November 18, 2019
Last time:
Systems of DE's:

$$
\vec{x}^{\prime}=A \vec{x}, \quad \vec{x}(0)=\vec{x}_{0}
$$

Eigenvalu/vector solution method:
If $\vec{x}=e^{\lambda t} \vec{v}, \vec{v}$ a constant vector, then it must be the case that

$$
\begin{aligned}
& \vec{x}^{\prime}=\lambda e^{\lambda t} \vec{v}=A e^{\lambda t} \vec{v} \\
& \Rightarrow \lambda \vec{v}=A \vec{v}
\end{aligned}
$$

$\Rightarrow \lambda, \vec{v}$ is an eigeinpair for A.
Therefore if A has n linearly independent eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$, then the general solution to $\vec{x}^{\prime}=A \vec{x}$ is

$$
\vec{x}=c_{1} e^{\frac{\lambda t}{}} \vec{v}_{1}+\ldots+c_{n} e^{\lambda_{n}} \vec{v}_{n}
$$

To then satisfy the initial condition $\vec{x}(0)=\vec{x}_{0}$,
solve $\vec{x}(0)=c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}=\vec{x}_{0}$

$$
\Rightarrow\left(\vec{v}_{1} \ldots \vec{v}_{n}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\vec{x}_{0}
$$

$\Rightarrow V \vec{c}=\vec{x}_{0}$ an $n \times n$ livens system
Eigenvalues an fund as solutoir to $\underbrace{\operatorname{dit}(A-\lambda I)}_{\text {polynomial in } \lambda}=0$
Then eigenvector an the nullspace of $A-\lambda I$.

Example:

$$
\left.\begin{array}{ll}
\vec{x}^{\prime}=\left(\begin{array}{ll}
1 & 12 \\
3 & 1
\end{array}\right) \vec{x}, & \vec{x}(0)=\binom{0}{1} \\
\rho(\lambda)= & (1-\lambda)(1-\lambda)-36=0 \\
& \lambda^{2}-2 \lambda-35=0 \\
& (\lambda-7)(\lambda+5)=0 \\
\lambda=-5,7 & \left(\begin{array}{cc}
6 & 12 \\
3 & 6
\end{array}\right) \vec{v}_{1}=0 \Rightarrow \vec{v}_{1}=\binom{-2}{1} \\
3 & -6
\end{array}\right) \vec{v}_{2}=0 \Rightarrow \vec{v}_{2}=\binom{2}{1}
$$

General solution: $\quad \vec{x}=c_{1} e^{-5 t}\binom{-2}{1}+c_{2} e^{7 t}\binom{2}{1}$

$$
\begin{aligned}
\vec{x}_{0}=\binom{0}{1} & =c_{1}\binom{-2}{1}+c_{2}\binom{2}{1} \\
& =\left(\begin{array}{rr}
-2 & 2 \\
1 & 1
\end{array}\right) \stackrel{\rightharpoonup}{c} \quad \Rightarrow \quad \vec{c}=\binom{1 / 2}{1 / 2} .
\end{aligned}
$$

Ex: $\vec{x}=\underbrace{\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right)} \vec{x}$
Clearly: $\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right)\binom{-1}{1}=0$
Not invertible

$$
\begin{aligned}
&\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right)\binom{1}{2}=\binom{3}{6}=3 \cdot\binom{1}{2} \\
& \Rightarrow \vec{x}=c_{1}\binom{-1}{1}+c_{2}\binom{1}{2} e^{3 t}
\end{aligned}
$$

Complex Roots

$$
\begin{gathered}
\vec{x}^{\prime}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \vec{x} \\
p(x)=\left|\begin{array}{rr}
-x & -1 \\
1 & -\lambda
\end{array}\right|=0 \\
x^{2}+1=0 \\
x= \pm i
\end{gathered}
$$

Eigenvector:

$$
\left(\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right) \vec{v}_{1}=\overrightarrow{0} \Rightarrow \vec{v}_{1}=\binom{i}{1}
$$

And therefore m know that

$$
\vec{v}_{2}=\overrightarrow{\vec{v}}_{1}=\binom{-i}{1}
$$

The complex-valued geneal solution is then

$$
\vec{x}=c_{1} e^{i t}\binom{i}{1}+c_{2} e^{-i t}\binom{-i}{1}
$$

Rewrity this interms of reol 8 imayinang parts we see:

$$
\begin{aligned}
\vec{x}= & c_{1}(\cos t+i \sin t)\left(\binom{0}{1}+i\binom{1}{0}\right) \\
& +c_{2}(\cos t-i \sin t)\left(\binom{0}{1}+i\binom{-1}{0}\right) \\
= & c_{1} \cos t\binom{0}{1}-c_{1} \sin t\binom{1}{0}+c_{2} \cos t\binom{0}{1}-c_{2} \sin t\binom{1}{0} \\
& +i\left(\begin{array}{c}
\left.c_{1} \sin t\binom{0}{1}+c_{1} \cos t\binom{1}{0}-c_{2} \cos t\binom{1}{0}-c_{2} \sin t\binom{0}{1}\right) \\
= \\
d_{1}\binom{-\sin t}{\cos t}+i d_{2}\binom{\cos t}{\sin t} \\
\\
\end{array} \begin{array}{c}
c_{1}+c_{2}
\end{array} \quad c_{1}-c_{2}\right.
\end{aligned}
$$

So two, real-valued liveiarly indipendent solutions an $\binom{-\sin t}{\cos t}$ and

$$
\binom{\cos t}{\sin t}
$$

More generally, we han:
If $\vec{x} \mid t)=e^{(\alpha+i \beta) t}\left(\vec{v}_{1}+i \vec{v}_{2}\right)^{\vee}$, with $\alpha, \beta, \vec{v}_{1}, \vec{v}_{2}$ venl, then

$$
\begin{aligned}
\vec{x}(t)=\vec{y}(t) & +i \vec{z}(t) \quad \text { with } \\
\vec{y}(t) & =e^{\alpha t}\left(\cos \beta t \vec{v}_{1}-\sin \beta t \vec{v}_{2}\right) \\
\vec{z}(t) & =e^{\alpha t}\left(\sin \beta t \vec{v}_{1}+\cos \beta t \vec{v}_{2}\right)
\end{aligned}
$$

two reat-valued, livearly indipendunt solutious.

Another example:

$$
\vec{x}^{\prime}=\underbrace{\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)} \vec{x}
$$

shear

$$
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{x_{1}+2 x_{2}}{x_{2}}
$$

Compute eigenvalues:

$$
\left|\begin{array}{cc}
1-\lambda & 2 \\
0 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2} \Rightarrow \lambda=1 \quad \text { (repeated root) }
$$

Next compute eigenvectors:
$\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right) \vec{v}_{1}=\overrightarrow{0} \Rightarrow \vec{v}_{1}=\binom{1}{0} \quad$ ONLY 1 linearly indipundint elginvactor, evan thanh $\lambda=1$ has algebraic multiplicity 2 .
Clearly one solution is $\vec{x}_{1}(t)=e^{\lambda t}\binom{1}{0}$. How do we find another linearly independent solution?
To do this we first nad to discuss the matrix exponential.

In 1D, for the ODE $x^{\prime}=a x$ we han that the general solution is $x(t)=C e^{a t}$ for any constant C. It would be nice if we could write the general solution to $\vec{x}^{\prime}=A \vec{x}$ as $\vec{x}=e^{A t} \stackrel{v}{v}$, for any constant vector \vec{v}.
This beys the question, how do un define $e^{A t}$?
In 1D, $e^{a t}=1+(a t)+\frac{(a t)^{2}}{2!}+\frac{(a t)^{3}}{3!}+\ldots \quad$ by ponerseires expansion

Therefore, defier $e^{A t}$ to be:
$e^{A t}=I+A t+\frac{A^{2} t^{2}}{2!}+\frac{A^{3} t^{3}}{3!}+\ldots$ This expansion can be shown to converge for any A and any t.
Aside: If A has a linearly independent eigenvectors $\vec{v}_{1}, \vec{v}_{2} \ldots \vec{v}_{n}$ and sit $V=\left(\vec{v}_{1} \ldots \vec{v}_{n}\right)$, then $A=V \lambda V^{-1}$个

$$
\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)
$$

And therefor, $\begin{aligned} A^{p} & =\left(v \lambda v^{-1}\right)^{p}=\underbrace{\left(v \lambda v^{-1}\right) \cdots\left(v \lambda v^{-1}\right)}_{p \text { times }} \\ & =v \lambda^{p} v\end{aligned}$

$$
=V \lambda^{p} V
$$

So in this case,

$$
\begin{aligned}
e^{A t} & =V V^{-1}+V \lambda v^{-1} t+\frac{1}{2!} V \lambda^{2} V^{-1} t^{2}+\cdots \\
& =V\left(I+\lambda+\frac{\lambda^{2} t}{2!}+\frac{\lambda^{3}}{3!} t^{3}+\cdots\right) V^{-1}
\end{aligned}
$$

