \frac{\partial M}{dt} + \frac{\partial M}{dt} \frac{\partial M}{dt} + \frac{\partial M}{dt} \frac{\partial M}{dt} + \frac{\partial M}{dt}$$

$$= \frac{\partial M}{M} \frac{\partial M}{dt} = \frac{\partial M}{N} \frac{\partial M}{dt} = \frac{\partial M}{N} \frac{\partial M}{dt} + \frac{\partial M}{dt} \frac{\partial M}{dt} + \frac{\partial M}{dt} \frac{\partial M}{dt} + \frac{\partial M}{dt} \frac{\partial M}{dt} = \frac{\partial M}{dt} + \frac{\partial M}{dt} \frac{\partial M}{dt} = \frac{\partial M}{dt} \frac{\partial M}{dt} + \frac{\partial M}{dt} \frac{\partial M}{dt} = \frac{\partial M}{dt} \frac{\partial M}{dt} + \frac{\partial$$

scenarios. Not very physically relevant.