December 9,2019

New topic: Two-porint boundary valve problems:
Consider:

$$
\underbrace{y^{\prime \prime}+\lambda y=0}_{\text {ODE }} \quad \underbrace{\begin{array}{l}
a y\left(0 . C^{\prime} \text { 's) }\right)
\end{array}}_{\begin{array}{c}
\text { boundary } \\
\text { condition }
\end{array}}
$$

For what values of λ are then nontrivial (non-zeo) solutions? This is an eigenvalue problem:

$$
y^{\prime \prime}=-\lambda y+B \cdot C \cdot S .
$$

Very different than an initial value problem.

Ex: $\quad y^{\prime \prime}+\lambda y=0$

$$
\begin{aligned}
& y(0)=0 \\
& y(l)=0
\end{aligned}
$$

Care'
If $\lambda=0$, then $y=c_{1} x+c_{2}$
$\Rightarrow y=0$ is only solution
cout^{2} If $\lambda<0$, then $y=c_{1} e^{\sqrt{-\lambda} x}+c_{2} e^{-\sqrt{-\lambda} x}$
Applying BC.15: $\quad c_{1}+c_{2}=0$

$$
\begin{aligned}
& \Rightarrow c_{1}=-c_{2} \quad c_{1} e^{\sqrt{-x} l}+c_{2} e^{-\sqrt{-x} l}=0 \\
& \text { so }_{1} c_{1} \underbrace{\left(e^{\sqrt{-x} l}-e^{-\sqrt{-x} l}\right)}_{>0 \text { for } l>0}=0 \quad \Rightarrow \quad c_{1}=c_{2}=0 .
\end{aligned}
$$

Case 2
$\lambda>0$, then $y=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x$

$$
\begin{aligned}
& y(0)=0 \Rightarrow c_{1}=0 \\
& y(l)=0 \quad \Rightarrow \quad c_{2} \sin \sqrt{x} l=0 \quad \Rightarrow \quad \text { Ether } \quad c_{2}=0, \quad \text { and } y=0
\end{aligned}
$$

OR that $\sqrt{\lambda} l=n \pi$

$$
\Rightarrow \lambda=\frac{n^{2} \pi^{2}}{l^{2}}
$$

Thenfore the 2-point BVP $y^{\prime \prime}+\lambda y=0$ has

$$
y(0)=y(l)=0
$$

nun-trivina solutions if $\lambda=\frac{n^{2} \pi^{2}}{\ell^{2}}, n=1,2, \ldots$, and in which case the solution is $y(x)=\sin \frac{n \pi}{l} x$. The sit of elyiuvnlus and elyenfunctions to this problem an

$$
\underbrace{\frac{n^{2} \pi^{2}}{l^{2}}}_{\lambda_{n}}, \underbrace{\sin \frac{n \pi}{l} x}_{\varphi_{n}(x)}
$$

Rewriting: $-y^{\prime \prime}=-\frac{d^{2}}{d x^{2}} y=J_{y}=\lambda y$

Physics application:

spring sutsfies an ODE, at which forcij frequencies will then be "standing wars"?

Other applications come from PDEs...

Partial Differential Equations
Relats change in multiple variable (time, space, etc.).
Three main PDES:

$$
\begin{array}{c|l|l}
\Delta u=0 & \frac{\partial u}{\partial t}=\Delta u & \frac{\partial^{2} u}{\partial t^{2}}=\Delta u \\
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 & \frac{\partial^{2 u}}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & \\
\text { Laplace Eqn } & \underline{\text { Heat Equation }} & \text { Wan Equation }
\end{array}
$$

Each equation mast be augmented with boundurg conditions (in the spatial variables) and initial conditions (in the temporal variable).

Example Heat equation

$$
\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}+u(x, D)=f(x) \text { Instal condition }
$$

$$
\prod_{\text {diffusion }, \alpha>0}^{\partial x} \quad u(0, t)=u(L, t)=0 \quad \text { Bounding condition }
$$ diffusion,$~$

constant,

One ansatz for the solution : $u(x, t)=X(x) T(t)$ separation of variables.
Inserting into the equation me han:

$$
\begin{align*}
& x T^{\prime}==\alpha^{2} x^{\prime \prime} T \\
& \underbrace{\frac{T}{}^{\alpha^{\prime} T}}_{\text {only depends }}=\underbrace{\frac{x^{\prime \prime}}{x} t}_{\text {only depends }} \quad \Rightarrow \quad T^{\prime} \text { and } \frac{x^{\prime \prime}}{x} \text { most be constant }
\end{align*}
$$

The initial conditur implies: $u(x, 0)=X(x) T(0)=f(x)$.
The B.C. implies: $u(0, t)=X(0) T(t)=0 \Rightarrow X(0)=0$

$$
u(L, t)=X(L) T(t)=0 \quad X(L)=0
$$

Therfier $u(x, t)=X(x) \Pi t)$ only if

$$
X^{\prime \prime}+\lambda X=0, X(0)=0, X(L)=0 \quad B V P \text {, only hus non-trivicl }
$$

and $T^{\prime}+\lambda \alpha^{2} T=0 \quad$ Solutions if λ is eigeinale.

$$
\int I, E . \quad \lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \quad, \quad X_{n}(x)=\sin \frac{n \pi}{L} x
$$

Using these values of λ_{n}, it also must be that $T_{n}(t)=e^{-\alpha^{2} n^{2} \pi^{2} t / L^{2}}$

So u consists of any linear combination of $u_{n}=X_{n} T_{n}$

$$
\begin{aligned}
\Rightarrow u(x, t) & =\sum_{n=1}^{\infty} a_{n} u_{n}(x, t) \\
& =\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi}{L} x e^{-x^{2} n^{2} \pi^{2} t / L^{2}}
\end{aligned}
$$

This automatically Satisfies the B.C.'s

$$
X(0)=X(L)=0 .
$$

The initial condition now menus that

$$
u(x, 0)=f(x)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi}{L} x
$$

Goal: Determine a_{n} such that the abor expression is true.
f could be an arbitrung function on $[O, L]$ so long as $f(0)=f(c)=0$ in this case. Can arbitrung functions be written as infinite linear comb. of sinusoids? (or cosines, or $e^{i n \pi / 2 x}$ is?) \Rightarrow Fourier series

