Sept. 16, 2019
Last time:

- Mods of frilun for the solution to an ODE to exist - Intervals of existence
- Ex: cost $<a$ in order for solutivi to be real.
- Application: Orthogonal trajectories
- If $F(x, y, c)=0$ defies a family of smooth cures, then thess corns satisfy $\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0$,

$$
\Rightarrow \frac{d y}{d x}=-\frac{\partial F / d x}{\partial F / \partial y} \left\lvert\, \begin{aligned}
& \text { Orthogonal (perpendicular) } \\
& \text { corn satisfies: } \frac{d y}{d x}=\frac{\partial F / \partial y}{\partial F / \partial x}
\end{aligned}\right.
$$

- Exact differential Equations:

These have the firm $\frac{d}{d t} \varphi(t, y)=0$, and therefore the solution is $\varphi(t, y)=C$.
Expand: $\frac{d}{d t} \varphi=\underbrace{\frac{\partial \varphi}{\partial t}}_{M}+\underbrace{\frac{\partial y}{\partial y}}_{N} \frac{d y}{d t}=0$
Theorem: Let M, N be continumsly differentiable in $(a, b) \times(c, d)$. There exists a function φ s.t. $M=\partial 4 / \partial t$ and $N=\partial \alpha / \partial y$ if and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$ in $(a, b) \times(c, \partial)$.

Proof: $\quad M=\partial 4 / \partial t$ if and only if

$$
\begin{aligned}
& \varphi(t, y)=\int M(t, y) d t+h(y) \\
& \text { so that } \frac{\partial \varphi}{\partial t}=M+\frac{\partial h}{\partial t} 1^{0}
\end{aligned}
$$

Then, m han that $\frac{\partial \varphi}{\partial y}=\int \frac{\partial M}{\partial y} d t+h^{\prime}$
Therefor, $\frac{\partial y}{\partial y}=N$ if and only if $N(t, y)=\int \frac{\partial M(t, y) d t}{\partial y}+h^{\prime}(y)$, or rather $\underbrace{h^{\prime}(y)}_{\begin{array}{c}\text { function } \\ \text { of } y\end{array}}=\underbrace{N(t, y)-\int \frac{\partial M}{\partial y}(t, y)}_{\text {function of } y \text { and } t} d t$

This only makes sense if the RHS is a function of only y, so that

$$
\frac{\partial}{\partial t}\left(N-\int \frac{\partial M}{\partial y} d t\right)=\frac{\partial N}{\partial t}-\frac{\partial M}{\partial y}=0
$$

So, if $\frac{\partial N}{\partial t} \neq \frac{\partial M}{\partial y}$ then no φ exists.
If $\frac{\partial N}{\partial t}=\frac{2 M}{\partial y}$, then $h(y)=\int N d y-\iint \frac{\partial M}{\partial y} d t d y$ and $\quad q=\int M d t+\int N d y-\iint \frac{\partial M}{\partial y} d t d y \quad$ (from about).

Definition The ODE $M(t, y)+N(t, y) \frac{d y}{d t}=0$ is exact if $\quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$.
$\Rightarrow \quad M+N \frac{d y}{d t}$ is the exact derivation of some function $\varphi=\varphi(t, y)$.

Note: $\frac{d y}{d t}=f(t, y)$ can always be written in the above form by $\underbrace{-f(t, y)}_{M}+\underbrace{1}_{N} \cdot \frac{d y}{d t}=0$.

How do we compote 9 for exact ODEs?
option 1: Start with $M=\partial y / 2 t$. This determine 4 up to an arbitrary function of y :

$$
M=\frac{\partial \varphi}{\partial t} \Rightarrow \varphi=\int M d t+h(y) .
$$

Next solve $\quad h^{\prime}(y)=N-\int \frac{\partial M}{\partial y} d t$
Option 2: Vie versa, $N=\partial a / \partial y$ implies that

$$
\varphi=\int N d y+k(t)
$$

then sine $M=\frac{\partial \varphi / \partial t}{\partial} \Rightarrow M=\int \frac{\partial N}{\partial t} d y+k^{\prime}$, compute $k=\int M d y-\iint \partial N / \partial t d y d t+C$ Option 3: By inspection, note that

$$
\begin{aligned}
\varphi(t, y) & =\int M(t, y) d t+h(y) \\
& =\int N(t, y) d y+k(t)
\end{aligned}
$$

Example Find general solution to

$$
\underbrace{3 y+e^{t}}_{M}+\underbrace{(3 t+\cos y)}_{N} y^{\prime}=0
$$

Check exactness: $\frac{\partial M}{\partial y}=3$

$$
\frac{\partial N}{\partial t}=3
$$

Option 1: We have $\varphi(t, y)=\int M d t+h(y)$

$$
=3 t y+e^{t}+h(y)
$$

$$
\begin{aligned}
\text { So } h^{\prime}(y) & =\frac{\partial \varphi}{\partial y}-3 t \\
& =N-3 t=\cos y \\
\Rightarrow \varphi=3 t y & +e^{t}+\sin y+C .
\end{aligned}
$$

$$
=N-3 t=\cos y \quad \Rightarrow h(y)=\sin y
$$

By inspection:

$$
\begin{aligned}
\varphi(t, y) & =\int M d t+h(y) \\
& =\int N d y+k(t) \\
\Rightarrow \quad \varphi(t, y) & =3 t y+e^{t}+h(y) \\
& =3 t y+\sin y+k(t)
\end{aligned}
$$

relationship is obvious,

Choose whatever method is easiest based on ability to integrate M, N, etc

Example:

$$
\begin{array}{r}
3 t^{2}+4 t y+\left(2 y+2 t^{2}\right) y^{\prime}=0 \\
y(0)=1
\end{array}
$$

Integrating Factors for Exact Diff. Eq.
If an equation is not exact, can it be made exact?
Examine: $\quad M(t, y)+N(t, y) y^{\prime}=0$
Multiplgig through by μ yields the condition:

$$
\mu M+\mu N y^{\prime}=0
$$

This is exact if and only if

$$
\Rightarrow \overbrace{\frac{\partial \mu M}{\partial y} M+\mu \frac{\partial M}{\partial y}=\underbrace{\frac{\partial}{\partial t}(\mu N)}_{\frac{\partial \mu}{\partial t} N+\mu \frac{\partial N}{\partial t}}}^{\frac{\partial}{\partial t}(\mu)}
$$

Inguanl, we cannot find an explicit solution to this.
If, however, we assume $\mu=\mu(t)$ (ice. doesn't depend on y l then

$$
\Rightarrow \mu=e^{\int \frac{M_{y}-N_{t}}{N} d t}
$$ an integrating factor.

And vire versa when assuming $\mu=\mu(y)$.
Example: Find general solution to:

$$
\begin{aligned}
& \underbrace{\frac{y^{2}}{2}+2 y e^{t}}_{M}+\underbrace{\left(y+e^{t}\right)}_{N} \frac{d y}{d t}=0 \\
& \frac{\partial M}{\partial y}=y+2 e^{t} \Rightarrow \text { NOT EXACT } \\
& \partial N / d t=e^{t}
\end{aligned}
$$

But $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right)=\frac{1}{y+e^{t}}\left(y+2 e^{t}-e^{t}\right)=\frac{y+e^{t}}{y+e^{t}}=1$
\Rightarrow Integrate factor exists,

$$
\mu(t)=e^{\int} \frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) d t=e^{t}
$$

These example an rather contrind, inwling very specint-case scenarios. Not very physically relevant.

$$
\begin{aligned}
& \Rightarrow \mu \frac{\partial M}{\partial y}=\frac{\partial \mu}{\partial t} N+\mu \frac{\partial N}{\partial t} \\
& \Rightarrow \underbrace{\frac{\partial \mu}{\partial t}}_{\substack{\text { only } \\
\text { function of } \\
t}}=\underbrace{\left(\frac{\partial M / \partial y-\partial N / \partial t}{N}\right)}_{\begin{array}{c}
\text { must } \\
\text { be also only } \\
t
\end{array}} \mu .
\end{aligned}
$$

