November 25, 2019

Last time:

Formally, we can write the solution to
$$\vec{x}' = A\vec{x}$$
 as
 $\vec{x}(t) = e^{At}\vec{v}$, for any constant \vec{v} . The goal is
to pick \vec{v} 's such that $e^{At}\vec{v}$ is easy to evaluate,
and also generates in linearly independent solutions.
Note $e^{At}\vec{v} = e^{At}\vec{v}$
 $=)$ (hoose \vec{v} such that $(A - \lambda I)[\vec{v} = 0$. [with λ
 $=)$ (hoose \vec{v} such that $(A - \lambda I)[\vec{v} = 0$. [with λ
 $=)$ (hoose \vec{v} such that $(A - \lambda I)[\vec{v} = 0$. [with λ
 $=)$ (hoose \vec{v} such that \vec{v} is an eigenvector.
If $m > 1$, then using the power series definition of
 e^{At} , we see that $e^{(A - \lambda I)[t]}\vec{v}$ forminates after
 m terms (and therefore is easy to evaluate).

Next up : Qualitation solutions to Systems of DE's

Example :

General systems tale the form.

$$\vec{x}' = \vec{f}(t, \vec{x})$$
 No systematic method for solving this,
can us use ideas from $\vec{x}' = A\vec{x}$ to
obtain qualitatic vesults?

We must also restrict our attention to <u>autonomous</u> systems in which $\vec{F}(t,\vec{x}) = \vec{F}(\vec{x})$, *i.e.* \vec{F} does not explicitly depend on t, otherwise stability and equilibrium solutions may be time dependent.

Definition (Stability) A solution
$$\vec{\varphi}(t)$$
 to $\vec{x}' = \vec{f}(\vec{x})$ is stable
if all other solutions $\vec{\psi}(t)$ which start sufficiently clove to
 $\vec{\varphi}$ remain sufficiently close.
More precisely: For any $\epsilon>0$, there exists $\delta = \delta(\epsilon)>0$ such that
if $\|\vec{\psi}(0) - \vec{\varphi}(0)\| \le \delta$ then $\|\vec{\psi}(t) - \vec{\varphi}(t)\| \le \epsilon$ for all $t>0$.
Definition (Equilibrium) \vec{x}_0 is an equilibrium point if $\vec{f}(\vec{x}_0) = 0$,

i.e., if at
$$\vec{x}_0$$
, $\vec{x}'(t) = \vec{0}$. (Nothing changing).

Back to air example: $\vec{X}' = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \vec{X}$.

The point
$$\vec{x}_{\delta} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$$
 is an equilibrium point (since $A\vec{v} = 0$).
It is unstable since any other solution that starts near it goo ut to infinity. [2]