November 20,2019
Last time:
(1) When solving $\vec{x}^{\prime}=A \vec{x}$, one may find a complex valued λ, \vec{v}. In this case, if

$$
\begin{aligned}
& x=\alpha+i \beta \\
& \vec{v}=\vec{v}_{1}+i \vec{v}_{2}
\end{aligned}
$$

then two real-valued linearly independent solutions an:

$$
\begin{aligned}
& \vec{y}(t)=e^{\alpha t}\left(\cos \beta t \vec{v}_{1}-\sin \beta t \vec{v}_{2}\right) \\
& \vec{z}(t)=e^{\alpha t}\left(\sin \beta t \vec{v}_{1}+\cos \beta t \vec{v}_{2}\right)
\end{aligned}
$$

(2) On the otherhand, not all matrices han a full sit of linearly independent eigenvactos:

$$
\text { Ex: } \left.\begin{array}{ll}
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad \Rightarrow \quad \begin{array}{l}
\lambda=1
\end{array} \quad \begin{array}{l}
\text { (algebraic mut }=2 \\
\end{array} & \vec{v}=\binom{1}{0}
\end{array} \quad \text { geametrii multi }=1\right)
$$

To solve $\vec{x}^{\prime}: A \vec{x}^{\prime}$ in this case, turn to matrix exponential:

We wish to write solution to $\vec{x}^{\prime}=A \vec{x}$ as

$$
\vec{x}=e^{A t} \vec{c} \text { for any vector } \vec{c} \text {. }
$$

Why? $e^{A t}$ is invertible for any A
\Rightarrow general soluturin is linear combination of the columns of $e^{A t}$.

Recall: $e^{A t}=\sum_{n=0}^{\infty} \frac{A^{n} t^{n}}{n!}$

Why is $e^{\text {At }}$ useful in computing solutions with repeated nooks?
$\Rightarrow e^{A t} \vec{v}$ is a solution to $\vec{x}^{\prime}=A \vec{x}$ for every \vec{v} :

$$
\begin{aligned}
\frac{d}{d t} e^{A t} \vec{v}=\left(\frac{d}{d t} e^{A t}\right) \vec{v} & =A e^{A t} \vec{v} \\
& =A\left(e^{A t} \vec{v}\right)
\end{aligned}
$$

Properties of $e^{A t}$:

$$
\begin{aligned}
e^{(A+B) t} & =\sum_{n=0}^{\infty} \frac{(A+B)^{n} t^{n}}{n!} \\
& =I+(A+B) t+\frac{\left(A^{2}+A B+B A+B^{2}\right) t^{2}}{2!}+\ldots \\
& =? e^{A t} e^{B t ?}
\end{aligned}
$$

Obinusly $A+B=B+A$, so is it tran that $e^{(A+B) t}=e^{(B+A) t}$

$$
=e^{A t} e^{B t}=e^{B t} e^{A t} ?
$$

\Rightarrow Only if A and B commute, ice. if $A B=B A$. ($\left.\begin{array}{l}\text { to sum multiply } \\ \text { out } e^{A t} e^{B t} \ldots\end{array}\right)$
Example: $e^{o t}=I$

$$
\begin{aligned}
& =e^{(A-A) t} \\
& =\sum_{n=0}^{\infty} \frac{(A-A)^{n} t^{n}}{n!} \quad \text { obviously } A \text { and } \\
& =e^{A t} e^{-A t}=e^{-A t} e^{A t} \\
\Rightarrow I & =e^{A t} e^{-A t} \quad \text { so therefor }\left(e^{A t}\right)^{-1}=e^{-A t}
\end{aligned}
$$

Ire. $e^{A t}$ is always invertible.
The goal is to evaluate $e^{A t}$.

A solution of the form $e^{A t} \vec{v}$ is only useful if we can compute it, ie. sum the infinite series $e^{A t}$.

One can show that

$$
e^{A t} \vec{v}=e^{(A-\lambda I) t} e^{\lambda I t} \quad \text { for any constant } \lambda \text {. }
$$

Furthermore:
(1) $e^{\lambda I t} \vec{v}=e^{\lambda t} \vec{v}$ (easy to show $\sin u \quad I \vec{v}=\vec{v}$)
(2) If $(A+\lambda I)^{m} \vec{v}=0$, then the series for $e^{(A-\lambda I) t} \vec{v}$ only contains m terms.

$$
\begin{aligned}
\Rightarrow e^{A t \vec{v}} & =e^{(A-\lambda I) t} e^{\lambda I t} \vec{v} \\
& =e^{\lambda t}\left(\vec{v}+(A-\lambda I) t \vec{v}+\frac{(A-\lambda I)^{2} t^{2}}{2!} \vec{v}+\ldots+\frac{(A-\lambda I)^{m-1} t^{m-1} \vec{v}}{(m-1)!}\right)
\end{aligned}
$$

An algorithm for finding general solution of $\vec{x}^{\prime}=A \vec{x}$;
(1) Find all eigenvalues of A, and as many \uparrow elyenvectos as possible.
This generators solutions of the form $e^{\lambda t} \vec{v}$.
(2) If λ has algebraic multiplicity k but fewer than k livierly indepudint eigenvector, then:

Find all such votes \vec{v} such that:

$$
\begin{gathered}
(A-\lambda I)^{2} \vec{v}=0 \\
(A-\lambda I)^{3} \vec{v}=0 \\
\vdots \\
\text { and so on. }
\end{gathered}
$$

If $(A-\lambda I)^{m} \vec{v} \neq 0$, but $(A \cdot \lambda I)^{m+1} \vec{v}=0$, then

$$
\vec{x}(t)=\left(\vec{v}+(A-\lambda I) t \vec{v}+\frac{1}{2!}(A-\lambda I)^{2} t^{2} \vec{v}+\ldots+\frac{1}{m!}(A-\lambda I)^{m} t^{m} \vec{v}\right)
$$

is a solution! (Exactly analogous to the method of reduction
$\binom{$ will }{ works, bur it dons. }
of order, which yields solutions e^{t}, $t e^{t}$ to $y^{\prime \prime}+2 y^{\prime}+y=0$).

