# Fast Algorithms for Rank-Structured Matrices 

Tristan Goodwill and Evan Toler

September 23, 2020

## Introduction

We focus on matrix operations exploiting internal structure.

- low (numerical) rank blocks can be compressed
- hierarchically off-diagonal low-rank (HODLR) matrices
- more generally, $\mathcal{H}$ and $\mathcal{H}^{2}$ classes of matrices


### 5.1 Inversion of a $2 \times 2$ Block Matrix

We first look at a building block for HODLR matrices:

$$
\mathbf{A}=\left(\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12}  \tag{1}\\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right)
$$

Assume that off-diagonal blocks $\mathbf{A}_{12}$ and $\mathbf{A}_{21}$ have low exact rank for simplicity.

## Lemma (5.1)

Let $\mathbf{A}$ be as above in (1). If $\mathbf{A}$ and $\mathbf{A}_{22}$ are both invertible, then the matrix $\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}$ is also invertible and

$$
\mathbf{A}^{-1}=\left(\begin{array}{cc}
\mathbf{X}_{1} & -\mathbf{X}_{1} \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \\
-\mathbf{A}_{22}^{-1} \mathbf{A}_{21} \mathbf{X}_{1} & \mathbf{A}_{22}^{-1}+\mathbf{A}_{22}^{-1} \mathbf{A}_{21} \mathbf{X}_{1} \mathbf{A}_{12} \mathbf{A}_{22}^{-1}
\end{array}\right)
$$

where

$$
\mathbf{X}_{1}=\left(\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}\right)^{-1}
$$

### 5.1 Inversion of a $2 \times 2$ Block Matrix

Lemma 5.1 gives an algorithm to compute $\mathbf{A}^{-1}$ :

- Compute $\mathbf{X}_{2}=\mathbf{A}_{22}^{-1}$.
- Compute $\mathbf{X}_{1}=\left(\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{X}_{2} \mathbf{A}_{21}\right)^{-1}$.
- Compute $\mathbf{A}^{-1}=\left(\begin{array}{cc}\mathbf{X}_{1} & -\mathbf{X}_{1} \mathbf{A}_{12} \mathbf{X}_{2} \\ -\mathbf{X}_{2} \mathbf{A}_{21} \mathbf{X}_{1} & \mathbf{X}_{2}+\mathbf{X}_{2} \mathbf{A}_{21} \mathbf{X}_{1} \mathbf{A}_{12} \mathbf{X}_{2}\end{array}\right)$.

Proof of Lemma 5.1 is in the text: all linear algebra.

Using the low rank structure of $\mathbf{A}$ offers advantages. If all blocks are $N \times N$ matrices and $\mathbf{A}_{12}$ and $\mathbf{A}_{21}$ have rank $k$, then:

- matrix multiplication with $\mathbf{A}_{12}$ and $\mathbf{A}_{21}$ is inexpensive $\left(O\left(k N^{2}\right)\right)$
- cost is dominated by $\mathbf{X}_{1}$ and $\mathbf{X}_{2}$ inversions
- only need to directly invert two $N \times N$ matrices $\left(2 \times O\left(N^{3}\right)\right)$ instead of one full $2 N \times 2 N$ matrix $\left(O\left((2 N)^{3}\right)=8 \times O\left(N^{3}\right)\right)$


### 5.2 HODLR Matrices

A HODLR matrix has the same block structure as Section 5.1 applied recursively.

## Definition (5.2)

Let $\mathbf{A}$ be a matrix of size $N \times N$, and let $k$ be an integer such that $k<N$. We then say that $\mathbf{A}$ is a hierarchically off-diagonal low-rank (HODLR) matrix with rank $k$ if either of the following two conditions hold:

- $\mathbf{A}$ is itself of size at most $2 k \times 2 k$
- If $\mathbf{A}$ is partitioned into four equal-sized blocks,

$$
\mathbf{A}=\left(\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right)
$$

then $\mathbf{A}_{12}$ and $\mathbf{A}_{21}$ have rank at most $k$, and $\mathbf{A}_{11}$ and $\mathbf{A}_{22}$ are HODLR matrices of rank $k$.

### 5.2 HODLR Matrices

function $\mathbf{f}=$ HODLR_matvec $(\mathbf{A}, \mathbf{q})$

if $\operatorname{dim}(\mathbf{A})<2 k$ then
Evaluate by brute force: $\mathbf{f}=\mathbf{A q}$.
else
Split $\mathbf{A}=\left(\begin{array}{ll}\mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22}\end{array}\right)$ and $\mathbf{q}=\binom{\mathbf{q}_{1}}{\mathbf{q}_{2}}$.
$\mathbf{f}_{1}=\operatorname{HODLR}$ matvec $\left(\mathbf{A}_{11}, \mathbf{q}_{1}\right)+\mathbf{A}_{12} \mathbf{q}_{2}$.
$\mathbf{f}_{2}=$ HODLR_matvec $\left(\mathbf{A}_{22}, \mathbf{q}_{2}\right)+\mathbf{A}_{21} \mathbf{q}_{1}$.
$\mathbf{f}=\binom{\mathbf{f}_{1}}{\mathbf{f}_{2}}$.
end if
If we have already factored off-diagonal blocks, this algorithm has complexity $O(k N \log N)$.

### 5.3 Inversion of Compressible Matrices

- Idea: Invert a HODLR matrix by recursively applying Lemma 5.1
- Issue: Is the lower-right block $\mathbf{X}_{2}+\mathbf{X}_{2} \mathbf{A}_{21} \mathbf{X}_{1} \mathbf{A}_{12} \mathbf{X}_{2}$ HODLR with the same rank $k$ of $\mathbf{A}_{12}$ and $\mathbf{A}_{21}$ ?
- No, not in general. Adding $\underbrace{\mathbf{X}_{2} \mathbf{A}_{21} \mathbf{X}_{1} \mathbf{A}_{12} \mathbf{X}_{2}}_{\text {rank }=k}$ can increase the ranks of $\mathbf{X}_{2}$ 's blocks by $k$.
- But often it should still be compressible, if we want to preserve the physics of a PDE.
- Combat the potential increase in rank by recompressing the off-diagonal blocks.
There is no guarantee that the inverse of a rank- $k$ HODLR matrix is necessarily a HODLR matrix of rank $k$.


### 5.3 Inversion of Compressible Matrices

function $\mathbf{C}=$ HODLR_invert $(\mathbf{A})$
if $\operatorname{dim}(\mathbf{A})<2 k$ then
Invert by brute force: $\mathbf{C}=\mathbf{A}^{-1}$.
else

$$
\begin{aligned}
& \text { Split } \mathbf{A}=\left(\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right) \\
& \mathbf{X}_{22}=\text { HODLR_invert }\left(\mathbf{A}_{22}\right) \\
& \mathbf{X}_{11}=\text { HODLR_invert }\left(\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{X}_{22} \mathbf{A}_{21}\right) \\
& \mathbf{C}=\left(\begin{array}{cc}
\mathbf{X}_{11} & -\mathbf{X}_{11} \mathbf{A}_{12} \mathbf{X}_{22} \\
-\mathbf{X}_{22} \mathbf{A}_{21} \mathbf{X}_{11} & \mathbf{X}_{22}+\mathbf{X}_{22} \mathbf{A}_{21} \mathbf{X}_{11} \mathbf{A}_{12} \mathbf{X}_{22}
\end{array}\right) . \\
& \text { Recompress the lower right block of } \mathbf{C} . \\
& \text { end if }
\end{aligned}
$$

### 5.4 LU factorization and matrix-matrix multiplication

How can we $L U$ factor a HODLR matrix $\mathbf{A}$ ?
$\left(\begin{array}{ll}\mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22}\end{array}\right)=\left(\begin{array}{cc}\mathbf{L}_{11} & \mathbf{0} \\ \mathbf{L}_{21} & \mathbf{L}_{22}\end{array}\right)\left(\begin{array}{cc}\mathbf{U}_{11} & \mathbf{U}_{12} \\ \mathbf{0} & \mathbf{U}_{22}\end{array}\right)=\left(\begin{array}{lc}\mathbf{L}_{11} \mathbf{U}_{11} & \mathbf{L}_{11} \mathbf{U}_{12} \\ \mathbf{L}_{21} \mathbf{U}_{11} & \mathbf{L}_{21} \mathbf{U}_{12}+\mathbf{L}_{22} \mathbf{U}_{22}\end{array}\right)$
We see from block matrix multiplication that we should first factorize

$$
\mathbf{A}_{11}=\mathbf{L}_{11} \mathbf{U}_{11}
$$

Next, comparing block elements yields the expressions:

- $\mathbf{L}_{21}=\mathbf{A}_{21} \mathbf{U}_{11}^{-1}$
- $\mathbf{U}_{12}=\mathbf{L}_{11}^{-1} \mathbf{A}_{12}$.

What remains is to factor the Schur complement

$$
\mathbf{L}_{22} \mathbf{U}_{22}=\mathbf{A}_{22}-\mathbf{L}_{21} \mathbf{U}_{12}=\mathbf{A}_{22}-\mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}
$$

### 5.4 LU factorization and matrix-matrix multiplication

A recursive algorithm for HODLR $L U$ :

- $\left[\mathbf{L}_{11}, \mathbf{U}_{11}\right]=$ HODLR_LU $\left(\mathbf{A}_{11}\right)$
- $\mathbf{L}_{21}=\mathbf{A}_{21} \mathbf{U}_{11}^{-1}$
- $\mathbf{U}_{12}=\mathbf{L}_{11}^{-1} \mathbf{A}_{12}$
- $\left[\mathbf{L}_{22}, \mathbf{U}_{22}\right]=$ HODLR_LU $\left(\mathbf{A}_{22}-\mathbf{L}_{21} \mathbf{U}_{12}\right)$

Some remarks:

- Exploit that $\mathbf{A}_{12}$ and $\mathbf{A}_{21}$ have rank $k$.
- Exploit that $\mathbf{U}_{11}$ and $\mathbf{L}_{11}$ are triangular.
- Recompress the Schur complement $\mathbf{A}_{22}-\mathbf{L}_{21} \mathbf{U}_{12}$ before recursion.
- Sequential structure: first factor $\mathbf{A}_{11}$, then the Schur complement.


### 5.4 LU factorization and matrix-matrix multiplication

Matrix-matrix multiplication for HODLR matrices $A$ and $B$ :

$$
\begin{aligned}
\left(\begin{array}{ll}
\mathbf{C}_{11} & \mathbf{C}_{12} \\
\mathbf{C}_{21} & \mathbf{C}_{22}
\end{array}\right) & =\left(\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{B}_{11} & \mathbf{B}_{12} \\
\mathbf{B}_{21} & \mathbf{B}_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\mathbf{A}_{11} \mathbf{B}_{11}+\mathbf{A}_{12} \mathbf{B}_{21} & \mathbf{A}_{11} \mathbf{B}_{12}+\mathbf{A}_{12} \mathbf{B}_{22} \\
\mathbf{A}_{21} \mathbf{B}_{11}+\mathbf{A}_{22} \mathbf{B}_{21} & \mathbf{A}_{21} \mathbf{B}_{12}+\mathbf{A}_{22} \mathbf{B}_{22}
\end{array}\right) .
\end{aligned}
$$

Observations:

- Off-diagonal blocks remain low rank (inherited from $\mathbf{A}$ and $\mathbf{B}$ ).
- Diagonal blocks allow recursion through $\mathbf{A}_{11} \mathbf{B}_{11}$ and $\mathbf{A}_{22} \mathbf{B}_{22}$.
- We should recompress the diagonal blocks of $\mathbf{C}$ at each step.
- One $N \times N$ operation becomes two $N / 2 \times N / 2$ operations.


### 5.5 Hierarchical partitions of the index vector

We need an indexing system to allow us to refer to the hierarchical sub-blocks.

- Let $I_{1}=[1,2, \ldots, N]$. This is level 0 of our tree.
- Split $I_{1}$ into two siblings $I_{2}$ and $I_{3}$ such that $\left|I_{2}\right| \approx\left|I_{3}\right|, I_{2} \cup I_{3}=I_{1}$ and $I_{2} \cap I_{3}=\emptyset$. These form level 1 .
- Keep splitting into siblings as above until we reach a level $L$ where every vector is smaller than a threshold size $b k$.



### 5.5 Hierarchical partitions of the index vector



## Definition (HODLR Matrices) (non-recursive)

A matrix $\mathbf{A}$ is said to be if HODLR if $\exists$ a $k$ and an indexing system as above such that for every sibling pair $\{\alpha, \beta\}$ the off-diagonal block $\mathbf{A}\left(I_{\alpha}, I_{\beta}\right)=\mathbf{A}_{\alpha, \beta}$ is rank at most $k$. i.e. we can write

$$
\begin{gathered}
\mathbf{A}_{\alpha, \beta}=\mathbf{U}_{\alpha} \\
N_{\alpha} \times N_{\beta}
\end{gathered} \tilde{\mathbf{A}}_{\alpha, \beta} \quad \mathbf{N}_{\alpha} \times k \quad k \times k \quad k \times N_{\beta}^{*} .
$$

We also note that the memory complexity to store an $N \times N$ HODLR matrix is

$$
M=M_{\text {diag }}+M_{\text {offdiag }} \sim N k+N k \log (N / k) \sim N k \log (N / k)
$$

### 5.6 Nonrecursive formulas for HODLR matrix operations (MatVec)

An example of the use of our indexing: function $\mathbf{f}=$ HODLR_matvec $(\mathbf{A}, \mathbf{q})$ $\mathrm{f}=\mathbf{0}$
for $\tau$ is a node in the tree do if $\tau$ is a leaf node then

$$
\mathbf{f}\left(I_{\tau}\right)=\mathbf{f}\left(I_{\tau}\right)+\mathbf{A}\left(I_{\tau}, I_{\tau}\right) \mathbf{q}\left(I_{\tau}\right)
$$

else

$$
\begin{aligned}
& \text { Let }\{\alpha, \beta\} \text { denote the children of } \tau \text {. } \\
& \mathbf{f}\left(I_{\alpha}\right)=\mathbf{f}\left(I_{\alpha}\right)+\mathbf{U}_{\alpha}\left(\tilde{\mathbf{A}}_{\alpha, \beta}\left(\mathbf{V}_{\beta}^{*} \mathbf{q}\left(I_{\beta}\right)\right)\right) \text {. } \\
& \mathbf{f}\left(I_{\beta}\right)=\mathbf{f}\left(I_{\beta}\right)+\mathbf{U}_{\beta}\left(\tilde{\mathbf{A}}_{\beta, \alpha}\left(\mathbf{V}_{\alpha}^{*} \mathbf{q}\left(I_{\alpha}\right)\right)\right) .
\end{aligned}
$$

end if
end for


Recall that
$\mathbf{A}_{\alpha, \beta}=\mathbf{U}_{\alpha} \tilde{\mathbf{A}}_{\alpha, \beta} \mathbf{V}_{\beta}^{*}$

Note that the tree can be traversed in any order.

### 5.6 Nonrecursive formulas for HODLR matrix operations (Inversion)

This time, we write

$$
\mathbf{A}=\left(\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A}_{11} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{22}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{I} & \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\
\mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{I}
\end{array}\right)
$$

so that

$$
\mathbf{A}^{-1}=\left(\begin{array}{cc}
\mathbf{I} & \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\
\mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{I}
\end{array}\right)^{-1}\left(\begin{array}{cc}
\mathbf{A}_{11}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{22}^{-1}
\end{array}\right)
$$

If we already know $\mathbf{C}_{1}=\mathbf{A}_{11}^{-1}$ and $\mathbf{C}_{2}=\mathbf{A}_{22}^{-1}$, then the left matrix is known. As the off diagonal blocks have rank at most $k$, we can factor it as

$$
\left(\begin{array}{cc}
\mathbf{I} & \mathbf{C}_{1} \mathbf{A}_{12} \\
\mathbf{C}_{2} \mathbf{A}_{21} & \mathbf{I}
\end{array}\right)=\mathbf{I}+\mathbf{U D V}^{*}
$$

where $D$ is a $2 k \times 2 k$ matrix. The Woodbury identity then tells us that

$$
\left(\mathbf{I}+\mathbf{U D} \mathbf{V}^{*}\right)^{-1}=\mathbf{I}-\mathbf{U}\left(\mathbf{D}^{-1}+\mathbf{V}^{*} \mathbf{U}\right)^{-1} \mathbf{V}^{*}
$$

so we need only construct and invert the $2 k \times 2 k$ matrix $\mathbf{D}^{-1}+\mathbf{V}^{*} \mathbf{U}$.

### 5.6 Nonrecursive formulas for HODLR matrix operations (Inversion)

Applying the above formulas, we can make a new algorithm working up the tree.
function $\mathbf{C}=$ HODLR_invert ( $\mathbf{A}$ )
for $\tau=N_{\text {boxes }}:(-1): 1$ do
if $\tau$ is a leaf node then
Invert by brute force: $\mathbf{C}_{\tau}=\left(\mathbf{A}\left(I_{\tau}, I_{\tau}\right)\right)^{-1}$ else

Let $\{\alpha, \beta\}$ denote the children of $\tau$.
$\mathbf{C}_{\tau}=\left(\begin{array}{cc}\mathbf{I} & \mathbf{C}_{\alpha} \mathbf{A}_{\alpha, \beta} \\ \mathbf{C}_{\beta} \mathbf{A}_{\beta, \alpha} & \mathbf{I}\end{array}\right)^{-1}\left(\begin{array}{cc}\mathbf{C}_{\alpha} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{\beta}\end{array}\right)$
Recompress $\mathbf{C}_{\tau}$ to combat potential increase in ranks of off-diagonal blocks.
 end if
end for
$\mathbf{C}=\mathbf{C}_{1}$

### 5.7 Extensions

Some considerations untouched so far:

- How to choose the tree for the index vector?
- important for keeping off-diagonal blocks low-rank
- could come from physical considerations if $I$ indexes points in space
- What about integral equation solvers?
- challenging to find the compressed representation
- addressed later in the book (Ch. 17)
- What about nonuniform trees?
- could appear in adaptive/local mesh refinement
- tricky to maintain high efficiency
- Do we need to store $\mathbf{U}_{\tau}$ and $\mathbf{V}_{\tau}$ explicitly?
- Often, no. We can "recycle" basis matrices and use recursion.
- improves complexity from $O(N \log N)$ to $O(N)$
- addressed later in the book (Ch. 13-16)


## Summary

Definitions/Ideas

- HODLR matrix
- indexing tree

Algorithms for HODLR matrices

- Matrix-vector multiplication (recursive and non-recursive)
- Matrix inversion (recursive and non-recursive)
- LU factorization and matrix-matrix multiplication (recursive)

