$0 c+28,2019$
Last time:
Method of Frobenius: (Generalizes solutions to Eulers eon)

For an equation of the form $t=0$ is a regular singular point

$$
t^{2} u^{\prime \prime}+t p(t) u^{\prime}+q(t) u=0
$$

with $p=\sum_{0}^{\infty} p_{n} t^{n}, q=\sum_{0}^{\infty} q_{n} t^{n}$ search for a solution of the form:

$$
u(t)=\sum_{n=0}^{\infty} a_{n} t^{r+n} \quad \begin{aligned}
& \text { possibly } \\
& \text { functional power }
\end{aligned}
$$

Substitute in, solve for $r$ and the $a_{n}$ 's via resulting recurrence formula. The power $r$ is determined by the Indicial Equation:

$$
F(r)=r(r-1)+p_{0} r+q_{0}=0
$$

The two solutions are determined by the two roots of $F$. Usually $a_{0}$ seas as the unknown constant in the solution. Mechanciilly, very similar to solving Eulery Equation or find a series solutore to a non-singular equation.

Next topic Laplace Transforms
Mutivntig example:
When solving $A \vec{x}=\vec{b} \quad$ (nan limier system), if we knew $A^{-1}$, then just apply it to both sids:

$$
A^{-1} A \stackrel{\rightharpoonup}{x}=\vec{x}=A^{-1} \vec{b} \text {. Done }
$$

Alternatially, if we knew some other matrix $\uparrow$ which had
the property that
$B A=$ diagonal $\}$
or $B A=$ tridiagonal $\{$ linear system very easy to solve:

$$
(B A) \vec{x}=B \vec{b}
$$

Can something similar be done for DE? Can we find some other linear opecator $\sigma$ such that
$\sigma \mathcal{L}_{u}=\lg _{g}$ is meh easier to solve than $\mathcal{I}_{n}=g$ ?
Definition: The Laplace Transform of a functoun $f$ defined on $0 \leqslant t<\infty$ is

$$
\begin{aligned}
F(s)=\sigma_{f}(s) & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\lim _{A \rightarrow \infty} \int_{0}^{A} e^{-s t} f(t) d t
\end{aligned}
$$

Example: $f=1$

$$
F(s)=\int_{0}^{\infty} e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty}= \begin{cases}1 / s & \text { if } s>0 \\ \infty & \text { if } s \leq 0\end{cases}
$$

Example: $f(t)=e^{i \omega t}$, $\omega$ real

$$
\begin{aligned}
& F(s)=\int_{0}^{\infty} e^{-s t} e^{i \omega t} d t=\int_{0}^{\infty} e^{(i \omega-s) t} d t \\
&=\left.\frac{1}{i \omega-s} e^{(i \omega-s) t}\right|_{0} ^{\infty}=\left\{\begin{array}{cll}
-\frac{1}{i \omega-s} & \text { if } s>0 \\
\infty & \text { if } s \leq \infty
\end{array}\right. \\
& \Rightarrow-\frac{1}{i \omega-s}=\frac{1}{s-i \omega} \frac{s+i \omega}{s+i \omega}=\frac{s+i \omega}{s^{2}+\omega^{2}}=\frac{s}{s^{2}+\omega^{2}}+i \frac{\omega}{s^{2}+\omega^{2}}
\end{aligned}
$$

Since $e^{i \omega t}=\cos \omega t+i \sin \omega t$, we han

$$
\begin{equation*}
\sigma(\cos \omega t)(s)=\frac{s}{s^{2}+\omega^{2}}, \quad \sigma(\sin \omega t)(s)=\frac{\omega}{s^{2}+\omega^{2}} . \tag{2}
\end{equation*}
$$

Assumptions on $f$ in ordo for Of to exist:
Lemma If $f$ is piecewise continues and then exists $M, C>0$ such that $|f(t)|<M e^{c t}, t \geqslant 0$, then $\sigma f(s)$ exists for $s>c$.

Sketch: $F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \leq \int_{0}^{\infty} e^{-s t}|f(t)| d t$

$$
\begin{aligned}
& <\int_{0}^{\infty} e^{-s t} M e^{c t} d t \\
& =M \int_{0}^{\infty} e^{(c-s) t} d t \quad<\infty \quad \text { iff } s>c .
\end{aligned}
$$

We will apply the operator ot to both sids of $\mathcal{I}_{u}=g$. In order to do this, we need the quantity: $T u^{\prime}=T \frac{d n}{d t}$.
$T u^{\prime}=\int_{0}^{\infty} e^{-s t} u^{\prime}(t) d t$, integrate by parts:

$$
\begin{aligned}
\Rightarrow & =\left.e^{-s t} u(t)\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{d}{d t}\left(e^{-s t}\right) u(t) d t \\
& =-u(0)+s \int_{0}^{\infty} e^{-s t} u(t) d t=-u(0)+s T u(s) .
\end{aligned}
$$

Therefore, if $F(s)=(T f / s)$, then $(T f(s)=-f(0)+s F(s)$.
Lilcewisu: $\left(\sigma f^{\prime \prime} \(s)=s^{2} F(s)-s f(0)-f^{\prime}(0)\right.$.
(Proof also by integration by parts.)
Aside: To remember integration by parts:

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

Integrate both sides:

$$
\begin{aligned}
& \int_{a}^{b}(u v)^{\prime}=\int_{a}^{b} u^{\prime} v+\int_{a}^{b} u v^{\prime} \\
\Rightarrow & \int_{a}^{b} u v^{\prime}=\left.u v\right|_{a} ^{b}-\int_{a}^{b} u^{\prime} v
\end{aligned}
$$

Now apply to $2^{\text {nd }}$ order constant coefficient inhomogeneous DE:

$$
\begin{aligned}
& T\left(a u^{\prime \prime}+b u^{\prime}+c n\right)=T g \\
\Rightarrow & a\left(s^{2} U(s)-s u(0)-u^{\prime}(0)\right)+b(s U(s)-u(0))+c U(s)=G(s) .
\end{aligned}
$$

$\Rightarrow$ solve for $U(s)$ :

$$
\begin{aligned}
& \left(a s^{2}+b s+c\right) U(s)=G(s)+a\left(s u(0)+u^{\prime}(0)\right)+b u(0) \\
\Rightarrow & U(s)=\frac{G(s)+a\left(s u(0)+u^{\prime}(0)\right)+b u(0)}{\left(a s^{2}+b s+c\right)}
\end{aligned}
$$

If this quantity is the known Laplace transform of some function $\phi(t)$, then the solution most be $n(t)=\phi(t)$.

Under suitable conditions, the function $u(t)$ can be determined dircoty from $U(s)$ by applying the Inverse Laplace Transform:

$$
x(t)=\left(T^{-1} v\right)(t) .
$$

The computation of $T^{-1} u$ sequins complex analysis and is Transform therefore beyond our scope. We must use Tables of Known Laplace Pairs.

$$
\left(T^{-1} U(t)=\int_{\gamma^{-i \infty}}^{\gamma+i \infty} e^{s t} U(s) d s \quad, \text { Fourlir-Mellin integral)}\right) \text {. }
$$

Examph: $y^{\prime \prime}-5 y^{\prime}+4 y=e^{2 t}, \quad y(0)=1, \quad y^{\prime}(0)=-1$.
Taking Laplace Transform of both sides:

$$
\begin{aligned}
& s^{2} Y(s)-s y(0)-y^{\prime}(0)-5(s(s)-y(0))+4 Y(s)=\frac{1}{s-2}, \text { for } s>2 \\
& s^{2} Y(s)-s+1-5 s Y(s)+5+4 Y(s)=\frac{1}{s-2}
\end{aligned}
$$

$$
\begin{aligned}
& Y(s)\left(s^{2}-5 s+4\right)=\frac{1}{s-2}+s-6 \\
& Y(s)(s-4)(s-1)=\frac{1}{s-2}+s-6 \\
& Y(s)=\frac{1}{(s-2)(s-4)(s-1)}+\frac{s}{(s-4)(s-1)}-\frac{6}{(s-4)(s-1)}
\end{aligned}
$$

Pastil fractions:

$$
\begin{aligned}
\frac{6}{(s-4)(s-1)}=\frac{+2}{(s-4)}+\frac{-2}{(s-1)} \quad\left(\begin{array}{ll}
\left.\frac{2(s-1)-2(s-4)}{(s-4)(s-1)}=\frac{2 s-2-2 s+8}{(s-4)(s-1)} \quad=\frac{6}{m}\right) \\
\frac{s}{(s-4)(s-1)}=\frac{1}{3}\left(\frac{4}{s-4}-\frac{1}{s-1}\right) \quad \begin{array}{l}
a(s-1)+b(s-4)=s+0 \\
a+b=1 \quad \rightarrow-3 b=1 \quad b=-\frac{1}{3} \\
-a-4 b=0 \quad a=-4 b \quad a=\frac{4}{3}
\end{array} \\
\frac{1}{(s-2)(s-4)(s-1)}=-\frac{1}{2} \frac{1}{s-2}+\frac{1}{3} \frac{1}{s-1}+\frac{1}{6} \frac{1}{s-4} & \\
\text { Therfire, Y(s)}=-\frac{1}{2} \frac{1}{s-2}+\left(2-\frac{1}{3}+\frac{1}{3}\right) \frac{1}{s-1}+\left(-2+\frac{4}{3}+\frac{1}{6}\right) \frac{1}{s-4} \\
& =-\frac{1}{2} \frac{1}{s-2}+2 \frac{1}{s-1}-\frac{1}{2} \frac{1}{s-4}
\end{array}\right.
\end{aligned}
$$

And so it must be that $y(t)=-\frac{1}{2} e^{2 t}+2 e^{t}-\frac{1}{2} e^{4 t}$.

Properties of Laplace Transforms
Prop. 1: If $F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$, then

$$
\int_{0}^{\infty} e^{-s t}(-t f(t)) d t=F^{\prime}(s)
$$

Straightforward compotatain:

$$
\begin{aligned}
F^{\prime}(s) & =\frac{d}{d s} \int_{0}^{\infty} e^{-s t} f(t) d t=\int_{0}^{\infty}\left(\frac{\partial}{\partial s} e^{-s t}\right) f(t) d t \\
& =-\int_{0}^{\infty} t e^{-s t} f(t) d t .
\end{aligned}
$$

Example Previously, we saw that

$$
\begin{aligned}
T\left(e^{a t}\right)(s) & =\frac{1}{s-a} \quad, s>a \\
s_{0} T\left(t e^{a t}\right)(s) & =-\frac{d}{d s} \frac{1}{s-a}=\frac{1}{(s-a)^{2}}
\end{aligned}
$$

