.

-whereever pig are contained (with
$$u(x_0) = u_0$$
, $u'(x_0) = u_0'$)
- If $u_{i,1}u_{i,2}$ are solution to $Lu = 0$, then
the general solution is $u = c_{i}u_{i} + c_{2}u_{i}$ if and only if
 $u_{i,1}u_{i,2}$ are linearly independent

(homogeneous case for now)

=) check Wronskinn:

$$W(u, N_2) = N.N_2' - N_1'N_2 \neq 0 \quad \text{if}$$
liviarly independent.
Also, two funcs. as liviarly dependent on (a, b) , if
 $n_1 = C N_2$.
Constant coefficient case: $a N'' + bN' + CN = 0$
Guess: $N = e^{rt}$
=) v is a solution iff $(ar^2 + br + c)e^{rt} = 0$
 $(ar^2 + br + c)e^{rt} = 0$

$$-If r_1 \neq r_2, \quad \text{then } W(e^{r_1t}, e^{r_2t}) \neq 0.$$

- Two remaining cares: ()
$$r_1, r_2$$
 are complex
(2) $r_1 = r_2$

Complex-valued Roots

Repeated Roots

What if
$$r_1 = r_2$$
? Ex: $n'' - 2n' + n = 0$

$$p(r) = r^2 - 2r + 1 = 0$$

$$(r - 1)^2 = 0 = 7$$

$$r_1 = r_2 = 1.$$
Idea: Given that n_1^2 n(t) solves $J = 0$, can we find
another solution?
Let $n_2^{(t)} = n(t) \nabla (t)$
Compute derivation:
 $n_2' = nv' + n'v$
 $n_2' = nv'' + n'v'$
 $n_2'' = nv'' + n'v' + n'v' + n''v$

The function
$$u_{2}$$
 is a solution to $\int u^{2} 0 = u'' + pu' + qu$ if
 $\int u_{2} = 0$
 $= uv'' + 2u'v' + u''v + p(uv' + u'v) + quv$
 $= uv'' + (2u' + pu)v' + (u'' + pu' + qu)v$
 $\int u^{2} 0$
 $\int u^{2} v'' + (2u' + pu)v'$
This is just a first order equation in terms & the function v':
 $u(v')' + (2u' + pu)(v') = 0$

3

The solution can be obtained by separation:

$$\frac{(\tau')'}{(\tau')} = -\frac{(2\pi'+p\pi)}{\pi}$$
=> $\tau' = C e^{-\int 2\frac{\pi'}{\pi}} -\int p$
 $= 2\int \frac{\pi'(e)}{\pi(e)} dt = 2\int \frac{d}{de} (\log h\pi) dt$
 $= C e^{-\int p} e^{-\int p}$
 $= \frac{C e^{-\int p}}{\pi^{2}}$

We only need one v, so we set C=1 and then integrate:

$$v' = \frac{1}{u^2} e^{-\int p}$$

$$= \int v' = \int \frac{1}{u^2} e^{\int p}$$

$$= \int v = \int \frac{1}{u^2(t)} e^{\int p(t) dt} dt$$

$$= \int v = \int \frac{1}{u^2(t)} e^{\int p(t) dt} dt$$

$$= \int v = \int \frac{1}{u^2(t)} e^{\int p(t) dt} dt$$

$$= \int v = \int \frac{1}{u^2(t)} e^{\int p(t) dt} dt$$

This method is called the Method of Reduction of Order since the change of variable $u_2 = uv$ required only the solution to a 1st order equation to obtain v.

Application: Equal roots in the characteristic equation
for
$$an'' + bn' + cn = 0$$
.
In this can, rewrite as:
 $n'' + \frac{b}{a}n' + \frac{c}{a}n = 0$
 $m'' = \frac{b}{q}$
Then $n_1 = e^{rt}$, and set $n_2 = n_1 v$.
By the above calculation,
 $v = \int \frac{1}{n^2} e^{-\int p \, dt} \, dt$
 $= \int \frac{1}{e^{rt}} e^{-\int p \, dt} \, dt = \int e^{2rt} e^{\frac{b}{a}t} \, dt$
But if the pot was repeated, then $b^2 = 4ac$, and $f = \frac{b}{a}$

But if the nost was repeated, then
$$b^2 = 4ac$$
, and $f = \frac{1}{2a}$
so $v = \int e^{\frac{12b}{2at}} e^{\frac{15}{at}} dt$
 $= \int 1 dt = t$

Therefore, a second linearly independent solution is
$$u_2 = t e^{rt}$$
.

Check:
$$u_{2}' = e^{rt} + rt e^{rt}$$

 $u_{2}'' = re^{rt} + re^{rt} + r^{2}t e^{rt}$
 $Recall: r = -\frac{b}{2a}$
So $Ju_{2} = \left(a\left(-\frac{b}{a} + \frac{b^{2}}{4a^{2}}t\right) + b\left(1-\frac{b}{2a}t\right) + ct\right)$
 $L_{but} c = \frac{b^{2}}{4a}$

$$= -b + \frac{b^{2}}{4a}t + b - \frac{b^{2}}{2a}t + \frac{b^{2}}{4a}$$
$$= 0.$$

<u>Application</u> Other differential equations: (non-constant coefficients) Ex: $(1-t^2) y'' + 2t y' - 2y = 0$ Verify: y = t is one solution. Rewrite to apply the Method of Reduction of Order: $y'' + \frac{2t}{1-t^2}y' - \frac{2}{1-t^2}y = 0.$ $p = \frac{4}{9}$

Other solution is
$$y_2 = y_1 v = tv$$

 $v: \int \frac{1}{t^2} e^{-\int \frac{2t}{1-t^2} dt} dt$
 $= \int \frac{1}{t^2} e^{\log(1-t^2)} dt$
 $= \int \frac{1-t^2}{t^2} dt = -\frac{1}{t} -t$
 $= \int y_2 = -t(\frac{1}{t}+t) = -(1+t^2)$