Nov 13, 2019
Last time:
liven er
systems of differential equations:
Concior notitai: $\quad \vec{x}^{\prime}=A \vec{x}+\vec{y}$
$A_{i j}=a_{i j}(t)$ If $a_{i j}$ is constants, system is cost, corf.
$g_{j}=g_{j}(t)$ If $\vec{g}=\overrightarrow{0}$, then system is hasoginers.

Example:

$$
y^{\prime \prime}+p y^{\prime}+q y=g
$$

Let

$$
\begin{aligned}
& \left.\begin{array}{l}
x_{1}=y \quad \Rightarrow \quad \begin{array}{l}
x_{1}^{\prime}
\end{array}=x_{2} \\
x_{2}=y^{\prime}
\end{array} \quad \begin{array}{l}
x_{2}^{\prime}=g-p x_{2}-q x_{1} \\
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
0 & 1 \\
-q & -p
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{array}\right)+\binom{0}{g}
\end{aligned}
$$

(1) Existizu and Uniqueness:

If A is constant, then solution to $\left.\vec{x}^{\prime}=A \vec{x}, \vec{x} 10\right)=\vec{x}_{0}$ is unique and exists for all t.
(2) Dimension of vector space of solutions to $\vec{x}^{\prime}=A \vec{x}$ is n lie. a linearly independut solutions).
(we proved this.)

Thu: Let $\vec{x}_{1}, \ldots, \vec{x}_{k}, k \leq n$, be k solutions to $\vec{x}^{\prime}=A \vec{x}^{\prime}$.
The solution $\vec{x}_{1}, \ldots, \vec{x}_{k}$ are linearly independent if and only if the vectors $\vec{x}_{1}\left(t_{0}\right), \ldots, \vec{x}_{k}\left(t_{0}\right) \in \mathbb{R}^{n}$ arc lineinsly independent. (for any to).
Proof (straight forward, just evaluate $\vec{x}_{1} \ldots, \vec{x}_{k}$ at to).
Example:
$y^{\prime \prime}+2 y^{\prime}+y=0 \quad \Rightarrow$ solutions can be computed as

$$
y_{1}(t)=e^{-t}, \quad y_{2}(t)=t e^{-t}
$$

Let $x_{1}=y, x_{2}=y^{\prime}$

$$
\Rightarrow\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\binom{y^{\prime}}{y^{\prime \prime}}=\binom{x_{2}}{-2 x_{2}-x_{1}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

\Rightarrow Solutain is $\vec{x}=\binom{x_{1}}{x_{2}}=\binom{y}{y^{\prime}}$
$\Rightarrow \quad \vec{x}^{\prime}=\binom{e^{-t}}{-e^{-t}}, \quad \vec{x}^{2}=\binom{t e^{-t}}{(1-t) e^{-t}} . \quad \begin{aligned} & \text { check that ar } \\ & \text { livenrly independent. }\end{aligned}$

Elgenvecte / eigenvalue solution method
Recall:
If A is an $n \times n$ matrix, λ and \vec{v} are a_{n} eiginvalu/ergenvecter pair if:

$$
\lambda \vec{v}=\lambda \vec{v}
$$

To five: $\Rightarrow A \vec{v}-\lambda \vec{v}=\overrightarrow{0}$

$$
(A-\lambda I) \vec{v}=\overrightarrow{0}
$$

(1) Find λ such that $(A \cdot \lambda I)^{-1}$ does not exist
(2) Fid nullspace of this matrix

Applying this idea to diff. egins:

$$
\left.y^{\prime}=\lambda y \Rightarrow y=e^{\lambda t} \quad \begin{array}{l}
y^{\prime}=\lambda e^{\lambda t}
\end{array}\right\} \Rightarrow \begin{aligned}
& e^{\lambda t} \text { is an elgientuction } \\
& \text { of the differentiation } \\
& \text { operator. }
\end{aligned}
$$

Applied to a system of diff. egins:
$\vec{x}^{\prime}=A \vec{x}$ Look for a solutain of the form

$$
\stackrel{\rightharpoonup}{x}=e^{\lambda t} \stackrel{\rightharpoonup}{v} .
$$

Then $\vec{x}^{\prime}=\lambda e^{\lambda t} \vec{v}$ is a solution.
If both λ_{1}, \vec{v}_{1} and λ_{2}, \vec{v}_{2} ar erginpuis with \vec{v}_{1}, \vec{v}_{2} lineirly indipendurt, then $\vec{x}=c_{1} e^{\lambda t} \vec{v}_{1}+c_{2} \lambda$

Thu Any k eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ of A with distinct elgenvoles ar linearly independent.
Proof Dore in text and linear algebra carse.
If A has n liveirly indgundent eigenvactivs $\vec{v}_{1, \ldots} \vec{v}_{n}$ with eigenvalue) $\lambda_{1}, \ldots, \lambda_{n}$, the gemara solution to

$$
\begin{gathered}
\vec{x}^{\prime}=A \vec{x} \text { is gavin by } \\
\vec{x}=c_{1} e^{\lambda_{1} t} \vec{v}_{1}+\ldots+c_{n} e^{\lambda_{n} t} \vec{v}_{n}
\end{gathered}
$$

If the initial condition $\vec{x}(0)=\vec{x}_{0}$ is to be satisfied, then

$$
\left.\begin{array}{rl}
\vec{x}_{0} & =c_{1} e^{\lambda_{i} 0} \vec{v}_{1}+\ldots+c_{n} e^{\lambda_{n} 0} \vec{v}_{n} \\
& =\left(\vec{v}_{1} \vec{v}_{2} \ldots \vec{v}_{n}\right.
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{n}
\end{array}\right)=V \vec{c}
$$

