December 11, 2019

Last time:
Heat Equation:

$$
\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Also must spacing initial condition: $u(x, 0)=f(x)$ and boundary condition: $u(0, t)=u(L, t)=0$
Separation of variables solution:
Assume $u(x, t)=X(x) T(t)$, insert into equation:

$$
\frac{T^{\prime}}{\alpha^{2} T}=\underbrace{-\lambda}_{\text {constant }}=\frac{X^{\prime \prime}}{X} \quad(*)
$$

This results in the boundary value problem:

$$
\left.\begin{array}{l}
X^{\prime \prime}+\lambda x=0 \\
X(0)=X(L)=0
\end{array}\right\} \begin{aligned}
& \text { Non-triviñ solutions obtained when } \\
& \lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, X_{n}(x)=\sin \frac{n \pi}{L} x
\end{aligned}
$$

The equation for T is then:

$$
T^{\prime}+\alpha^{2} \lambda T=0, \text { ouse } \lambda_{n} \text { in her to obtain: }
$$

$$
\Rightarrow \quad T_{n}(t)=e^{-\alpha^{2} n^{2} \pi^{2} t / L^{2}}
$$

Define $u_{n}(x, t)=x_{n}(x) T_{n}(t)=\sin \frac{n \pi}{2} x e^{-a^{2}}$
In $(*), \lambda$ is allowed to be any of the λ n's, and thenfure u is an arbitrary linear combination:

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi}{L} x e^{-\alpha^{2} n^{2} \pi^{2} t / L^{2}}
$$

The initial condition then implies that:

$$
u(x, 0)=f(x)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi}{L} x
$$

Founér Series

Question: Can an arbitron function f on the interval ($[-L, L]$ AA be written as:

$$
f(x)=\sum_{n=0}^{\infty} a_{n} \cos \frac{n \pi}{L} x+\sum_{n=0}^{\infty} b_{n} \sin \frac{n \pi}{L} x ?
$$

Note: The functions $\cos \frac{m \pi}{L} x$ and $\sin \frac{n \pi}{L} x$ are orthogonal on the interval $[-L, L]$:

$$
\begin{aligned}
\left(\cos \frac{m \pi}{L} x, \sin \frac{n \pi}{L} x\right) & =\int_{-L}^{L} \cos \frac{m \pi}{L} x \sin \frac{n \pi}{L} x d x \\
& =0 \quad \text { (show on your own). }
\end{aligned}
$$

Furthermon, if $m \neq n$, then

$$
\begin{aligned}
& \int_{-L}^{L} \cos \frac{m \pi}{L} x \cos \frac{n \pi}{L} x d x=0 \\
& \int_{-L}^{L} \sin \frac{m \pi}{L} x \sin \frac{n \pi}{L} x d x=0
\end{aligned}
$$

So the set of function $\left\{\cos \frac{m \pi}{L} x, \sin \frac{n \pi}{L} x\right\}$ are mutually orthogonal.
Therefor: Assume that f can be written as in (x), then multiplying by these functions and integrating allows is to solve for the a_{n} 's and b_{n} 's:

$$
\begin{align*}
a_{n} & =\frac{1}{\left\|\cos \frac{n \pi}{L} x\right\|^{2}}\left(f(x), \cos \frac{n \pi}{L} x\right) \\
& =\underbrace{\frac{1}{\int_{-L}^{L}} f(x) \cos \frac{n \pi}{L} x d x, n \geqslant 0}_{\int_{-L}^{L}\left(\cos \frac{n \pi}{L} x\right)^{2} d x} \begin{aligned}
& \text { if } n \neq 0 \\
& 2 L \text { if } n=0
\end{aligned} \tag{2}
\end{align*}
$$

And likewise:

$$
b_{n}=\frac{1}{\int_{-L}^{L}\left(\sin \frac{n \pi}{L} x\right)^{2} d x} \int_{-L}^{L} f(x) \sin \frac{n \pi}{L} x d x \quad, \quad n>1
$$

This is merely solving for a_{n}, b_{n} 's, (by taking inner products, i.e. projections).

Complex version:
Since $\cos x=\frac{e^{i x}+e^{-i x}}{2}, \sin x=\frac{e^{i x}-e^{-i x}}{2 i}$
We can also expand:

$$
\begin{aligned}
& f(x)=\sum_{-\infty}^{\infty} c_{n} e^{i n \pi / 2 x}, \quad \text { and } \quad(* *) \\
& c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i n \pi x / L}
\end{aligned}
$$

Do these series converge?
Thu: Let f, f^{\prime} be piecewise continuous on $[-L, L]$. Then, the Series $(x *)$ and $(* x)$ converge to $f(x)$ if f is continuous, and to $\frac{1}{2}\left(f\left(x^{-}\right)+f\left(x^{+}\right)\right)$if f is discontinue at x, $A x L$, the series converge to $\frac{1}{2}(f(-l)+f(l))$.

Graphically :
Pons Finite Fourier spies approximation to step function
The highlighted portion is known as the Runge Effect (and happens at discontinuity.)

Example: $f(x)= \begin{cases}0, & x \in[-1,0) \\ 1, & x \in[0,1]\end{cases}$

Then

$$
\begin{aligned}
& a_{n}=\int_{-1}^{1} f(x) \cos n \pi x d x \\
&=\int_{0}^{1} \cos n \pi x d x=\left\{\begin{array}{l}
\left.\frac{\sin n \pi x}{n \pi}\right|_{0} ^{1}=\frac{\sin n \pi}{n \pi}=0 \\
b_{n}
\end{array}=\int_{-1}^{1} f(x) \sin n \pi x d x\right. \\
&=\int_{0}^{1} \sin n \pi x d x=-\left.\frac{\cos n \pi x}{n \pi}\right|_{0} ^{1}=\frac{-\cos n \pi}{n \pi}+\frac{1}{n \pi} \\
& \text { otherwise } \\
& 0 \quad \text { if } n \text { is in } \\
& \frac{2}{n \pi} \text { if } n \text { is odd }
\end{aligned}
$$

So the Fourier series is:

$$
f(x)=\frac{1}{2}+\sum_{n=0}^{\infty} \frac{2 \sin (2 n+1) \pi x}{(2 n+1) \pi}
$$

Note that at points of discontinuity $(-1,0,1)$ re have that

$$
f(-1)=\frac{1}{2}+\sum_{n=0}^{\infty} \underbrace{\frac{2 \sin (2 n+1) \pi}{(2 n+1) \pi}}_{0}=\frac{1}{2}
$$

and likewise $f(0)=f(1)=\frac{1}{2}$.

Ex 2: $f(x)= \begin{cases}1 & x \in[-2,0) \\ x & x \in[0,2]\end{cases}$
Ex 3: $f(x)=\cos ^{2} x$ on $[-\pi, \pi]$

Even \& Odd Functions
Recall: Even function: $f(-x)=f(x)$
Odd function: $f(-x)=-f(x)$
Also $\cos \frac{n \pi}{2} x$ is EVEN
$\sin \frac{n \pi}{2} x$ is ODD

Therefor, if f is evens its Fourier series only contains cos's if f odd, its Fourier series only contains sin's

Since

$$
\begin{aligned}
& \operatorname{ODD}(x) \cdot \operatorname{EVEN}(x)=\operatorname{ODD}(x) \\
& \operatorname{ODP}(x) \cdot \operatorname{ODD}(x)=\operatorname{EVEN}(x) \\
& \operatorname{EVEN}(x) \cdot \operatorname{EVEN}(x)=\operatorname{EVEN}(x)
\end{aligned}
$$

Also, if f is odd, then

$$
\begin{aligned}
\int_{-L}^{L} f(x) d x & =\int_{-L}^{0} f(x) d x+\int_{0}^{L} f(x) d x \\
& =\int_{0}^{L}-f(x) d x+\int_{0}^{L} f(x) d x \\
& =0
\end{aligned}
$$

Example: If f is odd:
Then $a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x=0$ since $f \cdot \cos$ is odd.

$$
\begin{aligned}
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{1}{L}\left(\int_{-L}^{0} f(x) \sin \frac{n \pi x}{L} d x+\int_{0}^{L} f(x) \sin \frac{n \pi x}{2} d x\right) \\
& =\frac{1}{L}\left(\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x+\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x\right)=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

Extensions
Any fuctivin on $[0, L]$ can be expanded as either a sine or cosine series by computing an extension.
Let f be defined on $(0,1]$.
Then the odd extension of f to $[-L, 0)$ is:

$$
F(x)=\left\{\begin{aligned}
f(x), & x \in[0, L] \\
-f(-x), & x \in[-L, 0)
\end{aligned}\right.
$$

The even extension of f to $[-L, 0)$ is:

$$
G(x)= \begin{cases}f(x), & x \in[0, c] \\ f(-x), & x \in[-1,0)\end{cases}
$$

\Rightarrow Since F is odd, it can be expanded in a sine series, since G is even, it an be expanded in a cosine series. And on $[0, L], F(x)=G(x)$.

