Oct 15,2019
Last time:
Constant coefficient $2^{n d}$ order Lin. DE:

$$
\begin{aligned}
& a u^{\prime \prime}+b u^{\prime}+c u=0 \\
& \Rightarrow u=e^{r t}, \quad \rho(r)
\end{aligned}=a r^{2}+b r+c=0
$$

Characteristic Equation.
(1) Two real, distinct roots

$$
\Rightarrow u_{1}=e^{r_{1} t}, u_{2}=e^{r_{2} t}
$$

(2) Two complex roots, $r=\alpha \pm i \beta$

$$
\Rightarrow \quad u_{1}=e^{\alpha t} \cos \beta t, \quad u_{2}=e^{\alpha t} \sin \beta t
$$

(3) Repeated root (real)

$$
\Rightarrow \quad u_{1}=e^{r t}, u_{2}=t e^{r t}
$$

(3) W as derind by assuming $u_{2}=u_{1}(t) \cdot v(t)$, solus fur $v(t)$. Method of Reduction of Order.

$$
v(t)=\int \frac{1}{u_{1}(t)^{2}} e^{-\int p(t) d t} d t
$$

Applicable to general equations of the form:

$$
u^{\prime \prime}+p(x) u^{\prime}+q(x) u=0 .
$$

Next 10 pic
The inhomoyeneas equativi:

$$
u^{\prime \prime}+p(x) u^{\prime}+q(x) u=g(x) .
$$

The solution will be compond of two pies:

$$
u=\underbrace{u_{n}}_{n}+\underbrace{u_{p}}_{\pi}
$$

solves $g=0$
Solves $g \neq 0$
"Particular solutai"

Ex: $\quad u^{\prime}-2 x u=x$
Sol to $u^{\prime}-2 x u=0$ is $u_{h}(x)=e^{x^{2}}$
A Sol to $u^{\prime}-2 x u=x$ is $u_{p}(x)=-\frac{1}{2} \leftarrow$ particular solutivin.

$$
\Rightarrow u(x)=c e^{x^{2}}-\frac{1}{2}
$$

So if u_{1}, u_{2} are the fundamental solution set to $u^{\prime \prime}+p(x) u^{\prime}+q(x) u=0$, then any solution to
(*) $u^{\prime \prime}+p|x| u^{\prime}+q|x| u=g(x)$ most be of the form:

$$
u(x)=c_{1} u_{1}(x)+c_{2} u_{2}(x)+\psi(x)
$$

particular solution.
Lemma If u, v solve ($*$), then $w=u-v$ most sole the homogivens equation $\mathcal{L} u=0$:
Proof: $\quad \mathcal{L}_{w}=\mathcal{L}(u-v)=\mathcal{L}(\underline{\mathcal{L}} v=g-g=0$.

Example: $u^{\prime \prime}+u=2 x$
Honogeneas solutions ar $u_{1}=\cos x, u_{2}=\sin x$
And clearly $u_{p}=2 x$.

$$
\Rightarrow \quad n(x)=c_{1} \cos x+c_{2} \sin x+2 x
$$

This is great, but how do we find the particular solutoins?

Method of Variation of Paranstes
Let the solut oui to $f_{y} y=0$ be y_{1}, y_{2}. textbook notation
Ansatz: $\quad y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)=\psi(x)$
unknown functuis.
"the varying parameters"

Idea: With y_{1}, y_{2} known, the equation $\mathcal{L} y=g$ is only one equation for the two unknowns u_{1}, u_{2}. Let us choose the other condition so that things simplify:

$$
\begin{aligned}
\psi & =u_{1} y_{1}+u_{2} y_{2} \\
\psi^{\prime} & =u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime} \\
& =\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)
\end{aligned}
$$

If $x_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$, then $\psi^{\prime \prime}$ contains no $2^{\text {nd }}$-order derivatives of u_{1}, u_{2}. This is one additional constraint lequatioil used to determine u_{1}, u_{2}.
Compute $\mathcal{L} \psi$ using this constraint:

$$
\begin{aligned}
\mathcal{L} \psi= & \psi^{\prime \prime}+p(x) \psi^{\prime}+q(x) \psi \\
= & \left.u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}+p \mid x\right)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right) \\
& +q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right) \\
= & u_{1}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right) \\
& +u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime} \\
= & u_{1} \mathcal{I} y_{1}+u_{2} \mathcal{I} y_{2}+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime} \\
= & u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}
\end{aligned}
$$

So: x_{1}, u_{2} must satisfy:

$$
x_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

$u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g \quad$ in ordo for $\mathcal{L} \psi=g$.

$$
\Rightarrow\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)\binom{u_{1}^{\prime}}{u_{2}^{\prime}}=\binom{0}{g}
$$

The solution can be obtained by Gaussian Eliminative:

$$
\begin{aligned}
u_{1}^{\prime} & =\frac{-g y_{2}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} & u_{2}^{\prime} & =\frac{g y_{1}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} \\
& =\frac{-g y_{2}}{w\left(y_{1}, y_{2}\right)} & & =\frac{g y_{1}}{w\left(y_{1}, y_{2}\right)}
\end{aligned}
$$

And u_{1}, u_{2} can be obtained by integrating these expressions.
Example:

$$
\underbrace{2 y^{\prime \prime}-3 y^{\prime}+y}_{\substack{\text { constant coefficients } \\ \mathcal{L} y}}=\left(x^{2}+1\right) e^{x}
$$

\Rightarrow Solve using characterise equation:

$$
\begin{aligned}
& 2 r^{2}-3 r+1=0 \\
& r=\frac{3 \pm \sqrt{9-4 \cdot 2 \cdot 1}}{4}=\frac{3 \pm 1}{4}=1,1 / 2 \\
\Rightarrow & y_{1}(x)=e^{x}, y_{2}(x)=e^{x / 2}
\end{aligned}
$$

By the previous variation of paramats calculation, we han that

$$
\begin{aligned}
& w\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \\
&=\left(\frac{1}{2}-1\right) e^{x} e^{x / 2}=-\frac{1}{2} e^{3 x / 2} \\
& g=\left(x^{2}+1\right) e^{x} \\
& u_{1}^{\prime}=-\frac{\left(x^{2}+1\right) e^{x} e^{x / 2}}{-\frac{1}{2} e^{3 x / 2}}=2\left(x^{2}+1\right) \\
& \Rightarrow u_{1}=\frac{2}{3} x^{3}+2 x
\end{aligned}
$$

$$
\begin{aligned}
u_{2}^{\prime} & =\frac{\left(x^{2}+1\right) e^{x} e^{x}}{-\frac{1}{2} e^{3 x / 2}}=-2\left(x^{2}+1\right) e^{x / 2} \\
\Rightarrow u_{2} & =-\int 2\left(x^{2}+1\right) e^{x / 2} d x \\
& =-2\left(2 x^{2}-8 x+18\right) e^{x / 2}
\end{aligned}
$$

Example: $y^{\prime \prime}+y=\sec x$
Homogneoces solution: $\left(r^{2}+1\right)=0$

$$
\begin{aligned}
\Rightarrow y_{1} & =\cos x \\
y_{2} & =\sin x
\end{aligned}
$$

Loole for particular solution of the form $\psi=u_{1} y_{1}+u_{2} y_{2}$. By the previous calculation

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{g y_{2}}{y_{1} y_{2}^{\prime}-y_{p}^{\prime} y_{2}} \quad u_{2}^{\prime}=\frac{g y_{1}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} \\
& y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=\cos ^{2} x+\sin ^{2} x=1 \\
& u_{1}^{\prime}=\sec x \cdot \sin x \\
& =\frac{\sin x}{\cos x}=\tan x \quad \Rightarrow \quad u_{1}=\int \tan x d x=\log \sec x \\
& u_{2}^{\prime}=\sec x \cdot \cos x=1 \Rightarrow u_{2}=\int d x=x \\
& \Rightarrow y=\underbrace{c_{1} \cos x+c_{2} \sin x}_{\substack{\text { homogeneous } \\
\text { sol }}}+\underbrace{(\log \sec x) \cos x+x \sin x}_{\text {particular solution }}
\end{aligned}
$$

