Fast Algorithms for Rank-Structured Matrices

Tristan Goodwill and Evan Toler

September 23, 2020

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 1/18

Introduction

We focus on matrix operations exploiting internal structure.
@ low (numerical) rank blocks can be compressed
@ hierarchically off-diagonal low-rank (HODLR) matrices

@ more generally, H and H? classes of matrices

Tristan Goodwill and Evan Toler

Fast Algorithms for Rank-Structured Matrices

September 23, 2020

5.1 Inversion of a 2 x 2 Block Matrix

We first look at a building block for HODLR matrices:
Ain Ap
A= . 1
(A21 A22> (1)
Assume that off-diagonal blocks A1> and As; have low exact rank for
simplicity.

Lemma (5.1)

Let A be as above in (1). If A and Ay, are both invertible, then the
matrix A11 — A1pA5 Aoy is also invertible and

Al — < X1 —X1AA5;)
—ALANX: AL+ AL ANXIARALY)

where
X1 = (A1 — ApAst A)t

v

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 3/18

5.1 Inversion of a 2 x 2 Block Matrix

Lemma 5.1 gives an algorithm to compute A~1:
o Compute X, = A2_21.
e Compute X1 = (A11 — A1pXoA5) L.
X: —X1A12X> >
—X2A21 X1 Xo + XoA21X1A12Xz)

Proof of Lemma 5.1 is in the text: all linear algebra.

o Compute A~ = (

Using the low rank structure of A offers advantages. If all blocks are
N x N matrices and A1> and Ay have rank k, then:

@ matrix multiplication with Ajy and Aj; is inexpensive (O(kN?))
@ cost is dominated by X; and X; inversions

@ only need to directly invert two N x N matrices (2 x O(N3)) instead
of one full 2N x 2N matrix (O((2N)3) = 8 x O(N?3))

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 4/18

5.2 HODLR Matrices

A HODLR matrix has the same block structure as Section 5.1 applied
recursively.

Definition (5.2)

Let A be a matrix of size N x N, and let k be an integer such that kK < N.
We then say that A is a hierarchically off-diagonal low-rank (HODLR)
matrix with rank k if either of the following two conditions hold:

@ A is itself of size at most 2k x 2k

o If A is partitioned into four equal-sized blocks,

A Ap
A =
(A21 Azz) ’
then A1, and Ay have rank at most k, and Aj; and Ay, are HODLR
matrices of rank k.

v

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 5/18

5.2 HODLR Matrices

function f = HODLR matvec(A, q)

if dim(A) < 2k then
Evaluate by brute force: f = Aq.

else A A

. 11 12 qi

Split A = <A21 A22> and q = <q2>'
f; = HODLR matvec(A11,q1) +A12q>.
f, = HDDLRJnatvec(Agz, q2) +Asq;:.

If we have already factored off-diagonal blocks, this algorithm has
complexity O(kN log N).

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 6/18

5.3 Inversion of Compressible Matrices

@ ldea: Invert a HODLR matrix by recursively applying Lemma 5.1

@ Issue: Is the lower-right block X5 + X5A21X1A10X, HODLR with the
same rank k of A{p and Ay(?
e No, not in general. Adding X,A21X;1A12X; can increase the ranks of
—_——

rank=k
X,'s blocks by k.
e But often it should still be compressible, if we want to preserve the
physics of a PDE.
o Combat the potential increase in rank by recompressing the
off-diagonal blocks.

There is no guarantee that the inverse of a rank-k HODLR matrix is
necessarily a HODLR matrix of rank k.

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 7/18

5.3 Inversion of Compressible Matrices

function C = HODLR_invert(A)
if dim(A) < 2k then
Invert by brute force: C = AL,

else
. A A12)
Split A = .
P (A21 Az
Xoo = HDDLR,invert(Azg).
X1 = HODLR,invert(All — A12X22A21).
C— (Xu —X11A12X22 >
—X22A21 X1 X2 + X20A21 X11A12X0)
Recompress the lower right block of C.
end if

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 8/18

5.4 LU factorization and matrix-matrix multiplication

How can we LU factor a HODLR matrix A?

<A11 A12> _ <L11 0 > <U11 U12> _ <|-11U11 L11Up >
Arr A Lo L 0 Ux Lo1U11r LoiUgo 4 LpUo

We see from block matrix multiplication that we should first factorize

A1; = L11Uq;g.

Next, comparing block elements yields the expressions:
o Ly = A21UI11
o Up = LI11A12.

What remains is to factor the Schur complement

LUz = Az — LotUsa = Ay — AgA A,

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 9/18

5.4 LU factorization and matrix-matrix multiplication

A recursive algorithm for HODLR LU:
@ [Li3, Uj;] = HODLR LU(A11)

o Ly = Ay Ut
o U12 = L1_11A12

° [L22, U22] = HDDLR,LU(AQQ — L21U12)

Some remarks:

Exploit that Aip and Aj; have rank k.
Exploit that Uy; and Ly are triangular.

Recompress the Schur complement Ay, — Lo U1 before recursion.

Sequential structure: first factor Ajj, then the Schur complement.

Tristan Goodwill and Evan Toler

Fast Algorithms for Rank-Structured Matrices

September 23, 2020

10/18

5.4 LU factorization and matrix-matrix multiplication

Matrix-matrix multiplication for HODLR matrices A and B:

<C11 C12> (All A12> <|311 Blz)
Cxn Cx» A>; Ax»n) \By Box
_ <A11311 +ApBo; A;Bpo + A12|322)
A21Bi1 +AxBo AzBio +AxBo)/

Observations:

o Off-diagonal blocks remain low rank (inherited from A and B).
@ Diagonal blocks allow recursion through A11B11 and A Bos.
@ We should recompress the diagonal blocks of C at each step.

@ One N x N operation becomes two N/2 x N /2 operations.

Tristan Goodwill and Evan Toler

Fast Algorithms for Rank-Structured Matrices

September 23, 2020

11/18

5.5 Hierarchical partitions of the index vector

We need an indexing system to allow us to refer to the hierarchical
sub-blocks.

o Let h =[1,2,...,N]. This is level 0 of our tree.

@ Split /1 into two siblings /, and /3 such that || ~ |k|, Uk =l and
b Nl =10. These form level 1.

o Keep splitting into siblings as above until we reach a level L where
every vector is smaller than a threshold size bk.

Level 0:
1o =1:200 I3 =201 : 400
Level 1:
Iy =1:100 17 =301 : 400
Level 2:
Ig=1: I15 = 351 : 400
Level 3:

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 12/18

5.5 Hierarchical partitions of the index vector

Definition (HODLR Matrices)
(non-recursive)

A matrix A is said to be if HODLR if 3 a k and
an indexing system as above such that for every

sibling pair {«, 8} the off-diagonal block
A(la,I3) = A, g is rank at most k. i.e. we can

write

Ang = U, A.p V.
No x Ng Ny x k kxk kxNg

We also note that the memory complexity to store an N x N HODLR
matrix is

M = Mgiag + Mofrgiag ~ Nk + Nk log(N/k) ~ Nk log(N/k).

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 13/18

5.6 Nonrecursive formulas for HODLR matrix operations

(MatVec)

An example of the use of our indexing:

function f = HODLR matvec(A,q)
f=0
for 7 is a node in the tree do
if 7 is a leaf node then
f(l;) = f(l) + Al I)a(l)
else
Let {a, B} denote the children of 7.

f(la) = f(la) + Ua(Aa,B(VEQ(IB)))-

enfd(/iﬁf) = f0s) + Us(AsalVaall))). o J

end for Aos =UsA, 5V}

Note that the tree can be traversed in any order.

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020

5.6 Nonrecursive formulas for HODLR matrix operations

(Inversion)

This time, we write
A (All A12> _ (All 0) (| /-\1_11A12>
A Ax 0 Axn/ \ALAy I ’

so that .
Al (! A111A12> <A111 01> .
A A | 0 A,

If we already know C; = Al_l1 and Cy = A2_21, then the left matrix is
known. As the off diagonal blocks have rank at most k, we can factor it as

| CiAp) ,
(C2A21 : >|+UDV,

where D is a 2k x 2k matrix. The Woodbury identity then tells us that
(1+UDV*)" ' =1-U(D ! + Vv*U)tv*,

so we need only construct and invert the 2k x 2k matrix D™ 4+ V*U.

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 15/18

5.6 Nonrecursive formulas for HODLR matrix operations

(Inversion)

Applying the above formulas, we can make a new algorithm working up

the tree,
function C = HODLR_invert (A)

for 7 = Npoxes : (—1) : 1 do
if 7 is a leaf node then
Invert by brute force: C, = (A(l, 1))~ !
else
Let {a, B} denote the children of 7.

c _ ([caAa,ﬂ> - (ca 0)

T CsAz. | 0 Cs
Recompress C; to combat potential increase
in ranks of off-diagonal blocks.

end if
end for

c=¢

A(I3'12)

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 16 /18

Some considerations untouched so far:

@ How to choose the tree for the index vector?
e important for keeping off-diagonal blocks low-rank
e could come from physical considerations if / indexes points in space

@ What about integral equation solvers?
e challenging to find the compressed representation
o addressed later in the book (Ch. 17)

o What about nonuniform trees?
o could appear in adaptive/local mesh refinement
e tricky to maintain high efficiency

@ Do we need to store U, and V.. explicitly?

o Often, no. We can "recycle” basis matrices and use recursion.
o improves complexity from O(Nlog N) to O(N)
o addressed later in the book (Ch. 13-16)

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 17 /18

Summary

Definitions/ldeas
o HODLR matrix
@ indexing tree
Algorithms for HODLR matrices
@ Matrix-vector multiplication (recursive and non-recursive)
@ Matrix inversion (recursive and non-recursive)

@ LU factorization and matrix-matrix multiplication (recursive)

Tristan Goodwill and Evan Toler Fast Algorithms for Rank-Structured Matrices September 23, 2020 18/18

