
Fast Algorithms for Rank-Structured Matrices

Tristan Goodwill and Evan Toler

September 23, 2020

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 1 / 18

Introduction

We focus on matrix operations exploiting internal structure.

low (numerical) rank blocks can be compressed

hierarchically off-diagonal low-rank (HODLR) matrices

more generally, H and H2 classes of matrices

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 2 / 18

5.1 Inversion of a 2× 2 Block Matrix

We first look at a building block for HODLR matrices:

A =

(
A11 A12

A21 A22

)
. (1)

Assume that off-diagonal blocks A12 and A21 have low exact rank for
simplicity.

Lemma (5.1)

Let A be as above in (1). If A and A22 are both invertible, then the
matrix A11 − A12A

−1
22 A21 is also invertible and

A−1 =

(
X1 −X1A12A

−1
22

−A−1
22 A21X1 A−1

22 + A−1
22 A21X1A12A

−1
22

)
,

where
X1 = (A11 − A12A

−1
22 A21)−1.

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 3 / 18

5.1 Inversion of a 2× 2 Block Matrix

Lemma 5.1 gives an algorithm to compute A−1:

Compute X2 = A−1
22 .

Compute X1 = (A11 − A12X2A21)−1.

Compute A−1 =

(
X1 −X1A12X2

−X2A21X1 X2 + X2A21X1A12X2

)
.

Proof of Lemma 5.1 is in the text: all linear algebra.

Using the low rank structure of A offers advantages. If all blocks are
N × N matrices and A12 and A21 have rank k, then:

matrix multiplication with A12 and A21 is inexpensive (O(kN2))

cost is dominated by X1 and X2 inversions

only need to directly invert two N × N matrices (2× O(N3)) instead
of one full 2N × 2N matrix (O((2N)3) = 8× O(N3))

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 4 / 18

5.2 HODLR Matrices

A HODLR matrix has the same block structure as Section 5.1 applied
recursively.

Definition (5.2)

Let A be a matrix of size N ×N, and let k be an integer such that k < N.
We then say that A is a hierarchically off-diagonal low-rank (HODLR)
matrix with rank k if either of the following two conditions hold:

A is itself of size at most 2k × 2k

If A is partitioned into four equal-sized blocks,

A =

(
A11 A12

A21 A22

)
,

then A12 and A21 have rank at most k , and A11 and A22 are HODLR
matrices of rank k .

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 5 / 18

5.2 HODLR Matrices

function f = HODLR matvec(A, q)
if dim(A) < 2k then

Evaluate by brute force: f = Aq.
else

Split A =

(
A11 A12

A21 A22

)
and q =

(
q1
q2

)
.

f1 = HODLR matvec(A11,q1) +A12q2.
f2 = HODLR matvec(A22,q2) +A21q1.

f =

(
f1
f2

)
.

end if

If we have already factored off-diagonal blocks, this algorithm has
complexity O(kN logN).

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 6 / 18

5.3 Inversion of Compressible Matrices

Idea: Invert a HODLR matrix by recursively applying Lemma 5.1

Issue: Is the lower-right block X2 + X2A21X1A12X2 HODLR with the
same rank k of A12 and A21?

No, not in general. Adding X2A21X1A12X2︸ ︷︷ ︸
rank=k

can increase the ranks of

X2’s blocks by k .
But often it should still be compressible, if we want to preserve the
physics of a PDE.
Combat the potential increase in rank by recompressing the
off-diagonal blocks.

There is no guarantee that the inverse of a rank-k HODLR matrix is
necessarily a HODLR matrix of rank k .

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 7 / 18

5.3 Inversion of Compressible Matrices

function C = HODLR invert(A)
if dim(A) < 2k then

Invert by brute force: C = A−1.
else

Split A =

(
A11 A12

A21 A22

)
.

X22 = HODLR invert(A22).
X11 = HODLR invert(A11 − A12X22A21).

C =

(
X11 −X11A12X22

−X22A21X11 X22 + X22A21X11A12X22

)
.

Recompress the lower right block of C.
end if

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 8 / 18

5.4 LU factorization and matrix-matrix multiplication

How can we LU factor a HODLR matrix A?(
A11 A12

A21 A22

)
=

(
L11 0
L21 L22

)(
U11 U12

0 U22

)
=

(
L11U11 L11U12

L21U11 L21U12 + L22U22

)
We see from block matrix multiplication that we should first factorize

A11 = L11U11.

Next, comparing block elements yields the expressions:

L21 = A21U
−1
11

U12 = L−1
11 A12.

What remains is to factor the Schur complement

L22U22 = A22 − L21U12 = A22 − A21A
−1
11 A12.

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 9 / 18

5.4 LU factorization and matrix-matrix multiplication

A recursive algorithm for HODLR LU:

[L11, U11] = HODLR LU(A11)

L21 = A21U
−1
11

U12 = L−1
11 A12

[L22, U22] = HODLR LU(A22 − L21U12)

Some remarks:

Exploit that A12 and A21 have rank k.

Exploit that U11 and L11 are triangular.

Recompress the Schur complement A22 − L21U12 before recursion.

Sequential structure: first factor A11, then the Schur complement.

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 10 / 18

5.4 LU factorization and matrix-matrix multiplication

Matrix-matrix multiplication for HODLR matrices A and B:(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
=

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
.

Observations:

Off-diagonal blocks remain low rank (inherited from A and B).

Diagonal blocks allow recursion through A11B11 and A22B22.

We should recompress the diagonal blocks of C at each step.

One N × N operation becomes two N/2× N/2 operations.

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 11 / 18

5.5 Hierarchical partitions of the index vector

We need an indexing system to allow us to refer to the hierarchical
sub-blocks.

Let I1 = [1, 2, . . . ,N]. This is level 0 of our tree.

Split I1 into two siblings I2 and I3 such that |I2| ≈ |I3|, I2 ∪ I3 = I1 and
I2 ∩ I3 = ∅. These form level 1.

Keep splitting into siblings as above until we reach a level L where
every vector is smaller than a threshold size bk.

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 12 / 18

5.5 Hierarchical partitions of the index vector

𝑨 𝐼2, 𝐼3

𝑨 𝐼3, 𝐼2

𝑨4,5

𝑨6,7

𝑨8,9

…

…

…

Definition (HODLR Matrices)
(non-recursive)

A matrix A is said to be if HODLR if ∃ a k and
an indexing system as above such that for every
sibling pair {α, β} the off-diagonal block
A(Iα, Iβ) = Aα,β is rank at most k. i.e. we can
write

Aα,β = Uα Ãα,β V∗
β.

Nα × Nβ Nα × k k × k k × Nβ

We also note that the memory complexity to store an N × N HODLR
matrix is

M = Mdiag + Moffdiag ∼ Nk + Nk log(N/k) ∼ Nk log(N/k).

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 13 / 18

5.6 Nonrecursive formulas for HODLR matrix operations
(MatVec)

An example of the use of our indexing:

function f = HODLR matvec(A,q)
f = 0
for τ is a node in the tree do

if τ is a leaf node then
f(Iτ) = f(Iτ) + A(Iτ , Iτ)q(Iτ)

else
Let {α, β} denote the children of τ .
f(Iα) = f(Iα) + Uα(Ãα,β(V∗

βq(Iβ))).

f(Iβ) = f(Iβ) + Uβ(Ãβ,α(V∗
αq(Iα))).

end if
end for

Note that the tree can be traversed in any order.

𝑨 𝐼2, 𝐼3

𝑨 𝐼3, 𝐼2

𝑨4,5

𝑨6,7

𝑨8,9

…

…

…

Recall that
Aα,β = UαÃα,βV

∗
β

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 14 / 18

5.6 Nonrecursive formulas for HODLR matrix operations
(Inversion)

This time, we write

A =

(
A11 A12

A21 A22

)
=

(
A11 0
0 A22

)(
I A−1

11 A12

A−1
22 A21 I

)
,

so that

A−1 =

(
I A−1

11 A12

A−1
22 A21 I

)−1(
A−1

11 0
0 A−1

22

)
.

If we already know C1 = A−1
11 and C2 = A−1

22 , then the left matrix is
known. As the off diagonal blocks have rank at most k, we can factor it as(

I C1A12

C2A21 I

)
= I + UDV∗,

where D is a 2k × 2k matrix. The Woodbury identity then tells us that

(I + UDV∗)−1 = I−U(D−1 + V∗U)−1V∗,

so we need only construct and invert the 2k × 2k matrix D−1 + V∗U.
Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 15 / 18

5.6 Nonrecursive formulas for HODLR matrix operations
(Inversion)

Applying the above formulas, we can make a new algorithm working up
the tree.

function C = HODLR invert(A)
for τ = Nboxes : (−1) : 1 do
if τ is a leaf node then

Invert by brute force: Cτ = (A(Iτ , Iτ))−1

else
Let {α, β} denote the children of τ .

Cτ =

(
I CαAα,β

CβAβ,α I

)−1(
Cα 0
0 Cβ

)
Recompress Cτ to combat potential increase
in ranks of off-diagonal blocks.

end if
end for
C = C1

𝑨 𝐼2, 𝐼3

𝑨 𝐼3, 𝐼2

𝑨4,5

𝑨6,7

𝑨8,9

…

…

…

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 16 / 18

5.7 Extensions

Some considerations untouched so far:

How to choose the tree for the index vector?

important for keeping off-diagonal blocks low-rank
could come from physical considerations if I indexes points in space

What about integral equation solvers?

challenging to find the compressed representation
addressed later in the book (Ch. 17)

What about nonuniform trees?

could appear in adaptive/local mesh refinement
tricky to maintain high efficiency

Do we need to store Uτ and Vτ explicitly?

Often, no. We can ”recycle” basis matrices and use recursion.
improves complexity from O(N logN) to O(N)
addressed later in the book (Ch. 13–16)

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 17 / 18

Summary

Definitions/Ideas

HODLR matrix

indexing tree

Algorithms for HODLR matrices

Matrix-vector multiplication (recursive and non-recursive)

Matrix inversion (recursive and non-recursive)

LU factorization and matrix-matrix multiplication (recursive)

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 18 / 18

