Oct 9, 2019
Last time
$2^{\text {and }}$ order linear differential equations:
$u^{\prime \prime}+p(x) u^{\prime}+q(x) u=0$ (homogeneous cade for now)

- Existence 8 Uniquest:
-whereever pig are continivas (with $\left.u\left(x_{0}\right)=u_{0}, u^{\prime}\left(x_{0}\right)=u_{0}^{\prime}\right)$
- If u_{1}, u_{2} are solutions to $\mathcal{L} u=0$, then the given solution is $u=c_{1} u_{1}+c_{2} u_{2}$ if and only if u_{1}, u_{2} are livently independent
\Rightarrow check Wronskerin:

$$
w\left(u_{1}, u_{2}\right)=u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2} \neq 0 \text { if }
$$

linearly indipundint.
Also, two fuss. an linearly dependent on $[a, b]$ if $u_{1}=c u_{2}$.

Constant coefficient car: $a u^{\prime \prime}+b u^{\prime}+c u=0$
Guess: $u=e^{r t}$
$\Rightarrow u$ is a solution iff $\left(a r^{2}+b r+c\right) e^{r t}=0$
$\Leftrightarrow \underbrace{a r^{2}+b r+c=0}_{\text {characterishe equation }}\}$ solve using quadratic formula

- If $r_{1} \neq r_{2}$, thin $w\left(e^{r_{1} t}, e^{r_{2} t}\right) \neq 0$.
- Two remaining cars): (1) r_{1}, r_{2} are complex
(2) $r_{1}=r_{2}$

Complex-valued Roots
often times, we will compute s_{1}, r_{2} that are complex.
This happens when $4 a c>b^{2}$.
In this case, the costs are always of the form

$$
r_{1}=\alpha+i \beta \quad r_{2}=\alpha-i \beta .
$$

And the refure

$$
\begin{array}{rlrl}
u_{1} & =e^{r_{1} t} & u_{2} & =e^{r_{2} t} \\
& =e^{(\alpha+i \beta) t} & & =e^{(\alpha-i \beta) t} \\
& =\bar{u}_{2} & & =\bar{u}_{1} \quad \text { (complex } \\
& & \text { conjugate) })
\end{array}
$$

But what if we want a real solution?
Lemma: If $u(t)=x(t)+i y(t)$, with x, y real-valved, and $\mathcal{I} u=0$, then x, y are both real-valued solutions.

Proof. Sivice \mathcal{I} is a linear operator.

Taking real/inacy parts of u_{1}, u_{2} :

$$
\begin{aligned}
& u_{1}=e^{\alpha t}(\cos \beta t+i \sin \beta t) \\
& u_{2}=e^{\alpha t}(\cos \beta t-i \sin \beta t)
\end{aligned}
$$

aPron this formula using Taylor series...

$$
e^{i \beta t}=1+(i \beta t)+\frac{(i \beta t)^{2}}{2}+\ldots
$$

Therefore, two seal-valuod linearly independent solutions are:

$$
y_{1}=e^{\alpha t} \cos \beta t \quad \text { and } \quad y_{2}=e^{\alpha t} \sin \beta t
$$

Check: $W\left[y_{1}, y_{2}\right]=\ldots \quad$ (exercise for the reader).
Example:

$$
\begin{align*}
& u^{\prime \prime}+2 u^{\prime}+3 u=0 \\
& u^{\prime \prime}+u^{\prime}+2 u=0, \quad u(0)=1, \quad u^{\prime}(0)=-2 \tag{2}
\end{align*}
$$

Repeated Roots
What if $r_{1}=r_{2}$? Ex: $\quad u^{\prime \prime}-2 u^{\prime}+u=0$

$$
\begin{aligned}
\rho(r)= & r^{2}-2 r+1=0 \\
& (r-1)^{2}=0 \quad \Rightarrow \quad r_{1}=r_{2}=1 .
\end{aligned}
$$

Idea: Given that $\eta_{1}=u(t)$ solves $\mathcal{I} u=0$, can we find another solution?

Let $u_{2}^{(t)}=u(t) v(t)$
Compute derivation:

$$
\begin{aligned}
u_{2}^{\prime} & =u v^{\prime}+u^{\prime} v \\
u_{2}^{\prime \prime} & =u v^{\prime \prime}+u^{\prime} v^{\prime}+u^{\prime} v^{\prime}+u^{\prime \prime} v \\
& =u v^{\prime \prime}+2 u^{\prime} v^{\prime}+u^{\prime \prime} v
\end{aligned}
$$

The function u_{2} is a solution to $\mathcal{I}_{u}=0=u^{\prime \prime}+p u^{\prime}+q u$ if

$$
\begin{aligned}
\mathcal{L} u_{2} & =0 \\
& =u v^{\prime \prime}+2 u^{\prime} v^{\prime}+u^{\prime \prime} v+p\left(u v^{\prime}+u^{\prime} v\right)+q u v \\
& =u v^{\prime \prime}+\left(2 u^{\prime}+p u\right) v^{\prime}+\underbrace{\left(u^{\prime \prime}+p u^{\prime}+q u\right)}_{\mathcal{L} u=0} v \\
& =u v^{\prime \prime}+\left(2 u^{\prime}+p u\right) v^{\prime}
\end{aligned}
$$

This is just a first order equatui in terms A the function V^{\prime} :

$$
u\left(v^{\prime}\right)^{\prime}+\left(2 u^{\prime}+p u\right)\left(v^{\prime}\right)=0
$$

The solution can be obtained by separation:

$$
\begin{aligned}
& \frac{\left(v^{\prime}\right)^{\prime}}{\left(v^{\prime}\right)}= \\
& \Rightarrow \quad v^{\prime}=c \underbrace{e^{-\int 2 \frac{u^{\prime}}{u}}}_{l} e^{-\int p} \\
&=2 \int \frac{\left(2 u^{\prime}+p u\right)}{u(t)} d t=2 \int \frac{d}{d t}(\log |u|) d t \\
&=C e^{-\log u^{2}} e^{-\int p}=2 \log |u|=\log |u|^{2} \\
&=\frac{c e^{-\int p}}{u^{2}}
\end{aligned}
$$

We only need one v, so we set $C=1$ and then integrate:

$$
\begin{aligned}
& v^{\prime}=\frac{1}{u^{2}} e^{-\int p} \\
& \Rightarrow \int v^{\prime}=\int \frac{1}{u^{2}} e^{-\int p} \\
& \Rightarrow v=\underbrace{\int \frac{1}{u^{2}(t)}}_{\text {anti-derivatio }} \underbrace{e \underbrace{\int p(t) d t} d t}_{\text {anti-deriv }}
\end{aligned}
$$

This method is called The Method of Reduction of Order since the change of variable $u_{2}=u v$ required only the solution to a $1^{\text {st }}$ order equation to obtain v.

Application: Equal roots in the characteristic equation for $\quad a u^{\prime \prime}+b u^{\prime}+c u=0$.

In this case, rewrite as:

Then $u_{1}=e^{r t}$, and set $u_{2}=u_{1} v$.

By the above calculation,

$$
\begin{aligned}
v & =\int \frac{1}{u^{2}} e^{-\int p d t} d t \\
& =\int \frac{1}{e^{2 r t}} e^{-\int \frac{b}{a} d t} d t=\int e^{-2 r t} e^{-\frac{b}{a} t} d t
\end{aligned}
$$

But if the root was repeated, then $b^{2}=4 a c$, and $r=\frac{-b}{2 a}$, so

$$
\begin{aligned}
v & =\int e^{+2 \frac{b}{2 a} t} e^{-\frac{b}{a} t} d t \\
& =\int 1 d t=t
\end{aligned}
$$

Therefore, a second linearly independent solvtivi is

$$
u_{2}=t e^{r t} .
$$

Check:

$$
\begin{array}{rlrl}
\text { eck: } u_{2}^{\prime} & =e^{r t}+r t e^{r t} & \\
u_{2}^{\prime \prime} & =r e^{r t}+r e^{r t}+r^{2} t e^{r t} \quad \text { Recall:r}=-\frac{b}{2 a} \\
\text { so } \quad \mathcal{L} u_{2} & =\left(a\left(-\frac{b}{a}+\frac{b^{2}}{4 a^{2}} t\right)+b\left(1-\frac{b}{2 a} t\right)+c t\right) \\
&
\end{array}
$$

$$
\begin{aligned}
& =-b+\frac{b^{2}}{4 a} t+b-\frac{b^{2}}{2 a} t+\frac{b^{2}}{4 a} \\
& =0 .
\end{aligned}
$$

Application Other differentril equations: (non-constant coefficients)

$$
E x: \quad\left(1-t^{2}\right) y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

Verify: $y_{1}=t$ is one solution.
Rewrite to apply the Method of Reduction of Order:

$$
y^{\prime \prime}+\underbrace{\frac{2 t}{1-t^{2}}}_{p} y^{\prime}-\underbrace{\frac{2}{1-t^{2}}}_{q} y=0 .
$$

Other solution is $y_{2}=y_{1} v=t v$

$$
\begin{aligned}
v & =\int \frac{1}{t^{2}} e^{-\int \frac{2 t}{1-t^{2}} d t} d t \\
& =\int \frac{1}{t^{2}} e^{\log \left(1-t^{2}\right)} d t \\
& =\int \frac{1-t^{2}}{t^{2}} d t=-\frac{1}{t}-t \\
\Rightarrow y_{2} & =-t\left(\frac{1}{t}+t\right)=-\left(1+t^{2}\right)
\end{aligned}
$$

