Sept 30, 2019
Last time:
Finished Numerical Methods for IUPs:

- Explicit Euler
- Implicit Euhr
- Newtons Method
used in combination with Implicit methods
Started: $2^{\text {nd }}$ order linear diffeecential equators:

$$
u^{\prime \prime}+p(t) u+q(t) u=g(t)
$$

IUP version

$$
\begin{aligned}
& u\left(t_{0}\right)=u_{0} \\
& u^{\prime}\left(t_{0}\right)=u_{!}
\end{aligned}
$$

Bounding value version

$$
\begin{array}{ll}
u(a)=u_{a} & \text { Solve on entire } \\
u(b)=u_{b} & \text { interval }[a, b] .
\end{array}
$$

Today:

- Some move on $2^{\text {nd }}$ ordo linear DEIS
- Reviews for Prelim Exam 1.

Get right to the point: Move or less, we will only be concerned with the equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$. If $g=0$, we have the following E\&U theorem:

Thu If p, q are continuous in $\alpha<t<\beta$, then the equation

$$
\begin{align*}
y^{\prime \prime}+p(t) y^{\prime}+q^{(t)} y & =0 \\
y\left(t_{0}\right)=y_{0} & t_{0} \in(\alpha, \beta) \tag{*}\\
y^{\prime}\left(t_{0}\right) & =y_{0}^{\prime}
\end{align*}
$$

has exactly one solution on (α, β). In particular, if $y_{0}=y_{0}{ }^{\prime}=0$, then $y=0$ on (α, β).

To begin studying this equation, start by examining the operator $\mathcal{L}:$ functions \rightarrow functions.

$$
\mathcal{L} f=f^{\prime \prime}+p f^{\prime}+q f
$$

\mathcal{L} is a liviur operator/transformation/map:

$$
\begin{aligned}
\mathcal{L}(c f+d g) & =\left(c f^{\prime \prime}+d g^{\prime \prime}\right)+p\left(c f^{\prime}+d g^{\prime}\right)+q(f+g) \\
& =c\left(f^{\prime \prime}+p f^{\prime}+q f\right)+d\left(g^{\prime \prime}+p g^{\prime}+q g\right) \\
& =c \mathcal{L} f+d \mathcal{L} g
\end{aligned}
$$

\Rightarrow solutions of (x) sutisif $\mathcal{I}_{y}=0$.
Ex: $\quad \frac{d^{2} y}{d t^{2}}+y=0 \quad \Rightarrow \quad \mathcal{L}_{y}=\frac{d^{2} y}{d t^{2}}+y=0 \quad(* *)$
Trivially, solutions are $y_{1}=\cos t$

$$
y_{2}=\sin t
$$

and therefore any linear combination of y_{1}, y_{2} are solutions.

$$
\mathcal{I}\left(c_{1} \cos t+c_{2} \sin t\right)=0 .
$$

Adding conditions $\left.y\left(t_{0}\right)=y_{0}, y^{\prime} \mid t_{0}\right)=y_{0}^{\prime}$ determine c_{1}, c_{2}.

The obvious question is: are all solutions to $\left|x^{*}\right|$ of the form $c_{1} y_{1}+c_{2} y_{2}$? Yes!

Thu: Let y_{1}, y_{2} be solutions to $\mathcal{L} y=0$ on (α, β). If
$y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \neq 0^{b^{\text {anywhere in }}\left(\alpha_{1} \beta\right)}$, then $y=c_{1} y_{1}+c_{2} y_{2}$ is the general solution to $\mathcal{L}_{\mathrm{y}}=0$.
Proof: Let y be any solution to $L y=0$. Compute
$y_{0}=y\left(t_{0}\right), y_{0}^{\prime}=y^{\prime}\left(t_{0}\right)$. Thin we must solve for c_{1}, c_{2} via the system:

$$
\text { Hem: } \begin{aligned}
& y_{0}=y\left(t_{0}\right)=c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right) \\
& y_{0}^{\prime}=y^{\prime}\left(t_{0}\right)=c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right) \\
& \Rightarrow\left(\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{y_{0}}{y_{0}^{\prime}}
\end{aligned}
$$

Solution exists and is unique if the determinate is non-zen:

$$
y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right) \neq 0
$$

Therefore, for any $t_{0} \in(\alpha, \beta)$, we can compute unique c_{1}, c_{2},

Definition: The quantity $y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ is called the Wronskian of y_{1}, y_{2}, denoted by $W\left(y_{1}, y_{2}\right)$.

Thu: Let p, q be continuous on (α, β) and let $y_{1}+y_{2}$ be two solutions to $\mathcal{L}_{y}=0$. Then $W\left(y_{1}, y_{2}\right)=0$ identinlly, or is never equal to 0 on $\left(\alpha_{p} \beta\right)$.

Proof: First, note that W satisfies the ODE:

$$
w^{\prime}+p(t) w=0
$$

Just compute w^{\prime} :

$$
\begin{aligned}
w(t) & =y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t) \\
\Rightarrow \quad w^{\prime} & =y^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}-y^{\prime} y_{2}^{\prime} \\
& =y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}
\end{aligned}
$$

Also, $y_{1}^{\prime \prime}=-p(t) y_{1}^{\prime}-q(t) y_{1}$

$$
y_{2}^{\prime \prime}=-p(t) y_{2}^{\prime}-q(t) y_{2}
$$

And therefore:

$$
\begin{aligned}
w^{\prime} & =y_{1}\left(-p y_{2}^{\prime}-q y_{2}\right)-\left(-p y_{1}^{\prime}-q y_{1}\right) y_{2} \\
& =-p y_{1} y_{2}^{\prime}-q y_{y} y_{2}+p y_{1}^{\prime} y_{2}+q y_{1} y_{2} \\
& =-p\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right) \\
& =-p w
\end{aligned}
$$

Given that $w^{\prime}+p w=0$, then

$$
W(t)=C e^{-\int p(t) d t}
$$

never equal to zero.
Therefore, either $C=0$ and $W=0$ everywhen, or $W \neq 0$ for any t.
Definitive: Two functions f, y are linearly dependant on an interval $[a, b]$ if $f(t)=c g(t)$ for $t \in[a, b]$. Otherwin they are linearly independent C
Thu Two solutions y_{1}, y_{2} to $(*)$ on $[a, b]$ are linearly independent if and only if $W\left[y_{1}, y_{2}\right] \neq 0$ on $[a, b]$. Therefore, $y_{1} \& y_{2}$ form a fundamental solution set iff they are livery indpundt.

Review for Prelim Exam 1

- Oct $2^{\text {nd }}$ in class, 9:30-10:45
- Closed book

Topics

- First order equations (\$1.2)
- linear vs. nonlinear
- general solutions
- Solution to $y^{\prime}+a(t) y=b(t) \quad\binom{$ Application: Carbon dating }{$\$ 1,3}$
- integrating factors.
- Separable equations $(\xi 1.4)$, orthoyoumal trajectories ($\xi 1.8$)
- Exact equations (§ 1.9)
- conditions for exactness
- solution methods
- integration functor
- Existent \& Unipuness to IUP $|\xi| .10$)
- Conditions required to prove existince/uniguness (Ohm 2')
- Picard iterations
- Newton's Method (\$1.11.1)
- rate of convergence
- Eulers Method ($\$ 1.13$)
- Explicit vs. Implicit
- Rate of convenance.

