$0 c+21,2019$
Last time:
Model DE:

$$
\mathcal{L}_{u}=P(t) u^{\prime \prime}+Q(t) u^{\prime}+R(t) u=0
$$

If P, Q, R are polynomials in t_{1} then look for a solution u of the form $u(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$.

$$
\begin{gathered}
\Rightarrow\left(\sum p_{n} t^{n}\right)\left(\sum n(n-1) a_{n} t^{n-2}\right)+\left(\sum q_{n} t^{n}\right)\left(\sum n a_{n} t^{n-1}\right) \\
+\left(\sum r_{n} t^{n}\right)\left(\sum a_{n} t^{n}\right)=0
\end{gathered}
$$

Collect terms with t^{n} factor, determine recurrence relationship for the $a_{n} s^{s}$: Note: Initial conditions determine a_{0}, a_{1} :

$$
\begin{aligned}
& u(0)=\sum a_{n}(0)^{n}=a_{0} \\
& u^{\prime}(0)=\sum n \cdot a_{n}(0)^{n-1}=a_{1}
\end{aligned}
$$

Next topic: Singular Points

Euleris Equation: $\quad t^{2} y^{\prime \prime}+\alpha t y^{\prime}+\beta y=0$
at $t=0$, these terms disappear. Can we still apply the series solution method?

If $y=t^{r}$, then both $t y^{\prime} \sim t^{r}$ and $t^{2} y^{\prime \prime} \sim t^{r}$.
Ansate: $y=t^{r}$.

$$
\begin{gathered}
\quad(r-1) t^{r}+\alpha r t^{r}+\beta t^{r}=0 \\
\left(r^{2}-r+\alpha r+\beta\right) t^{r}=0 \\
\left(r^{2}+(\alpha-1) r+\beta\right) t^{r}=0
\end{gathered}
$$

The solutions are:

$$
r=-\frac{1}{2}\left((\alpha-1) \pm \sqrt{(\alpha-1)^{2}-4 \beta}\right)
$$

Once again, there are three cases:
Case $1(\alpha-1)^{2}-4 \beta>0$
\Rightarrow Two distinct real roots, solution is $y(t)=c_{1} t^{r_{1}}+c_{2} t^{r_{2}}$
Case 2 $(\alpha-1)^{2}-4 \beta=0$
\Rightarrow Repented roots, use Method of Reduction of Order to show that general solution is

$$
y(t)=c_{1} t^{r}+c_{2} t^{r} \log t
$$

Alternation calculation to show that t^{r} log t is a solution, Since the roots are repeated:

$$
\mathcal{L} t^{r}=\left(r-r_{1}\right)^{2} t^{r}
$$

and

$$
\Rightarrow \text { log } t t^{r} \text { is a solution. }
$$

$$
\begin{aligned}
& \frac{\partial}{\partial r}\left(\mathcal{L} t^{r}\right)=\mathcal{L}\left(\frac{\partial}{\partial r} t^{r}\right)=\mathcal{L}\left(\log t t^{r}\right) \\
& =2\left(r-r_{1}\right) t^{r}+\left(r-r_{1}\right)^{2} \log t t^{r} \quad \\
& =0 \text { if } r=r_{11} \\
& \begin{array}{ll}
\text { is a solution, } & \begin{array}{l}
\text { If } y=t^{r}, \text { then } \\
\log y=r \log t \\
\frac{\partial}{\partial r}(\log y)=\frac{1}{y} \frac{\partial y}{\partial r} \\
4 \beta<0
\end{array} \\
\Rightarrow \frac{1}{y} \frac{\partial y}{\partial r}=\log t \\
\Rightarrow \frac{\partial y}{\partial r}=y \log t=t^{r} \log t
\end{array}
\end{aligned}
$$

Case $3 \quad(\alpha-1)^{2}-4 \beta<0$
\Rightarrow Two district complex roots $r=\lambda \pm i \mu$.
What is $t^{\lambda+i \mu}$?

$$
t^{i \mu}:\left(e^{\log t}\right)^{i \mu}=e^{i \mu \log t}=\cos (\mu \log t)+i \sin (\mu \log t)
$$

\Rightarrow Real-valued general solution is $y(t)=c_{1} t^{\lambda} \cos (\mu \log t)+c_{2} t^{\lambda} \sin (\mu \log z)$.

Case of negation $t \quad(t \in(-\infty, 0))$.
$t^{2} y^{\prime \prime}+\alpha t y^{\prime}+\beta y=0$ sums to make sense for $t<0$, but often t^{r} does not stay real-valued.

Ex: $r=\frac{1}{2} \Rightarrow(-1)^{1 / 2}=i$, not veal valued
$r=i \mu \Rightarrow \cos (\mu \log (-1))$ not defined (unless done very care filly).

These problems can be fixed with a change of variatole:
Let $t=-x, x>0$
Then $\frac{d u}{d t}=\frac{d u}{d x} \frac{d x}{d t}=-\frac{d u}{d x}$

$$
\frac{d^{2} u}{d^{2} t}=\frac{d}{d t}\left(-\frac{d u}{d x}\right)=\frac{d}{d x}\left(-\frac{d u}{d x}\right) \frac{d x}{d t}=\frac{d^{2} u}{d x^{2}}
$$

Under this change of vuratole we haw:
$t^{2} u^{\prime \prime}+\alpha t u^{\prime}+\beta u \rightarrow \quad x^{2} u^{\prime \prime}+\alpha x u^{\prime}+\beta u=0 \quad$ Exactly, the sure equation!
\Rightarrow Solutions $u(x)$ are the same,
Sining $x=-t=|t|$ if $t<0$, we han that the Solutions are of the form:

$$
\begin{array}{ll}
(\alpha-1)^{2}-4 \beta>0: & u=c_{1}|t|^{r_{1}}+c_{2}|t|^{r_{2}} \\
(\alpha-1)^{2}-4 \beta=0 & u=c_{1}|t|^{r}+c_{2} \log |t||t|^{r} \\
(\alpha-1)^{2}-4 \beta<0 & u=c_{1}|t|^{\lambda} \cos \mu \log |t|+\left.c_{2}|t|^{\lambda} \sin \right|_{\text {by }}|t|
\end{array}
$$

Next The Frobenius Method

More general class of singular ODE's than the Euler equation

$$
t^{2} u^{\prime \prime}+\tilde{p}(t) n^{\prime}+\tilde{q}(t) u=0
$$

polynomials

Dividing by t^{2} we have:

$$
u^{\prime \prime}+p(t) u^{\prime}+q(t) u=0 \quad(*)
$$

with pi have expansions:

$$
\begin{aligned}
& p(t)=\frac{p_{0}}{t}+p_{1}+p_{2} t+p_{3} t^{2}+\ldots \\
& q(t)=\frac{q_{0}}{t^{2}}+\frac{q_{1}}{t}+q_{2}+q_{3} t+\ldots
\end{aligned}
$$

If this is the can, (x) is said to have a Regular Singiviar Point at $t=0$.

Example: Bessel's equativi:

$$
\begin{aligned}
t^{2} u^{\prime \prime}+t u^{\prime}+\left(t^{2}-v\right) u & =0 \\
\Rightarrow u^{\prime \prime}+\underbrace{\frac{1}{t}}_{p} u^{\prime}+\underbrace{\left(1-v / t^{2}\right)}_{q} u & =0 \\
\underbrace{(1-v}_{p} & \Rightarrow t=0 \text { is a regulus singular point. }
\end{aligned}
$$

Example $t^{2} u^{\prime \prime}+u^{\prime}+u=0$

$$
\Rightarrow \quad u^{\prime \prime}+\frac{1}{t^{2}} u^{\prime}+\frac{1}{t^{2}} u=0
$$

\Leftrightarrow irregular singular point
Buck to $\left.u^{\prime \prime}+p(t) u^{\prime}+q(t) u=0 \quad, \quad p \mid t\right)=\frac{p_{-1}}{t}+p_{0}+p_{1} t+p_{2} t^{2} \ldots$
Ansatz: Look for solution of

$$
q(t)=\frac{q_{-1}}{t}+q_{0}+q_{1} t+\cdots
$$

the form $u(t)=t^{r} \sum_{n=0}^{\infty} a_{n} t^{n}$
fum Euler From general solutions series solutions

