Oct 7, 2019
Last time:
Turn our attention to $2^{\text {nd }}$ order linear ODES:

$$
\begin{aligned}
& u^{\prime \prime}+p(x) u^{\prime}+q(x) u=g(x) \\
\Rightarrow \quad & \mathcal{L} u
\end{aligned}
$$

\mathcal{L} is a liveur differential operator:

$$
\mathcal{L}\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1} \mathcal{L} u_{1}+c_{2} \mathcal{L} u_{2}
$$

Existence \& Vniqurnell
Thu If p, q are continuous in $\alpha<t \angle \beta$, then the equation

$$
\begin{align*}
y^{\prime \prime}+p(t) y^{\prime} & +q(t) y=0 \\
y\left(t_{0}\right) & =y_{0} \quad t_{0} \in(\alpha, \beta) \tag{*}\\
y^{\prime}\left(t_{0}\right) & =y_{0}^{\prime}
\end{align*}
$$

has exactly one solution on (α, β). In particular, if $y_{0}=y_{0}^{\prime}=0$, then $y=0$ on (α, β).

We nad seem tools to analyze there equations.
Example (foo last time)

$$
\begin{array}{ll}
u^{\prime \prime}+\omega^{2} u=0 & (x *) \\
u_{1}=\cos \omega x & \sin \omega \quad \mathcal{L}=\frac{d^{2}}{d x^{2}}+\omega^{2} I \text { is inanity operator, } \\
u_{2}=\sin \omega x & u=c_{1} u_{1}+c_{2} u_{2} \text { is also a solution. }
\end{array}
$$

The obvious question is: are all solutions to $|* *|$ of the form $c_{1} u_{1}+c_{2} u_{2}$? Yes!

Thu: Let y_{1}, y_{2} be solutions to $\mathcal{L} y=0$ on (α, β). If $y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \neq 0{ }^{\text {angwhe in }\left(\alpha_{1} \beta\right)}$, then $y=c_{1} y_{1}+c_{2} y_{2}$ is the general solution to $\mathcal{L}_{\mathrm{y}}=0$.

Proof: Let y be any solution to $L y=0$, Compute $y_{0}=y\left(t_{0}\right), y_{0}^{\prime}=y^{\prime}\left(t_{0}\right)$. Thin we must solve for c_{1}, c_{2} via the system:

$$
\begin{aligned}
& y_{0}=y\left(t_{0}\right)=c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right) \\
& y_{0}^{\prime}=y^{\prime}\left(t_{0}\right)=c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right) \\
& \Rightarrow\left(\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{y_{0}}{y_{0}^{\prime}}
\end{aligned}
$$

Solution exists and is unique if the determinate is non-zen:

$$
y_{1}\left(b_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right) \neq 0
$$

Therefore, for any $t_{0} \in(\alpha, \beta)$, we can compute unique c_{1}, L_{2}.

Definition: The quantity $y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$ is called the Wronskian of y_{1}, y_{2}, denoted by $W\left(y_{1}, y_{2}\right)$.

Thu: Let p, r be continuous on (α, β) and let $y_{1}+y_{2}$ be two solutions to $\mathcal{L}_{y}=0$. Then $W\left(y_{1}, y_{2}\right)=0$ identically, or is never equal to 0 on (α, β).

Proof: First, note that W satisfies the ODE:

$$
w^{\prime}+p(t) W=0
$$

Just compute w^{\prime} :

$$
\begin{aligned}
w(t) & =y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t) \\
\Rightarrow \quad w^{\prime} & =y^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}-y^{\prime} y_{2}^{\prime} \\
& =y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2}
\end{aligned}
$$

Also, $y_{1}^{\prime \prime}=-p(t) y_{1}^{\prime}-q(t) y_{1}$

$$
y_{2}^{\prime \prime}=-p(t) y_{2}^{\prime}-q(t) y_{2}
$$

And therefore:

$$
\begin{aligned}
w^{\prime} & =y_{1}\left(-p y_{2}^{\prime}-q y_{2}\right)-\left(-p y_{1}^{\prime}-q y_{1}\right) y_{2} \\
& =-p y_{1} y_{2}^{\prime}-q y_{y} y_{2}+p y_{1}^{\prime} y_{2}+q y_{1} y_{2} \\
& =-p\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right) \\
& =-p W
\end{aligned}
$$

Given that $w^{\prime}+p W=0$, then

$$
W(t)=C e^{e^{-\int p(t) d t}}
$$

never equal to zero.
Therefore, either $C=0$ and $W=0$ everywhen, or $W \neq 0$ for any t.
Definition: Two functions f, y are livensly dipundut on an interval $[a, b]$ if $f(t)=c g(t)$ for all $t \in[a, b]$. Otherwin they are linearly independent
Thu Two solutions y_{1}, y_{2} to $(*)$ on $[a, b]$ are linearly independent if and only if $w\left[y_{1}, y_{2}\right] \neq 0$ on $[a, b]$. Therefore, $y_{1} \& y_{2}$ form a fundamental solution set iff they are linearly indpundt.
(evegwher)
Proof: If $w\left[y_{1}, y_{2}\right]=0$, then then exists a non .zero solution to:

$$
\begin{aligned}
& 0:\left(\begin{array}{cc}
y_{1}^{(t o)} & y_{2}^{\left(t_{0}\right)} \\
y_{1}^{\prime\left(t_{0}\right)} & \left.y_{2}^{\prime}\left(t_{0}\right)\right)
\end{array}\binom{c_{1}}{c_{2}}=\binom{0}{0} .\right. \\
& y_{1}+c_{2} y_{2} \\
& =y_{1}, \text { also } \\
& \text { a solution of } \mathcal{L}_{y}=0, y\left(t_{0}\right)=y^{\prime}\left(t_{0}\right)=0,
\end{aligned}
$$

$$
\Rightarrow \quad c_{1} y_{1}+c_{2} y_{2}=0
$$ therefore $y_{1}=\frac{c_{2}}{c_{1}} y_{2}$.

Liver equators with constant coefficients
First special case :

$$
L_{u}=a u^{\prime \prime}+b u^{\prime}+c u=0
$$

a, b, c are constants.
Ausatz: $y=C e^{r t}$, for "some" r.
Intuition: $u_{1} u^{\prime}, u^{\prime \prime}$ must all cancel each other out when linearly combined, and therefore an lily to han "the same dipendine on t "

Ex. If $u=t^{n}$
thin $u^{\prime}=n t^{n-1}, u^{\prime \prime}=n(n-1) t^{n-2}$.
It is unlikely that we can choon n such that

$$
a n(n-1) t^{n-2}+b n t^{n-1}+c t^{n}=0
$$

However, if $u=e^{r t}$, then $u^{\prime}=r e^{r b}, u^{\prime \prime}=r^{2} e^{r t}$ and we can find r such that $\left(a r^{2}+b r+c\right) e^{r t}=0$

$$
\uparrow
$$

$$
\neq 0 \text { ever. }
$$

The equation $a r^{2}+b r+c=0$ is the characteristic equation for $\mathcal{L} y=a u^{\prime \prime}+b u^{\prime}+c u=0$.

Its routs can be determined from the quadratic equation:

$$
\begin{aligned}
& r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \\
& r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

If $r_{1} \neq r_{2}$, then we have two liniurly-independint solutions $u_{1}=e^{r_{1} t}$ and $u_{2}=e^{r_{2} t} \sin u$

$$
\begin{aligned}
W\left[u_{1}, u_{2}\right] & =u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2} \\
& =e^{r_{1} t} r_{2} e^{r_{2} t}-r_{1} e^{r_{1} t} e^{r_{2} t} \\
& =\left(r_{2}-r_{1}\right) e^{\left(r_{1}+r_{2}\right) t} \neq 0 \quad \text { if } \quad r_{1} \neq r_{2}
\end{aligned}
$$

(address $r_{1}=r_{2}$ later)
Example:

$$
\begin{aligned}
& u^{\prime \prime}-3 u^{\prime}+u=0 \\
& u^{\prime \prime}-3 u^{\prime}-4 u=0 \quad, \quad u(0)=1, \quad u^{\prime}(0)=0
\end{aligned}
$$

