Integral Equations: Continuous Theory

Freddy Law

October 14, 2020

10.1 Reducing the dimension of the computational domain

- Our model problem will be the Laplace equation with Dirichlet data:

$$
\left\{\begin{aligned}
-\Delta u=0, & \text { in } \Omega \\
u=f, & \text { on } \Gamma:=\partial \Omega
\end{aligned}\right.
$$

where $\Omega \subset \mathbb{R}^{2}$ is simply connected, open, with smooth boundary Γ.

10.1 Reducing the dimension of the computational domain

- Our model problem will be the Laplace equation with Dirichlet data:

$$
\left\{\begin{aligned}
-\Delta u=0, & \text { in } \Omega \\
u=f, & \text { on } \Gamma:=\partial \Omega
\end{aligned}\right.
$$

where $\Omega \subset \mathbb{R}^{2}$ is simply connected, open, with smooth boundary Γ.

- We want a solution u of the form

$$
u(\boldsymbol{x})=\int_{\Gamma} \phi(\boldsymbol{x}-\boldsymbol{y}) \sigma(\boldsymbol{y}) d s(\boldsymbol{y}), \quad \boldsymbol{x} \in \Omega
$$

where $\phi(\boldsymbol{x})=-\frac{1}{2 \pi} \log (|\boldsymbol{x}|)$ is the free space Green's function for $-\Delta$ in 2D.

- This expression for u looks like a superposition of ϕ weighted by σ. So we formally expect $-\Delta u=0$ since ϕ is harmonic away from 0 .

10.1 Reducing the dimension of the computational domain

- To match the boundary condition, we solve the Boundary Integral Equation (BIE) formulation of our original problem:

$$
\begin{equation*}
\int_{\Gamma} \phi(\boldsymbol{x}-\boldsymbol{y}) \sigma(\boldsymbol{y}) d s(\boldsymbol{y})=f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Gamma \tag{1}
\end{equation*}
$$

- From a numerics standpoint, this formulation requires fewer degrees of freedom since discretizing Γ is much easier than discretizing Ω.

[^0]
10.1 Reducing the dimension of the computational domain

- To match the boundary condition, we solve the Boundary Integral Equation (BIE) formulation of our original problem:

$$
\begin{equation*}
\int_{\Gamma} \phi(\boldsymbol{x}-\boldsymbol{y}) \sigma(\boldsymbol{y}) d s(\boldsymbol{y})=f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Gamma \tag{1}
\end{equation*}
$$

- From a numerics standpoint, this formulation requires fewer degrees of freedom since discretizing Γ is much easier than discretizing Ω.
- Our single-layer operator S is:

$$
[S \sigma](\boldsymbol{x})=\int_{\Gamma} \phi(\boldsymbol{x}-\boldsymbol{y}) \sigma(\boldsymbol{x}) d s(\boldsymbol{y})=\int_{\Gamma}-\frac{1}{2 \pi} \log (|\boldsymbol{x}-\boldsymbol{y}|) \sigma(y) d s(\boldsymbol{y})
$$

- Existence and uniqueness of solutions σ to (1) require some technical assumptions (primarily $f \in C^{1, \alpha}(\Gamma)+$ geometric condition on $\left.\Omega\right)^{1}$, but formal manipulations typically hold.

[^1]
10.2 Obtaining a well-conditioned mathematical equation

- The BIE (1) leads to linear systems with condition number $O\left(h^{-1}\right)$ using a grid size h. This beats $O\left(h^{-2}\right)$ from FD or FEM discretizations.
- The approach in this section will give a BIE leading to condition number converging to a finite number as $h \rightarrow 0$.

10.2 Obtaining a well-conditioned mathematical equation

- The BIE (1) leads to linear systems with condition number $O\left(h^{-1}\right)$ using a grid size h. This beats $O\left(h^{-2}\right)$ from FD or FEM discretizations.
- The approach in this section will give a BIE leading to condition number converging to a finite number as $h \rightarrow 0$.
- For $\boldsymbol{y} \in \Gamma$, define

$$
d(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{n}(\boldsymbol{y}) \cdot \nabla_{\boldsymbol{y}} \phi(\boldsymbol{x}-\boldsymbol{y})=\frac{\boldsymbol{n}(\boldsymbol{y}) \cdot(\boldsymbol{x}-\boldsymbol{y})}{2 \pi|\boldsymbol{x}-\boldsymbol{y}|^{2}}
$$

for $\boldsymbol{x} \in \Omega$. This is just the normal derivative of ϕ at \boldsymbol{y}.

- Now seek solutions of the form

$$
u(\boldsymbol{x})=\int_{\Gamma} d(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) d s(\boldsymbol{y})
$$

10.2 Obtaining a well-conditioned mathematical equation

- Just like before, we expect u to satisfy $-\Delta u=0$ in Ω, so we just need to worry about matching the boundary condition.
- The singularity from $d(\boldsymbol{x}, \boldsymbol{y})$ is stronger than from $\phi(\boldsymbol{x}-\boldsymbol{y})$. Turns out $[S \sigma](\boldsymbol{x})$ is continuous as you approach Γ, but when using $d(\boldsymbol{x}, \boldsymbol{y})$ we pick up an extra term.

10.2 Obtaining a well-conditioned mathematical equation

- Just like before, we expect u to satisfy $-\Delta u=0$ in Ω, so we just need to worry about matching the boundary condition.
- The singularity from $d(\boldsymbol{x}, \boldsymbol{y})$ is stronger than from $\phi(\boldsymbol{x}-\boldsymbol{y})$. Turns out $[S \sigma](\boldsymbol{x})$ is continuous as you approach Γ, but when using $d(\boldsymbol{x}, \boldsymbol{y})$ we pick up an extra term.
- Our BIE formulation now becomes

$$
\begin{equation*}
-\frac{1}{2} \sigma(\boldsymbol{x})+\int_{\Gamma} d(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) d s(\boldsymbol{y})=f(\boldsymbol{x}), \quad x \in \Gamma \tag{2}
\end{equation*}
$$

- Our double-layer operator D is

$$
[D \sigma](\boldsymbol{x})=\int_{\Gamma} d(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) d s(\boldsymbol{y})=\int_{\Gamma} \frac{\boldsymbol{n}(\boldsymbol{y}) \cdot(\boldsymbol{x}-\boldsymbol{y})}{2 \pi|\boldsymbol{x}-\boldsymbol{y}|^{2}} \sigma(\boldsymbol{y}) d s(\boldsymbol{y})
$$

Note $[D \sigma]$ is defined on $\bar{\Omega}$, but has a jump as you approach Γ.

10.2 Obtaining a well-conditioned mathematical equation

- The BIE $\left(-\frac{1}{2} I+D\right) \sigma=f$ is a Fredholm equation of the second kind, and technical results regarding compact operators tell us that discretizations of this BIE lead to exceedingly well-conditioning systems.
- Even better, the eigenvalues for discretizations of $\left(-\frac{1}{2} I+D\right) \sigma=f$ are clustered near $-1 / 2$, so we can expect iterative solvers to converge rapidly (with \# of iterations independent of grid size)

10.3 External domain and B.C. at ∞ for Laplace equation

- What about exterior problems?

$$
\left\{\begin{array}{rlrl}
-\Delta u & =0, & & \text { in } \Omega \\
u & =f, & \text { on } \Gamma \\
\lim _{|x| \rightarrow \infty}\left(u(\boldsymbol{x})+\frac{Q}{2 \pi} \log |\boldsymbol{x}|\right) & =0, & & \text { for some } Q \in \mathbb{R}
\end{array}\right.
$$

where now Ω is the domain exterior to the smooth close contour Γ. The third line is a growth condition at ∞.

- The computational domain Ω is unbounded, so if we used FD or FEM methods, we would have to artificially truncate the domain and impose artificial boundary conditions.

10.3 External domain and B.C. at ∞ for Laplace equation

- What about exterior problems?

$$
\left\{\begin{aligned}
-\Delta u & =0, & & \text { in } \Omega \\
u & =f, & & \text { on } \Gamma \\
\lim _{|\boldsymbol{x}| \rightarrow \infty}\left(u(\boldsymbol{x})+\frac{Q}{2 \pi} \log |\boldsymbol{x}|\right) & =0, & & \text { for some } Q \in \mathbb{R}
\end{aligned}\right.
$$

where now Ω is the domain exterior to the smooth close contour Γ.
The third line is a growth condition at ∞.

- The computational domain Ω is unbounded, so if we used FD or FEM methods, we would have to artificially truncate the domain and impose artificial boundary conditions.
- Conversion to a BIE makes the computational domain Γ which is bounded. With a single-layer potential, the solution is $u(\boldsymbol{x})=[S \sigma](\boldsymbol{x})$ in Ω, where $\sigma(\boldsymbol{y})$ solves the BIE:

$$
\begin{equation*}
[S \sigma](\boldsymbol{x})=\int_{\Gamma} \phi(\boldsymbol{x}-\boldsymbol{y}) \sigma(\boldsymbol{y}) d s(\boldsymbol{y})=f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Gamma \tag{3}
\end{equation*}
$$

10.3 External domain and B.C. at ∞ for Laplace equation

- The single-layer solution u automatically satisfies $-\Delta u=0$ in Ω like before, and also automatically satisfies the growth condition since

$$
\inf _{y \in \Gamma}|\phi(\boldsymbol{x}-\boldsymbol{y})| \lesssim|u(\boldsymbol{x})| \lesssim \sup _{y \in \Gamma}|\phi(\boldsymbol{x}-\boldsymbol{y})|, \quad \forall \boldsymbol{x} \in \Omega
$$

- Similar to the interior Dirichlet problem, the single layer formulation upon discretization gives linear systems whose condition number grows with \# of points describing Γ.

10.3 External domain and B.C. at ∞ for Laplace equation

- The single-layer solution u automatically satisfies $-\Delta u=0$ in Ω like before, and also automatically satisfies the growth condition since

$$
\inf _{y \in \Gamma}|\phi(\boldsymbol{x}-\boldsymbol{y})| \lesssim|u(\boldsymbol{x})| \lesssim \sup _{y \in \Gamma}|\phi(\boldsymbol{x}-\boldsymbol{y})|, \quad \forall \boldsymbol{x} \in \Omega
$$

- Similar to the interior Dirichlet problem, the single layer formulation upon discretization gives linear systems whose condition number grows with \# of points describing Γ.
- If we want to use a double-layer formulation, we need to correct for the growth condition, since

$$
[D \sigma](\boldsymbol{x})=\int_{\Gamma} d(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) d s(\boldsymbol{y})=\int_{\Gamma} \frac{\boldsymbol{n}(\boldsymbol{y}) \cdot(\boldsymbol{x}-\boldsymbol{y})}{2 \pi|\boldsymbol{x}-\boldsymbol{y}|^{2}} \sigma(\boldsymbol{y}) d s(\boldsymbol{y})
$$

should now decay like $|\boldsymbol{x}|^{-1}$.

10.3 External domain and B.C. at ∞ for Laplace equation

- To manually correct for the decay of the double-layer, we fix z interior to Γ, and look for solutions of the form

$$
u(\boldsymbol{x})=[D \sigma](\boldsymbol{x})+\phi(\boldsymbol{x}-\boldsymbol{z}) \int_{\Gamma} \sigma(\boldsymbol{y}) d s(\boldsymbol{y})
$$

These solutions now satisfy the growth condition and still satisfy $-\Delta u=0$ in Ω since $\boldsymbol{z} \notin \Omega$. The resulting BIE for σ is then

$$
\begin{equation*}
\frac{1}{2} \sigma(\boldsymbol{x})+\int_{\Gamma}[d(\boldsymbol{x}, \boldsymbol{y})+\phi(\boldsymbol{x}-\boldsymbol{z})] \sigma(\boldsymbol{y}) d s(\boldsymbol{y})=f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Gamma \tag{4}
\end{equation*}
$$

note that in the exterior problem we pick up a term $+\frac{1}{2} \sigma(x)$ while in the interior problem we picked up $-\frac{1}{2} \sigma(x)$.

10.4 The Helmholtz equation

- Other PDE can be also be solved using a BIE formulation. Consider the interior Dirichlet problem for the Helmholtz equation with positive wave number κ.

$$
\left\{\begin{aligned}
-\Delta u-\kappa^{2} u & =0, & & \text { in } \Omega \\
u & =f, & & \text { on } \Gamma
\end{aligned}\right.
$$

- The free space Green's function for the Helmholtz operator is given by the zeroth order Hankel function: $\phi_{\kappa}(\boldsymbol{x})=\frac{i}{4} H_{0}^{(1)}(\kappa|\boldsymbol{x}|)$.

10.4 The Helmholtz equation

- Other PDE can be also be solved using a BIE formulation. Consider the interior Dirichlet problem for the Helmholtz equation with positive wave number κ.

$$
\left\{\begin{aligned}
-\Delta u-\kappa^{2} u & =0, & & \text { in } \Omega \\
u & =f, & & \text { on } \Gamma
\end{aligned}\right.
$$

- The free space Green's function for the Helmholtz operator is given by the zeroth order Hankel function: $\phi_{\kappa}(\boldsymbol{x})=\frac{i}{4} H_{0}^{(1)}(\kappa|\boldsymbol{x}|)$.
- We can repeat the exact same process as for $-\Delta$ and get the single and double-layer operators:

$$
\begin{aligned}
& {\left[S_{\kappa} \sigma\right](\boldsymbol{x})=\int_{\Gamma} \phi_{\kappa}(\boldsymbol{x}-\boldsymbol{y}) \sigma(\boldsymbol{y}) d s(\boldsymbol{y})} \\
& {\left[D_{\kappa} \sigma\right](\boldsymbol{x})=\int_{\Gamma} d_{\kappa}(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) d s(\boldsymbol{y})}
\end{aligned}
$$

where $d_{\kappa}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{n}(\boldsymbol{y}) \cdot \nabla_{\boldsymbol{y}} \phi_{\kappa}(\boldsymbol{x}-\boldsymbol{y})$.

10.4 The Helmholtz equation

- The function $\phi_{\kappa}(\boldsymbol{x})$ has a log-singularity near the origin, just like $\phi(x)$, hence we expect the layer operators to behave similarly.
- If we try to use a double-layer formulation and look for solutions of the form $u(\boldsymbol{x})=\left[D_{\kappa} \sigma\right](\boldsymbol{x})$, we get the $\operatorname{BIE}\left(-\frac{1}{2} I+D_{\kappa}\right) \sigma=f$ on Γ which is not well defined for all κ.

10.4 The Helmholtz equation

- The function $\phi_{\kappa}(\boldsymbol{x})$ has a log-singularity near the origin, just like $\phi(x)$, hence we expect the layer operators to behave similarly.
- If we try to use a double-layer formulation and look for solutions of the form $u(\boldsymbol{x})=\left[D_{\kappa} \sigma\right](\boldsymbol{x})$, we get the $\operatorname{BIE}\left(-\frac{1}{2} I+D_{\kappa}\right) \sigma=f$ on Γ which is not well defined for all κ.
- To remedy this, the combined field formulation uses a linear combination of S_{κ} and D_{κ}. We look for solutions of the form $u(\boldsymbol{x})=\left[\left(D_{\kappa}+i \eta S_{\kappa}\right) \sigma\right](\boldsymbol{x})$ where $\eta= \pm \kappa$. The resulting BIE is

$$
\begin{equation*}
\left[\left(-\frac{1}{2} I+D_{\kappa}+i \eta S_{\kappa}\right) \sigma\right](\boldsymbol{x})=f(\boldsymbol{x}), \quad x \in \Gamma \tag{5}
\end{equation*}
$$

10.5 Radiation conditions for Helmholtz equation

- Just like for the Laplace equation, we can also apply a BIE formulation for exterior Helmholtz problems:

$$
\left\{\begin{aligned}
-\Delta u-\kappa^{2} u & =0, & & \text { in } \Omega \\
u & =f, & & \text { on } \Gamma \\
\lim _{r \rightarrow \infty} \sqrt{r}\left(\frac{\partial u(r z)}{\partial r}-i \kappa u(r z)\right) & =0, & & \text { for every unit vector } z
\end{aligned}\right.
$$

where the last term is a condition at ∞. This exterior equation is useful in modeling certain types of scattering problems.

- Using the combined field formulation and guessing solutions like $u(\boldsymbol{x})=\left[\left(D_{\kappa}+i \eta S_{\kappa}\right) \sigma\right](\boldsymbol{x})$, the corresponding BIE for σ is

$$
\begin{equation*}
\left[\left(\frac{1}{2} I+D_{\kappa}+i \eta S_{\kappa}\right) \sigma\right](x)=f(x), \quad x \in \Gamma \tag{6}
\end{equation*}
$$

10.6 "Direct" derivation of BIE for harmonic potentials

- Here, we derive a direct method of reformulating Laplace's equation as a BIE. Let $s(\boldsymbol{x}, \boldsymbol{y})=\phi(\boldsymbol{x}-\boldsymbol{y})$ and $d(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{n}(\boldsymbol{y}) \cdot \nabla_{\boldsymbol{y}} \phi(\boldsymbol{x}-\boldsymbol{y})$.

Theorem

Let Γ be a smooth, bounded domain in \mathbb{R}^{2}. For any u such that $-\Delta u=0$ in Ω, then for $\boldsymbol{x} \in \mathbb{R}^{2}$:

$$
\begin{equation*}
\theta(\boldsymbol{x}) u(\boldsymbol{x})=\int_{\Gamma}\left(s(\boldsymbol{x}, \boldsymbol{y}) \frac{\partial u(\boldsymbol{y})}{\partial \boldsymbol{n}}-d(\boldsymbol{x}, \boldsymbol{y}) u(\boldsymbol{y})\right) d s(\boldsymbol{y}) \tag{7}
\end{equation*}
$$

where

$$
\theta(x)= \begin{cases}1 & \text { for } x \in \Omega \\ 1 / 2 & \text { for } x \in \Gamma \\ 0 & \text { for } x \in \bar{\Omega}^{c}\end{cases}
$$

10.6 "Direct" derivation of BIE for harmonic potentials

- Given boundary conditions on Г, we can use (7) to immediately convert the PDE to a BIE:
- Dirichlet data: $u=f$ on Γ. Then (7) gives the BIE for $\left.\frac{\partial u}{\partial \boldsymbol{n}}\right|_{\Gamma}$:

$$
\int_{\Gamma} s(\boldsymbol{x}, \boldsymbol{y}) \frac{\partial u(\boldsymbol{y})}{\partial \boldsymbol{n}} d s(\boldsymbol{y})=\frac{1}{2} f(\boldsymbol{x})+\int_{\Gamma} d(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) d s(\boldsymbol{y}), \quad \boldsymbol{x} \in \Gamma
$$

If we solve this BIE for $\left.\frac{\partial u}{\partial \boldsymbol{n}}\right|_{\Gamma}$, we can use (7) to recover u in Ω.

10.6 "Direct" derivation of BIE for harmonic potentials

- Given boundary conditions on Г, we can use (7) to immediately convert the PDE to a BIE:
- Dirichlet data: $u=f$ on Γ. Then (7) gives the BIE for $\left.\frac{\partial u}{\partial \boldsymbol{n}}\right|_{\Gamma}$:

$$
\int_{\Gamma} s(\boldsymbol{x}, \boldsymbol{y}) \frac{\partial u(\boldsymbol{y})}{\partial \boldsymbol{n}} d s(\boldsymbol{y})=\frac{1}{2} f(\boldsymbol{x})+\int_{\Gamma} d(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) d s(\boldsymbol{y}), \quad \boldsymbol{x} \in \Gamma
$$

If we solve this BIE for $\left.\frac{\partial u}{\partial \boldsymbol{n}}\right|_{\Gamma}$, we can use (7) to recover u in Ω.

- Neumann data: $\frac{\partial u}{\partial \boldsymbol{n}}=f$ on Γ. Then (7) gives the BIE for $\left.u\right|_{\Gamma}$:

$$
\frac{1}{2} u(\boldsymbol{x})+\int_{\Gamma} d(\boldsymbol{x}, \boldsymbol{y}) u(\boldsymbol{y}) d s(\boldsymbol{y})=\int_{\Gamma} s(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) d s(\boldsymbol{y}), \quad \boldsymbol{x} \in \Gamma
$$

If we solve this BIE for $\left.u\right|_{\Gamma}$, we can use (7) to recover u on Ω.

10.6 "Direct" derivation of BIE for harmonic potentials

- Equation (7) also tells us why we pick up a factor of $\frac{1}{2}$ in the double layer formulation. Applying (7) with $u \equiv 1$ gives

$$
\int_{\Gamma} d(\boldsymbol{x}, \boldsymbol{y}) d s(\boldsymbol{y})= \begin{cases}-1, & \text { for } \boldsymbol{x} \in \Omega \\ -1 / 2, & \text { for } \boldsymbol{x} \in \Gamma \\ 0, & \text { for } \boldsymbol{x} \in \bar{\Omega}^{c}\end{cases}
$$

10.6 "Direct" derivation of BIE for harmonic potentials

- Equation (7) also tells us why we pick up a factor of $\frac{1}{2}$ in the double layer formulation. Applying (7) with $u \equiv 1$ gives

$$
\int_{\Gamma} d(\boldsymbol{x}, \boldsymbol{y}) d s(\boldsymbol{y})= \begin{cases}-1, & \text { for } \boldsymbol{x} \in \Omega \\ -1 / 2, & \text { for } \boldsymbol{x} \in \Gamma \\ 0, & \text { for } \boldsymbol{x} \in \bar{\Omega}^{c}\end{cases}
$$

- Then for continuous σ defined on Γ and $\boldsymbol{x} \in \Gamma$, we get

$$
\lim _{x^{\prime} \rightarrow x}[D \sigma]\left(x^{\prime}\right)=-\frac{1}{2} \sigma(x)+[D \sigma](x), \quad x^{\prime} \in \Omega
$$

- Proof sketch: $[D \sigma]\left(\boldsymbol{x}^{\prime}\right)=\int_{\Gamma} d\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}\right)(\sigma(\boldsymbol{y})-\sigma(\boldsymbol{x})) d s(\boldsymbol{y})-\sigma(\boldsymbol{x})$, assume some regularity on σ, swap limit with integral.

10.6 "Direct" derivation of BIE for harmonic potentials

- Proof outline for Theorem. For a fixed $\boldsymbol{x} \in \mathbb{R}^{2}$, set $v(\boldsymbol{y})=\phi(\boldsymbol{x}-\boldsymbol{y})$. Green's 2nd identity says

$$
\begin{equation*}
\int_{\Omega} u \Delta v-v \Delta u=\int_{\Gamma} d(\boldsymbol{x}, \boldsymbol{y}) u(\boldsymbol{y})-s(\boldsymbol{x}, \boldsymbol{y}) \frac{\partial u(\boldsymbol{y})}{\partial \boldsymbol{n}} d s(\boldsymbol{y}) \tag{8}
\end{equation*}
$$

- Case 1: $\boldsymbol{x} \in \bar{\Omega}^{c}$. Then u, v harmonic in Ω, so LHS of (8) is 0 .

10.6 "Direct" derivation of BIE for harmonic potentials

- Case 2: $\boldsymbol{x} \in \Omega$. Now v is not harmonic in Ω. Let $B_{\varepsilon}(\boldsymbol{x})$ be ball of radius ε centered at \boldsymbol{x}. Apply (8) to $\Omega \backslash B_{\varepsilon}(\boldsymbol{x})$ and show

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\partial B_{\varepsilon}(\boldsymbol{x})} u \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{n}}=u(\boldsymbol{x}), \quad \lim _{\varepsilon \rightarrow 0^{+}} \int_{\partial B_{\varepsilon}(\boldsymbol{x})} v \frac{\partial u}{\partial \boldsymbol{n}}=0
$$

Case 2!

$$
\begin{aligned}
& u, v \text { harmonic } \\
& \text { in here } \\
& \text { on } \begin{array}{l}
\partial B_{\varepsilon}(x), v \sim \log \varepsilon \\
\frac{\partial v}{\partial u}=\frac{1}{2 \pi \varepsilon}
\end{array}
\end{aligned}
$$

10.6 "Direct" derivation of BIE for harmonic potentials

- Case 3: $\boldsymbol{x} \in \Gamma$. Nearly same argument as in Case 2, but the cut boundary is slightly different. Apply (8) to $\Omega \backslash B_{\varepsilon}(\boldsymbol{x})$

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\Lambda_{\varepsilon}} u \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{n}}=\frac{1}{2} u(\boldsymbol{x}), \quad \lim _{\varepsilon \rightarrow 0^{+}} \int_{\Lambda_{\varepsilon}} v \frac{\partial u}{\partial \boldsymbol{n}}=0
$$

11.1 Problems with body loads

- Now consider a body load g for Laplace's equation:

$$
\left\{\begin{array}{rlr}
-\Delta u=g, & \text { in } \Omega \\
u=f, & \text { on } \Gamma
\end{array}\right.
$$

- We can first compute a particular solution u_{p} which satifies $-\Delta u_{p}=g$ on Ω, ignoring boundary conditions. Analytically: $u_{p}(\boldsymbol{x})=\int_{\Omega} \phi(\boldsymbol{x}-\boldsymbol{y}) g(\boldsymbol{y}) d \boldsymbol{y}$ which will satisfy $-\Delta u=g$ in Ω.
- Then set $u_{h}=u-u_{p}$ which solves (via BIE formulation):

11.1 Problems with body loads

- Now consider a body load g for Laplace's equation:

$$
\left\{\begin{aligned}
-\Delta u & =g, & & \text { in } \Omega \\
u & =f, & & \text { on } \Gamma
\end{aligned}\right.
$$

- We can first compute a particular solution u_{p} which satifies $-\Delta u_{p}=g$ on Ω, ignoring boundary conditions. Analytically: $u_{p}(\boldsymbol{x})=\int_{\Omega} \phi(\boldsymbol{x}-\boldsymbol{y}) g(\boldsymbol{y}) d \boldsymbol{y}$ which will satisfy $-\Delta u=g$ in Ω.
- Then set $u_{h}=u-u_{p}$ which solves (via BIE formulation):

$$
\left\{\begin{array}{cc}
-\Delta u_{h}=0, & \text { in } \Omega \\
u_{h}=f-u_{p}, & \text { on } \Gamma
\end{array}\right.
$$

- Computing u_{p} can be challenging, due complicated Ω and singular ϕ. That said, there are methods of extending Ω and g to be simpler computationally (e.g. put Ω inside a big box and smoothly extend g). Then specialized methods like FMM or FFT can evaluate u_{p} fast.

11.2 Variable coefficient PDE; Lippmann-Schwinger equation

- For variable coefficient PDE, integral formulations are still possible but typically they are volume integral equations.
- While these formulations lose the benefit of reducing the dimension of the computational domain, they still retains the benefits of finite computational domain + well-conditioned systems.

11.2 Variable coefficient PDE; Lippmann-Schwinger equation

- For variable coefficient PDE, integral formulations are still possible but typically they are volume integral equations.
- While these formulations lose the benefit of reducing the dimension of the computational domain, they still retains the benefits of finite computational domain + well-conditioned systems.
- As an example, consider the free space, variance coefficient Helmholtz equation:

$$
\left\{\begin{array}{cl}
-\Delta u(\boldsymbol{x})-\kappa^{2}\left(1-b(\boldsymbol{x})^{2}\right) u(\boldsymbol{x})=-\kappa^{2} b(\boldsymbol{x}) u_{\text {in }}(\boldsymbol{x}), & \text { in } \mathbb{R}^{2} \\
\frac{\partial u(\boldsymbol{x})}{\partial r}-i \kappa u(\boldsymbol{x})=o\left(r^{-1 / 2}\right), & \text { as } r=|\boldsymbol{x}| \rightarrow \infty
\end{array}\right.
$$

which models acoustic wave propagation in a medium with variable wave speed. Assume b is smooth, vanishes outside Ω, and bounded by 1 , and that $u_{\text {in }}$ solves Helmholtz in Ω with constant κ.

11.2 Variable coefficient PDE; Lippmann-Schwinger equation

scattered field u
artificial domain Ω

$$
\left\{\begin{array}{cl}
-\Delta u(\boldsymbol{x})-\kappa^{2}\left(1-b(\boldsymbol{x})^{2}\right) u(\boldsymbol{x})=-\kappa^{2} b(\boldsymbol{x}) u_{\text {in }}(\boldsymbol{x}), & \text { in } \mathbb{R}^{2} \\
\frac{\partial u(\boldsymbol{x})}{\partial r}-i \kappa u(\boldsymbol{x})=o\left(r^{-1 / 2}\right), & \text { as } r=|\boldsymbol{x}| \rightarrow \infty
\end{array}\right.
$$

- Here, b indicates how much wave speed in Ω differs compared to free space wave speed.

11.2 Variable coefficient PDE; Lippmann-Schwinger equation

- Free space Green's function for Helmwoltz with radiating BC is $G_{\kappa}(\boldsymbol{x}, \boldsymbol{y})=\frac{i}{4} H_{0}^{(1)}(|\boldsymbol{x}-\boldsymbol{y}|)$, where $H_{0}^{(1)}$ is the zeroth order Hankel function.
- Search for solutions of the form

$$
u(\boldsymbol{x})=\int_{\Omega} G_{\kappa}(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) d \boldsymbol{y}, \quad \boldsymbol{x} \in \mathbb{R}^{2}
$$

11.2 Variable coefficient PDE; Lippmann-Schwinger equation

- Free space Green's function for Helmwoltz with radiating BC is $G_{\kappa}(\boldsymbol{x}, \boldsymbol{y})=\frac{i}{4} H_{0}^{(1)}(|\boldsymbol{x}-\boldsymbol{y}|)$, where $H_{0}^{(1)}$ is the zeroth order Hankel function.
- Search for solutions of the form

$$
u(\boldsymbol{x})=\int_{\Omega} G_{\kappa}(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) d \boldsymbol{y}, \quad \boldsymbol{x} \in \mathbb{R}^{2}
$$

- This leads to the BIE for σ :

$$
\sigma(x)+\kappa^{2} b(x) \int_{\Omega} G_{\kappa}(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) d \boldsymbol{y}=-\kappa^{2} b(\boldsymbol{x}) u_{\text {in }}(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega
$$

- Computational domain is now Ω which is bounded (instead of \mathbb{R}^{2}), and the above BIE leads to well-conditioned systems (just like double-layer formulation).

Summary + Extensions

- Integral equations serve as a powerful, alternative modeling tool to PDE. Benefits include
- Reducing dimension of computational domain (Ω down to Γ).
- Well-conditioned systems upon discretization (e.g. double-layer formulation)
- Can handle exterior problems with a finite computational domain.
- Different BIE formulations with different properties can be found for the same PDE.

Summary + Extensions

- Integral equations serve as a powerful, alternative modeling tool to PDE. Benefits include
- Reducing dimension of computational domain (Ω down to Γ).
- Well-conditioned systems upon discretization (e.g. double-layer formulation)
- Can handle exterior problems with a finite computational domain.
- Different BIE formulations with different properties can be found for the same PDE.
- With extra work/challenges, can be extended to other types of models (e.g. linear elasticity, Stokes flow, time-Harmonic Maxwell).
- 3D is possible, but Γ harder to treat as a surface + kernels are more singular.

[^0]: ${ }^{1}$ more details in chapters 6, 7 of Linear Integral Equations by R. Kress

[^1]: ${ }^{1}$ more details in chapters 6, 7 of Linear Integral Equations by R. Kress

