November 11, 2019
Just to recap:
(1) $\quad y^{\prime}=f(t, y)$
(2) $\quad y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$

The obvious generalizations are:
Hyhir-ordr: $y^{(n)}+a_{n-1}(t) y^{(n-1)}+\ldots+a_{0}(t) y=g(t)$
Coupled systems:

$$
\begin{aligned}
& y_{1}^{\prime}=f\left(t, y_{1}, y_{2}\right) \\
& y_{2}^{\prime}=g\left(t, y_{1}, y_{2}\right)
\end{aligned}
$$

Next Topic: Systems of Differential Equations $(\xi 3.1 \rightarrow)$
Similar to solving $A \vec{x}=\vec{b}$, we can solve coupled systems of differential equations:

$$
\begin{gathered}
x_{1}^{\prime}(t)=\frac{d x_{1}}{d t}=f_{1}\left(t, x_{1}, \ldots, x_{n}\right) \\
\vdots \\
x_{n}^{\prime}(t)=\frac{d x_{n}}{d t}=f_{n}\left(t, x_{1}, \ldots, x_{n}\right)
\end{gathered}
$$

There are n functions x_{j}, each a function of t.
In general, the figs may be linear or nonliving, and each equation may be homogeneous or inhomogeneas.

Systems may dinitly be a model for some physical process, or the may result from decomposing a higher order DE.
Ex:

$$
y^{\prime \prime}+p y^{\prime}+q y=f
$$

Let $x_{1}=y \quad$ Then $x_{1}^{\prime}=y^{\prime}=x_{2}$

$$
\begin{array}{rlrl}
x_{2}=y^{\prime} & x_{2}^{\prime}=y^{\prime \prime} & =f-p y^{\prime}-q y \\
& =f-p x_{2}-q x_{1} \\
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=f-p x_{2}-q x_{1}
\end{array} \quad
$$

Linear Systems of DE:
The most ginemi linear system of $D E$ is:

$$
\begin{aligned}
x_{1}^{\prime} & =a_{11}(t) x_{1}+\ldots+a_{1 n}(t) x_{n}+g_{1} \\
& \vdots \\
x_{n}^{\prime} & =a_{n 1}(t) x_{1}+\ldots+a_{n n}(t) x_{n}+g_{n}
\end{aligned}
$$

We can write this using concise notation:
Let $\vec{x}(t)=\left(\begin{array}{c}x_{1}(t) \\ \vdots \\ x_{n}(t)\end{array}\right)$, then $\vec{x}^{\prime}(t)=\left(\begin{array}{c}x_{1}^{\prime}(t) \\ \vdots \\ x_{n}^{\prime}(t)\end{array}\right)$
Let $A(t)=\left(\begin{array}{cccc}a_{11}(t) & \cdots & a_{1 n}(t) \\ \vdots & a_{22}(t) & \ddots & \vdots \\ a_{n 1}(t) & \cdots & a_{n 1}(t)\end{array}\right), \quad \vec{g}(t)=\left(\begin{array}{c}g_{1}(t) \\ \vdots \\ g_{n}(t)\end{array}\right)$

Thin we have $\vec{x}^{\prime}=A \vec{x}+\vec{g}$
If $\vec{g}=\overrightarrow{0}$, then homogueoss system.
If $\vec{A}(t)=A$ (does not depend on t), then constant-corfficient.

Example: $\quad x_{1}^{\prime}=3 x_{1}-7 x_{2}+9 x_{3}$

$$
\begin{gathered}
x_{2}^{\prime}=15 x_{1}+\dot{x}_{2}-x_{3} \\
x_{3}^{\prime}=7 x_{1} \quad+6 x_{3} \\
\Rightarrow \quad \vec{x}^{\prime}=\left(\begin{array}{ccc}
3 & -7 & 9 \\
15 & 1 & -1 \\
7 & 0 & 6
\end{array}\right) \quad \vec{x} \quad \begin{array}{l}
\text { specify initial } \\
\text { condition as: }
\end{array}
\end{gathered}
$$

If \vec{x}, \vec{y} are solutions to $\vec{x}^{\prime}=A \vec{x} \quad$ (no inituil condition),
then: $\quad \vec{x}+\vec{y}$ is also a solution
\vec{x} is also a solutim
We will use ideas from linear alyebon (a pre-vequisite):
$\left.\begin{array}{ll}\text { - Vector spaces } & \text {-span, basis } \\ \text { - Null space } & \text {-linear dependuce } \\ \text { - dimension of a } \\ \text { - invertibility of } \\ \text { vector space } & \text { matrices }\end{array}\right\}$
See sections 3.2 and 3.3 for a review.

Applications of liveiur alyebon to DE:

Thu Exstina \& Uniqueness:
There exists exactly one solution to the IVP:

$$
\vec{x}^{\prime}=A \vec{x} \quad, \quad \vec{x}(0)=\vec{x}_{0}
$$

Furthermore, $\vec{x}(t)$ exists for all t. (Analogous to result for $a u^{\prime \prime}+b u^{\prime}+c u=0$.)
(will not pron.)

Recall: Solutions to $\vec{x}^{\prime}=A \vec{x}$ form rotor space (closed under livia combinations).

Thu: The dimension of V, the spue e of all solutions to $\vec{x}^{\prime}=A \vec{x}$, is n. Ire., then are n liniunly independent solutions.

Proof: Let $\vec{e}_{j}=\left(\begin{array}{c}0 \\ \vdots \\ \vdots \\ 0 \\ 0\end{array}\right) \leftarrow j^{\text {th }}$ now.
Then let $\vec{\varphi}_{j}^{\prime}=A \vec{\varphi}_{j}$, with $\varphi_{j}(0)=\vec{e}_{j}$.
The \vec{q}_{j} ar livinarly dipundint since:

$$
c_{1} \vec{\varphi}_{1}(0)+\ldots+c_{n} \vec{\varphi}_{n}(0)=\overrightarrow{0} \quad \Rightarrow \quad c_{1} \vec{e}_{1}+\ldots+c_{n} \vec{e}_{n}=\overrightarrow{0}
$$

$\Rightarrow C_{1}=\ldots=C_{n}=0$ since we know that $\vec{e}_{1}, \ldots, \vec{e}_{n}$ are lin. ind.
$\Rightarrow \vec{\varphi}_{1}, \ldots, \vec{\varphi}_{n}$ ar lin. insp.
Do $\vec{\varphi}_{1}, \ldots, \vec{\varphi}_{n} \operatorname{span} V$? Ire. can any solution to $\vec{x}^{\prime}=A \vec{x}$ be written as: $\vec{x}=c_{1} \vec{\varphi}_{1}+\ldots+c_{n} \vec{\varphi}_{n}$?

Take any solution \vec{x}. Let set $\vec{c}=\vec{x} / 0)$. Then construct $\vec{\varphi}=c_{1} \vec{\varphi}_{1}+\ldots+c_{2} \vec{\varphi}_{n}$, Clearly $\vec{\varphi}^{\prime}=A \vec{\varphi}$, and furthrman:

$$
\begin{aligned}
\vec{\varphi}(0) & =c_{1} \vec{\varphi}_{1}(0)+\ldots+c_{n} \vec{\varphi}_{n}(0) \\
& =c_{1} \vec{e}_{1}+\ldots+c_{n} \vec{e}_{n} \\
& =\vec{c} \\
& =\vec{x}(0)
\end{aligned}
$$

Therefor $\vec{\varphi}=\vec{x}$ by the existence and uniguness asult.
$\Rightarrow \varphi_{1}, \ldots, \varphi_{n}$ span V, ar linearly independent

$$
\Rightarrow \quad \operatorname{dim} V=n .
$$

