$$
0 c+23,2019
$$

Last time
Singular Equations.
Euler Equation:

$$
t^{2} y^{\prime \prime}+\alpha t y^{\prime}+\beta y=0
$$

Ansate: $y(t)=t^{r}$, plug in and solve for r.

3 cases: (1) two real, distinct roots
(2) two complex roots (the real, imay. parts)
(3) repented roots (uk method of reduction of order)

For $t<0$, use change of varrible to show that solutions are a function of $|t|$.

Then Generalize Eulers equation by replacing α, β with polynomials:

$$
\begin{aligned}
& t^{2} y^{\prime \prime}+t\left(\sum_{0}^{\infty} p_{n} t^{n}\right) y^{\prime}+\left(\sum_{0}^{\infty} q_{n} t^{n}\right) y=0 \\
\Rightarrow & y^{\prime \prime}+\underbrace{\left(\sum_{0}^{\infty} p_{n} t^{n-1}\right)}_{p(x)} y^{\prime}+\underbrace{\left(\sum_{0}^{\infty} q_{n} t^{n-2}\right)}_{q(x)} y=0
\end{aligned}
$$

When p, q are of this form, $t=0$ is refernd to as a Regular Singular Point.

Frobenius Method: Use the ansatz:

Best shown using an example.

Example: $2 t u^{\prime \prime}+w^{\prime}+t u=0$
Assume $u=\sum_{0} a_{n} t^{r+n} \Rightarrow u^{\prime}=\sum_{0}^{\infty}(r+n) a_{n} t^{r+n-1}$

$$
\begin{aligned}
& u^{\prime \prime}=\sum_{0}^{\infty}(r+n)(r+n-1) a_{n} t^{r+n-2} \\
& \Rightarrow \sum_{0}^{\infty} 2(r+n)(r+n-1) a_{n} t^{r+n-1}+\sum_{0}^{\infty}(r+n) a_{n} t^{r+n-1}+\sum_{0}^{\infty} a_{n} t^{r+n+1}=0 \\
& \Rightarrow t^{r}\left(2 r(r-1) a_{0}^{t^{-1}}+2(r+1)(r) a_{1}+\sum_{2}^{\infty} 2(r+n)(r+n-1) a_{n} t^{n-1}+r a_{0} t^{-1}+(r+1) a_{1}\right. \\
&+\sum_{2}^{\infty}(r+n) a_{n} t^{n-1} \\
&\left.+\sum_{2}^{\infty} a_{n-2} t^{n-1}\right)=0
\end{aligned}
$$

Now collect terms, set to 0 :
(1)

$$
\begin{aligned}
\left(2 r(r-1) a_{0}+r a_{0}\right) t^{-1}=0 \quad & \Rightarrow\left(r(2 r-1) a_{0}\right)=0 \\
& \Rightarrow r=0 \text { or } r=\frac{1}{2}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\left(2(r+1) r a_{1}+(r+1) a_{1}\right)=0 \Rightarrow r & \Rightarrow 0 \Rightarrow a_{1}=0 \\
r & =\frac{1}{2} \Rightarrow a_{1}=0
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \begin{array}{l}
\left(2(r+n)(r+n-1) a_{n}+(r+n) a_{n}+a_{n-2}\right) \\
(r+n)(2(r+n-1)+1) a_{n}=-a_{n-2}
\end{array} \\
& \Rightarrow \quad a_{n}=\frac{-a_{n-2}}{(r+n)(2(r+n-1)+1)} \\
& r=\frac{1}{2} \text {. } \\
& r=0 \Rightarrow a_{n}=\frac{-a_{n-2}}{n(2 n-1)} \\
& r=\frac{1}{2} \Rightarrow a_{n}=\frac{-a_{n-2}}{\left(n+\frac{1}{2}\right)\left(2\left(n-\frac{1}{2}\right)+1\right)}=\frac{-a_{n-2}}{(2 n+1) n}
\end{aligned}
$$

Two recurrence relatunships, one for $r=0$ and one for

Note Only one free wefficient: a_{0}
two optivis for $r: r=0, \frac{1}{2}$
two solutions:

$$
\begin{aligned}
n(t)=\begin{array}{ll}
\sum_{n=0}^{\infty} a_{n} t^{n}+\sqrt{t} \sum b_{n} t^{n} & \downarrow \\
a_{2 n+1} & =0
\end{array} & \begin{array}{l}
b_{2 n+1}
\end{array} \\
a_{n}=\frac{-a_{n-2}}{(2 n-1)} & b_{n}=\frac{-b_{n-2}}{(2 n+1) n} \\
a_{0} \text { free } & b_{0} \text { free. }
\end{aligned}
$$

This is the method of Frobenius (Ansatz $m|t|=\sum a_{n} t^{n+r}$, for $u^{\prime \prime}+p u^{\prime}+q u=0$, regular singular point at $t=0$).
What about the general case in which

$$
\begin{aligned}
& p(t)=\frac{p_{0}}{t}+p_{1}+p_{2} t+p_{3} t^{2}+\ldots \\
& q(t)=\frac{q_{0}}{t^{2}}+\frac{q_{1}}{t}+q_{2}+q_{3} t+q_{4} t^{2}+\ldots
\end{aligned}
$$

Inserting the Frobenius ausaltz into the equation we see that.

$$
\begin{gathered}
\sum_{0}^{\infty}(r+n)(r+n-1) a_{n} t^{r+n-2}+\left(\sum_{0}^{\infty} p_{n} t^{n-1}\right)\left(\sum_{0}(r+n) a_{n} t^{r+n-1}\right) \\
+\left(\sum_{0}^{\infty} q_{n} t^{n-2}\right)\left(\sum_{0} a_{n} t^{n+r}\right)=0
\end{gathered}
$$

Multiply through by t^{2} :

$$
\begin{aligned}
& \text { Multiply through by } t^{\text {: }} \\
& \sum_{0}^{\infty}\left((r+n)(r+n-1) a_{n}+\left(\sum_{m=0}^{\infty} p_{m} t^{m}\right)(r+n) a_{n}+\left(\sum_{m=0}^{\infty} q_{m} t^{m}\right) a_{n}\right) t^{n+r}=0
\end{aligned}
$$

The equation that will determine the values of r is the coefficient of the t^{r} term in the above $\operatorname{expression}^{(i, e} n=0$):

This is gavin by:

$$
\left(r(r-1)+p_{0} r+q_{0}\right) a_{0}=0
$$

Quadratic equation for r, dinoted by $F(r)$ and known as the Indicial Equation.

Examine the t^{r+1} equation:

$$
\begin{aligned}
& (r+1) r a_{1}+p_{0}(r+1) a_{1}+p_{1} r a_{0}+q_{0} a_{1}+q_{1} a_{0}=0 \\
\Rightarrow & F(r+1) a_{1}=-p_{1} r a_{0}-q_{1} a_{0}
\end{aligned}
$$

In general each equation can be written as:

$$
F(n+r) a_{n}=-\sum_{k=0}^{n-1}\left((k+r) p_{n-k}+q_{n-k}\right) a_{k}
$$

This means that each coefficient depends on all previous coefficients. Closed -form solutions happen very surely.

We will not discuss the car in which $F(r)=0$ has complex or repeated roots, as detrils are straightforward but tedious.

Next topic Laplace Transforms.

