November 20,2019

Last time :

(1) When solving
$$\vec{x}' = A\vec{x}$$
, one may find a
complex valued $\lambda_1 \vec{v}$. In this case, if
 $\lambda = \alpha + i\beta$
 $\vec{v} = \vec{v}_1 + i\vec{v}_2$,

then two real-valued linearly independent solutions a2:

$$\vec{y}_{1t}$$
 = $e^{at} (\cos \beta t \vec{v}_1 - \sin \beta t \vec{v}_2)$
 \vec{z}_{1t} = $e^{at} (\sin \beta t \vec{v}_1 + \cos \beta t \vec{v}_2)$

(2) On the otherhand, not all matrix have a full set
of linearly independent eigenvectos:

$$E_X: \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = 7$$
 $A = 1$ (algebraic mult = 2
 $T = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ geometric mult = 1)

To solve $\vec{x}' = A\vec{x}'$ in this case, when to matrix exponential:

We wish to write solution to
$$\vec{x}' = A\vec{x}$$
 as
 $\vec{x} = e^{At}\vec{c}$ for any vector \vec{c} .
Why? e^{At} is invertible for any A
=> general solution is linear combination of
the columns of e^{At} .

 $\frac{\operatorname{Recoll}:}{\operatorname{Recoll}:} e^{\operatorname{At}} = \sum_{n=0}^{\infty} \frac{\operatorname{At}}{n!}$

Why is
$$e^{At}$$
 with in computing solutions with repeated nots?
=> $e^{At}\vec{\tau}$ is a solution to $\vec{x}' = A\vec{x}$ for every $\vec{\tau}$:
 $\frac{d}{dt}e^{At}\vec{\tau} = (\frac{d}{dt}e^{At})\vec{\tau} = Ae^{At}\vec{\tau}$
 $= A(e^{At}\vec{\tau})$

$$P_{NDPerfie}, A = e^{At};$$

$$e^{(A+B)t} = \sum_{n=0}^{\infty} \frac{(A+B)^{n}t^{n}}{n!}$$

$$= I + (A+B)t + \frac{(A^{2}+AB+BA+B^{2})t^{2}}{2!} + ...$$

$$= \frac{2}{2!}e^{At}e^{Bt} \frac{2}{2!}$$

Objussly
$$A+B = B+A$$
, so is it true that $e^{(A+B)t} = e^{(B+A)t}$
 $= e^{At}e^{Bt} = e^{Bt}e^{At}?$
 $= e^{At}e^{Bt} = e^{Bt}e^{At}?$
 $= e^{At}e^{Bt} = e^{Bt}e^{At}?$
 $= e^{At}e^{Bt} = BA.$ (to sue multiply)
 $e^{At}e^{At}e^{Bt}...$)
 $Example: e^{Ot} = I$
 $= e^{(A-A)t}$
 $= e^{(A-A)t}$

$$= e^{At} e^{At} = e^{At} e^{At}$$

$$= e^{At} e^{At} = e^{At} e^{At}$$

$$= e^{At}$$

A solution of the form $e^{At}\vec{r}$ is only useful if we can compute it, i.e. sum the infinite series e^{At} .

One can show that

$$e^{At} \vec{y} = e^{(A - \lambda T)t} e^{\lambda T t}$$
For any constant λ .
Furthermore:
(Simin A,T
 $0 e^{\lambda T t} \vec{v} = e^{\lambda t} \vec{v}$ (any is show simin $T \vec{v} = \vec{v}$)
(2) $TF (A - \lambda T)^{n} \vec{v} = 0$, then the series for
 $e^{(A - \lambda T)} \vec{v}$ only contain in terms.
 $= 2 e^{At} \vec{v} = e^{(A - \lambda T)t} e^{\lambda T t} \vec{v}$
 $= e^{\lambda t} \left(\vec{v} + (A - \lambda T)t \vec{v} + (A - \lambda T)^{n} \vec{v} \cdot \vec{v}\right)$
An algorithm for finiting general solution of $\vec{X} = A \vec{x}$:
(D) Find all engineers λA , and as imang eigenvector as
possible.
This generates solution A the form e^{Nt} .
(2) $TF \lambda$ has algebraic multiplicity to be the forwer than
 $1e^{(A - \lambda T)^{n}} \vec{v} = 0$
 $(A - \lambda T)^{n} \vec{v} = 0$
 $(A - \lambda T)^{n} \vec{v} = 0$
 $TF (A - \lambda T)^{n} \vec{v} + 0$, but $(A - \lambda T)^{n+1} \vec{v} = 0$, then
 $\vec{x}(t) = (\vec{v} + (A - \lambda T) + \vec{v} + \frac{1}{2!}(A - \lambda T)^{n} \vec{v} = 0$, then
 $\vec{x}(t) = (\vec{v} + (A - \lambda T) + \vec{v} + \frac{1}{2!}(A - \lambda T)^{n} \vec{v} + \dots + \frac{1}{n!}(A - \lambda T) + \vec{v} + \vec{v})$
 $is a solution!
(In the pose this ab.)
 d order , which yields solution \vec{e}^{n} , tet
(With out pose this ab.)
 d order , which yields solution \vec{e}^{n} , tet$