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10.1 Reducing the dimension of the computational domain

Our model problem will be the Laplace equation with Dirichlet data:{
−∆u = 0, in Ω

u = f , on Γ := ∂Ω

where Ω ⊂ R2 is simply connected, open, with smooth boundary Γ.

We want a solution u of the form

u(x) =

∫
Γ
φ(x − y)σ(y) ds(y), x ∈ Ω

where φ(x) = − 1
2π log(|x |) is the free space Green’s function for −∆

in 2D.

This expression for u looks like a superposition of φ weighted by σ.
So we formally expect −∆u = 0 since φ is harmonic away from 0.
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10.1 Reducing the dimension of the computational domain

To match the boundary condition, we solve the Boundary Integral
Equation (BIE) formulation of our original problem:∫

Γ
φ(x − y)σ(y) ds(y) = f (x), x ∈ Γ (1)

From a numerics standpoint, this formulation requires fewer degrees
of freedom since discretizing Γ is much easier than discretizing Ω.

Our single-layer operator S is:

[Sσ](x) =

∫
Γ
φ(x − y)σ(x) ds(y) =

∫
Γ
− 1

2π
log(|x − y |)σ(y) ds(y)

Existence and uniqueness of solutions σ to (1) require some technical
assumptions (primarily f ∈ C 1,α(Γ) + geometric condition on Ω)1,
but formal manipulations typically hold.

1more details in chapters 6, 7 of Linear Integral Equations by R. Kress
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10.2 Obtaining a well-conditioned mathematical equation

The BIE (1) leads to linear systems with condition number O(h−1)
using a grid size h. This beats O(h−2) from FD or FEM
discretizations.

The approach in this section will give a BIE leading to condition
number converging to a finite number as h→ 0.

For y ∈ Γ, define

d(x , y) = n(y) · ∇yφ(x − y) =
n(y) · (x − y)

2π|x − y |2

for x ∈ Ω. This is just the normal derivative of φ at y .

Now seek solutions of the form

u(x) =

∫
Γ
d(x , y)σ(y) ds(y)
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10.2 Obtaining a well-conditioned mathematical equation

Just like before, we expect u to satisfy −∆u = 0 in Ω, so we just
need to worry about matching the boundary condition.

The singularity from d(x , y) is stronger than from φ(x − y). Turns
out [Sσ](x) is continuous as you approach Γ, but when using d(x , y)
we pick up an extra term.

Our BIE formulation now becomes

−1

2
σ(x) +

∫
Γ
d(x , y)σ(y) ds(y) = f (x), x ∈ Γ (2)

Our double-layer operator D is

[Dσ](x) =

∫
Γ
d(x , y)σ(y) ds(y) =

∫
Γ

n(y) · (x − y)

2π|x − y |2
σ(y) ds(y)

Note [Dσ] is defined on Ω, but has a jump as you approach Γ.
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10.2 Obtaining a well-conditioned mathematical equation

The BIE
(
−1

2 I + D
)
σ = f is a Fredholm equation of the second kind,

and technical results regarding compact operators tell us that
discretizations of this BIE lead to exceedingly well-conditioning
systems.

Even better, the eigenvalues for discretizations of
(
−1

2 I + D
)
σ = f

are clustered near −1/2, so we can expect iterative solvers to
converge rapidly (with # of iterations independent of grid size)

.
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10.3 External domain and B.C. at ∞ for Laplace equation

What about exterior problems?{ −∆u = 0, in Ω
u = f , on Γ

lim|x |→∞
(
u(x) + Q

2π log |x |
)

= 0, for some Q ∈ R

where now Ω is the domain exterior to the smooth close contour Γ.
The third line is a growth condition at ∞.

The computational domain Ω is unbounded, so if we used FD or FEM
methods, we would have to artificially truncate the domain and
impose artificial boundary conditions.

Conversion to a BIE makes the computational domain Γ which is
bounded. With a single-layer potential, the solution is u(x) = [Sσ](x)
in Ω, where σ(y) solves the BIE:

[Sσ](x) =

∫
Γ
φ(x − y)σ(y) ds(y) = f (x), x ∈ Γ (3)
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10.3 External domain and B.C. at ∞ for Laplace equation

The single-layer solution u automatically satisfies −∆u = 0 in Ω like
before, and also automatically satisfies the growth condition since

inf
y∈Γ
|φ(x − y)| . |u(x)| . sup

y∈Γ
|φ(x − y)|, ∀x ∈ Ω

Similar to the interior Dirichlet problem, the single layer formulation
upon discretization gives linear systems whose condition number
grows with # of points describing Γ.

If we want to use a double-layer formulation, we need to correct for
the growth condition, since

[Dσ](x) =

∫
Γ
d(x , y)σ(y) ds(y) =

∫
Γ

n(y) · (x − y)

2π|x − y |2
σ(y) ds(y)

should now decay like |x |−1.
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10.3 External domain and B.C. at ∞ for Laplace equation

To manually correct for the decay of the double-layer, we fix z interior
to Γ, and look for solutions of the form

u(x) = [Dσ](x) + φ(x − z)

∫
Γ
σ(y) ds(y)

These solutions now satisfy the growth condition and still satisfy
−∆u = 0 in Ω since z /∈ Ω. The resulting BIE for σ is then

1

2
σ(x) +

∫
Γ

[d(x , y) + φ(x − z)]σ(y) ds(y) = f (x), x ∈ Γ (4)

note that in the exterior problem we pick up a term + 1
2σ(x) while in

the interior problem we picked up −1
2σ(x).
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10.4 The Helmholtz equation

Other PDE can be also be solved using a BIE formulation. Consider
the interior Dirichlet problem for the Helmholtz equation with positive
wave number κ. {

−∆u − κ2u = 0, in Ω
u = f , on Γ

The free space Green’s function for the Helmholtz operator is given

by the zeroth order Hankel function: φκ(x) = i
4H

(1)
0 (κ|x |).

We can repeat the exact same process as for −∆ and get the single
and double-layer operators:

[Sκσ](x) =

∫
Γ
φκ(x − y)σ(y) ds(y)

[Dκσ](x) =

∫
Γ
dκ(x , y)σ(y) ds(y)

where dκ(x , y) = n(y) · ∇yφκ(x − y).
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10.4 The Helmholtz equation

The function φκ(x) has a log-singularity near the origin, just like
φ(x), hence we expect the layer operators to behave similarly.

If we try to use a double-layer formulation and look for solutions of
the form u(x) = [Dκσ](x), we get the BIE

(
−1

2 I + Dκ
)
σ = f on Γ

which is not well defined for all κ.

To remedy this, the combined field formulation uses a linear
combination of Sκ and Dκ. We look for solutions of the form
u(x) = [(Dκ + iηSκ)σ](x) where η = ±κ. The resulting BIE is[(

−1

2
I + Dκ + iηSκ

)
σ

]
(x) = f (x), x ∈ Γ (5)
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10.5 Radiation conditions for Helmholtz equation

Just like for the Laplace equation, we can also apply a BIE
formulation for exterior Helmholtz problems:

{ −∆u − κ2u = 0, in Ω
u = f , on Γ

limr→∞
√
r
(
∂u(rz)
∂r − iκu(rz)

)
= 0, for every unit vector z

where the last term is a condition at ∞. This exterior equation is
useful in modeling certain types of scattering problems.

Using the combined field formulation and guessing solutions like
u(x) = [(Dκ + iηSκ)σ](x), the corresponding BIE for σ is[(

1

2
I + Dκ + iηSκ

)
σ

]
(x) = f (x), x ∈ Γ (6)

F. Law Integral Equations: Continuous Theory October 14, 2020 12 / 23



10.6 ”Direct” derivation of BIE for harmonic potentials

Here, we derive a direct method of reformulating Laplace’s equation
as a BIE. Let s(x , y) = φ(x − y) and d(x , y) = n(y) · ∇yφ(x − y).

Theorem

Let Γ be a smooth, bounded domain in R2. For any u such that −∆u = 0
in Ω, then for x ∈ R2:

θ(x)u(x) =

∫
Γ

(
s(x , y)

∂u(y)

∂n
− d(x , y)u(y)

)
ds(y), (7)

where

θ(x) =


1 for x ∈ Ω

1/2 for x ∈ Γ

0 for x ∈ Ω
c
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10.6 ”Direct” derivation of BIE for harmonic potentials

Given boundary conditions on Γ, we can use (7) to immediately
convert the PDE to a BIE:

Dirichlet data: u = f on Γ. Then (7) gives the BIE for ∂u
∂n

∣∣
Γ
:∫

Γ

s(x , y)
∂u(y)

∂n
ds(y) =

1

2
f (x) +

∫
Γ

d(x , y)f (y) ds(y), x ∈ Γ

If we solve this BIE for ∂u
∂n

∣∣
Γ
, we can use (7) to recover u in Ω.

Neumann data: ∂u
∂n = f on Γ. Then (7) gives the BIE for u

∣∣
Γ
:

1

2
u(x) +

∫
Γ

d(x , y)u(y) ds(y) =

∫
Γ

s(x , y)f (y) ds(y), x ∈ Γ

If we solve this BIE for u
∣∣
Γ
, we can use (7) to recover u on Ω.
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10.6 ”Direct” derivation of BIE for harmonic potentials

Equation (7) also tells us why we pick up a factor of 1
2 in the double

layer formulation. Applying (7) with u ≡ 1 gives

∫
Γ
d(x , y) ds(y) =


−1, for x ∈ Ω

−1/2, for x ∈ Γ

0, for x ∈ Ω
c

Then for continuous σ defined on Γ and x ∈ Γ, we get

lim
x ′→x

[Dσ](x ′) = −1

2
σ(x) + [Dσ](x), x ′ ∈ Ω

Proof sketch: [Dσ](x ′) =
∫

Γ d(x ′, y)(σ(y)− σ(x)) ds(y)− σ(x),
assume some regularity on σ, swap limit with integral.

F. Law Integral Equations: Continuous Theory October 14, 2020 15 / 23



10.6 ”Direct” derivation of BIE for harmonic potentials

Equation (7) also tells us why we pick up a factor of 1
2 in the double

layer formulation. Applying (7) with u ≡ 1 gives

∫
Γ
d(x , y) ds(y) =


−1, for x ∈ Ω

−1/2, for x ∈ Γ

0, for x ∈ Ω
c

Then for continuous σ defined on Γ and x ∈ Γ, we get

lim
x ′→x

[Dσ](x ′) = −1

2
σ(x) + [Dσ](x), x ′ ∈ Ω

Proof sketch: [Dσ](x ′) =
∫

Γ d(x ′, y)(σ(y)− σ(x)) ds(y)− σ(x),
assume some regularity on σ, swap limit with integral.

F. Law Integral Equations: Continuous Theory October 14, 2020 15 / 23



10.6 ”Direct” derivation of BIE for harmonic potentials

Proof outline for Theorem. For a fixed x ∈ R2, set v(y) = φ(x − y).
Green’s 2nd identity says∫

Ω
u∆v − v∆u =

∫
Γ
d(x , y)u(y)− s(x , y)

∂u(y)

∂n
ds(y) (8)

Case 1 : x ∈ Ω
c
. Then u, v harmonic in Ω, so LHS of (8) is 0.
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10.6 ”Direct” derivation of BIE for harmonic potentials

Case 2 : x ∈ Ω. Now v is not harmonic in Ω. Let Bε(x) be ball of
radius ε centered at x . Apply (8) to Ω\Bε(x) and show

lim
ε→0+

∫
∂Bε(x)

u
∂v
∂n

= u(x), lim
ε→0+

∫
∂Bε(x)

v
∂u

∂n
= 0
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10.6 ”Direct” derivation of BIE for harmonic potentials

Case 3 : x ∈ Γ. Nearly same argument as in Case 2, but the cut
boundary is slightly different. Apply (8) to Ω\Bε(x)

lim
ε→0+

∫
Λε

u
∂v
∂n

=
1

2
u(x), lim

ε→0+

∫
Λε

v
∂u

∂n
= 0
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11.1 Problems with body loads

Now consider a body load g for Laplace’s equation:{
−∆u = g , in Ω

u = f , on Γ

We can first compute a particular solution up which satifies
−∆up = g on Ω, ignoring boundary conditions. Analytically:
up(x) =

∫
Ω φ(x − y)g(y) dy which will satisfy −∆u = g in Ω.

Then set uh = u − up which solves (via BIE formulation):

{
−∆uh = 0, in Ω
uh = f − up, on Γ

Computing up can be challenging, due complicated Ω and singular φ.
That said, there are methods of extending Ω and g to be simpler
computationally (e.g. put Ω inside a big box and smoothly extend g).
Then specialized methods like FMM or FFT can evaluate up fast.
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11.2 Variable coefficient PDE; Lippmann-Schwinger
equation

For variable coefficient PDE, integral formulations are still possible
but typically they are volume integral equations.

While these formulations lose the benefit of reducing the dimension of
the computational domain, they still retains the benefits of finite
computational domain + well-conditioned systems.

As an example, consider the free space, variance coefficient Helmholtz
equation:{
−∆u(x)− κ2(1− b(x)2)u(x) = −κ2b(x)uin(x), in R2

∂u(x)
∂r − iκu(x) = o(r−1/2), as r = |x | → ∞.

which models acoustic wave propagation in a medium with variable
wave speed. Assume b is smooth, vanishes outside Ω, and bounded
by 1, and that uin solves Helmholtz in Ω with constant κ.
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11.2 Variable coefficient PDE; Lippmann-Schwinger
equation

{
−∆u(x)− κ2(1− b(x)2)u(x) = −κ2b(x)uin(x), in R2

∂u(x)
∂r − iκu(x) = o(r−1/2), as r = |x | → ∞.

Here, b indicates how much wave speed in Ω differs compared to free
space wave speed.
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11.2 Variable coefficient PDE; Lippmann-Schwinger
equation

Free space Green’s function for Helmwoltz with radiating BC is

Gκ(x , y) = i
4H

(1)
0 (|x − y |), where H

(1)
0 is the zeroth order Hankel

function.

Search for solutions of the form

u(x) =

∫
Ω
Gκ(x , y)σ(y) dy , x ∈ R2

This leads to the BIE for σ:

σ(x) + κ2b(x)

∫
Ω
Gκ(x , y)σ(y) dy = −κ2b(x)uin(x), x ∈ Ω

Computational domain is now Ω which is bounded (instead of R2),
and the above BIE leads to well-conditioned systems (just like
double-layer formulation).
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Summary + Extensions

Integral equations serve as a powerful, alternative modeling tool to
PDE. Benefits include

Reducing dimension of computational domain (Ω down to Γ).
Well-conditioned systems upon discretization (e.g. double-layer
formulation)
Can handle exterior problems with a finite computational domain.

Different BIE formulations with different properties can be found for
the same PDE.

With extra work/challenges, can be extended to other types of
models (e.g. linear elasticity, Stokes flow, time-Harmonic Maxwell).

3D is possible, but Γ harder to treat as a surface + kernels are more
singular.
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