Simple/multi-level fast direct solver for IE

Ondrej Maxian, Anqi Mao

October 28, 2020

Outline

(1) CH 13 : A simple direct solver for integral equations

- Introduction
- Block separable matrices

Background

Formulate a physical problem in the form of an integral equation such as

$$
\alpha q(\boldsymbol{x})+\int_{\Gamma} k(\boldsymbol{x}, \boldsymbol{y}) q(\boldsymbol{y}) d s(\boldsymbol{y})=f(\boldsymbol{x}), \quad \boldsymbol{x} \in \Gamma,
$$

and then discretize it to obtain a linear system

$$
\begin{equation*}
\mathbf{A q}=\mathbf{f} \tag{1}
\end{equation*}
$$

Question: how to solve the linear system efficiently?

Solvers for discretized IE

Usually, the coefficient matrix \mathbf{A} is dense.
Gaussian elimination: cubic complexity
iterative solver: $T_{\text {solve }} \simeq N_{\text {iter }} \times T_{\text {matvec }}$
$T_{\text {matvec }}$: linear complexity (FMM, \mathcal{H}-matrix)
$N_{\text {iter }}$: preconditioner
fast direct solvers: linear complexity build stage: build approximate inverse \mathbf{B} of \mathbf{A} solve stage: compute approximate solution $\mathbf{q}_{\text {approx }}=\mathbf{B f}$ compelling in solving a sequence of linear systems simple single-level scheme \rightarrow multi-level scheme

Block separable matrices

A : $N \times N$. Tessellate it into $p \times p$ blocks. Each block: $n \times n$.

$$
\mathbf{A}=\left[\begin{array}{ccccc}
\mathbf{D}_{1} & \mathbf{A}_{1,2} & \mathbf{A}_{1,3} & \cdots & \mathbf{A}_{1, p} \\
\mathbf{A}_{2,1} & \mathbf{D}_{2} & \mathbf{A}_{2,3} & \cdots & \mathbf{A}_{2, p} \\
\vdots & \vdots & \vdots & & \vdots \\
\mathbf{A}_{p, 1} & \mathbf{A}_{p, 2} & \mathbf{A}_{p, 3} & \cdots & \mathbf{D}_{p}
\end{array}\right]
$$

Assume

- upper bound k for ranks of all off-diagonal blocks
- basis matrices $\left\{\mathbf{U}_{k}\right\}_{k=1}^{p}$ and $\left\{\mathbf{V}_{k}\right\}_{k=1}^{p}$ such that

$$
\underset{n \times n}{\mathbf{A}_{\sigma, \tau}}=\begin{array}{cccc}
\mathbf{U}_{\sigma} & \tilde{\mathbf{A}}_{\sigma, \tau} & \mathbf{V}_{\tau}^{*}, \\
n \times k & k \times k & k \times n
\end{array} \quad \sigma, \tau \in\{1,2, \ldots, p\}, \quad \sigma \neq \tau .
$$

Block separable matrices

Therefore, \mathbf{A} admits a block factorization:

$$
\underset{p n \times p n}{\mathbf{A}}=\underset{p n \times p k}{\mathbf{U}} \underset{p k \times p k}{\tilde{\mathbf{A}}} \underset{p k \times p n}{\mathbf{V}^{*}} \quad+\underset{p n \times p n}{\mathbf{D},}
$$

where

$$
\begin{aligned}
& \mathbf{U}=\operatorname{diag}\left(\mathbf{U}_{1}, \mathbf{U}_{2}, \ldots, \mathbf{U}_{p}\right), \\
& \mathbf{V}=\operatorname{diag}\left(\mathbf{V}_{1}, \mathbf{V}_{2}, \ldots, \mathbf{V}_{p}\right), \\
& \mathbf{D}=\operatorname{diag}\left(\mathbf{D}_{1}, \mathbf{D}_{2}, \ldots, \mathbf{D}_{p}\right),
\end{aligned}
$$

and

$$
\tilde{\mathbf{A}}=\left[\begin{array}{cccc}
\mathbf{0} & \tilde{\mathbf{A}}_{12} & \tilde{\mathbf{A}}_{13} & \cdots \\
\tilde{\mathbf{A}}_{21} & \mathbf{0} & \tilde{\mathbf{A}}_{23} & \cdots \\
\tilde{\mathbf{A}}_{31} & \tilde{\mathbf{A}}_{32} & \mathbf{0} & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right]
$$

For $p=4$,

Variation of the Woodbury formula

Lemma (variation of the Woodbury formula)
Suppose that \mathbf{A} is an invertible $N \times N$ matrix, K is a positive integer smaller than N, and \mathbf{A} admits the factorization:

$$
\underset{N \times N}{\mathbf{A}}=\underset{N \times K}{\mathbf{u}} \underset{K \times K}{\tilde{\mathbf{A}}} \underset{K \times N}{\mathbf{V}^{*}}+\underset{N \times N}{\mathbf{D} .}
$$

Then

$$
\underset{N \times N}{\mathbf{A}^{-1}}=\underset{N \times K}{\mathbf{E}} \underset{K \times K}{(\tilde{\mathbf{A}}+\hat{\mathbf{D}})^{-1}} \underset{K \times N}{\mathbf{F}^{*}} \quad+\underset{N \times N}{\mathbf{G},}
$$

where

$$
\begin{aligned}
\hat{\mathbf{D}} & =\left(\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}\right)^{-1}, \\
\mathbf{E} & =\mathbf{D}^{-1} \mathbf{U} \mathbf{0}, \\
\mathbf{F} & =\left(\hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1}\right)^{*}, \\
\mathbf{G} & =\mathbf{D}^{-1}-\mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1},
\end{aligned}
$$

provided all inverses that appear exist. Moreover, $\operatorname{rank}(\mathbf{G})=N-K$.

Proof

Fix an \mathbf{f}. Set $\mathbf{q}=\mathbf{A}^{-1} \mathbf{f}$. Then $\mathbf{A q}=\mathbf{f}$. Set $\tilde{\mathbf{q}}=\mathbf{V}^{*} \mathbf{q}$. We get a linear system

$$
\left[\begin{array}{cc}
\mathbf{D} & \mathbf{U A} \\
-\mathbf{V}^{*} & \mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q} \\
\tilde{\mathbf{q}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{0}
\end{array}\right]
$$

From the first row, $\mathbf{q}=\mathbf{D}^{-1} \mathbf{f}-\mathbf{D}^{-1} \mathbf{U} \tilde{\mathbf{A}} \tilde{\mathbf{q}}$. Substituting into the second row yields

$$
\left(\mathbf{I}+\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U} \tilde{\mathbf{A}}\right) \tilde{\mathbf{q}}=\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{f}
$$

Multiply both sides by $\hat{\mathbf{D}}=\left(\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}\right)^{-1}$ to get

$$
(\hat{\mathbf{D}}+\tilde{\mathbf{A}}) \tilde{\mathbf{q}}=\hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{f}
$$

Therefore, we can express \mathbf{q} as

$$
\begin{aligned}
\mathbf{q} & =\mathbf{D}^{-1} \mathbf{f}-\mathbf{D}^{-1} \mathbf{U} \tilde{\mathbf{A}} \tilde{\mathbf{q}} \\
& =\mathbf{D}^{-1} \mathbf{f}-\mathbf{D}^{-1} \mathbf{U}\left(\hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{f}-\hat{\mathbf{D}} \tilde{\mathbf{q}}\right) \\
& =\underbrace{\left(\mathbf{D}^{-1}-\mathbf{D}^{-1} \mathbf{U} \mathbf{D}^{*} \mathbf{D}^{-1}\right)}_{=\mathbf{G}} \mathbf{f}+\underbrace{\mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}}}_{=\mathbf{E}}(\hat{\mathbf{D}}+\tilde{\mathbf{A}})^{-1} \underbrace{\hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1}}_{=\mathbf{F}^{*}} \mathbf{f}
\end{aligned}
$$

Proof: $\operatorname{rank}(G)=N-K$

Observe that

$$
\begin{aligned}
& \mathbf{V}^{*} \mathbf{G}=\mathbf{V}^{*} \mathbf{D}^{-1}-\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1}=\mathbf{V}^{*} \mathbf{D}^{-1}-\hat{\mathbf{D}}^{-1} \hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1} \\
&=\mathbf{V}^{*} \mathbf{D}^{-1}-\mathbf{V}^{*} \mathbf{D}^{-1}=\mathbf{0}
\end{aligned}
$$

Thus,

$$
\operatorname{rank}\left(\mathbf{V}^{*}\right)+\operatorname{rank}(\mathbf{G})-N \leq 0 \Rightarrow \operatorname{rank}(\mathbf{G}) \leq N-K
$$

Also,
$\operatorname{rank}\left(\mathbf{A}^{-1}\right) \leq \operatorname{rank}\left(\mathbf{E}(\tilde{\mathbf{A}}+\hat{\mathbf{D}})^{-1} \mathbf{F}^{*}\right)+\operatorname{rank}(\mathbf{G}) \Rightarrow \operatorname{rank}(\mathbf{G}) \geq N-K$

Apply the lemma

Recall the block structure of \mathbf{A}, for $p=4$

Compute \mathbf{A}^{-1} by the lemma

$$
\begin{aligned}
\hat{\mathbf{D}} & =\left(\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}\right)^{-1}, \\
\mathbf{E} & =\mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}}, \\
\mathbf{F} & =\left(\hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1}\right)^{*}, \\
\mathbf{G} & =\mathbf{D}^{-1}-\mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}} \mathbf{V}^{*} \mathbf{D}^{-1}
\end{aligned}
$$

- $\hat{\mathbf{D}}, \mathbf{E}, \mathbf{F}, \mathbf{G}$ are cheap to form (block diagonal)
- invert $p n \times p n$ matrix $\mathbf{A} \Rightarrow$ invert small $p k \times p k$ matrix $\tilde{\mathbf{A}}+\hat{\mathbf{D}}$

Remark

A more common version of the Woodbury formula

$$
\left(\mathbf{D}+\mathbf{U} \tilde{\mathbf{A}} \mathbf{V}^{*}\right)^{-1}=\mathbf{D}^{-1}-\mathbf{D}^{-1} \mathbf{U}\left(\tilde{\mathbf{A}}^{-1}+\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}\right)^{-1} \mathbf{V}^{*} \mathbf{D}^{-1}
$$

- If both $\tilde{\mathbf{A}}$ and $\mathbf{V}^{*} \mathbf{D}^{-1} \mathbf{U}$ are invertible, then the two versions are equivalent
- $\tilde{\mathbf{A}}$ is not block diagonal, often not invertible

Asymptotic complexity

Suppose we are given the factors in a block separable factorization.

- compute $\hat{\mathbf{D}}, \mathbf{E}, \mathbf{F}, \mathbf{G}: p n^{3}$
- invert $\tilde{\mathbf{A}}+\hat{\mathbf{D}}:(p k)^{3}$

Suppose that k is fixed. What is the optimal choice of p ?

$$
T \sim p(N / p)^{3}+(p k)^{3} \sim p^{-2} N^{3}+p^{3} k^{3}
$$

Optimal choice $p \sim(N / k)^{3 / 5}$, which leads to

$$
T \sim N^{3} p^{-2}+k^{3} p^{3} \sim N^{3}(N / k)^{-6 / 5}+k^{3}(N / k)^{9 / 5} \sim N^{9 / 5} k^{6 / 5}
$$

Compute a block separable representation

Definition

Let \mathbf{A} be an $N \times N$ matrix, let $I=1: N$ be its index vector, and let $I=I_{1} \cup I_{2} \cup \ldots \cup I_{p}$ be a disjoint partition of I. Then \mathbf{A} has block rank k w.r.t this partition if there exist matrices $\left\{\mathbf{U}_{\tau}\right\}_{\tau=1}^{p}$ and $\left\{\mathbf{V}_{\tau}\right\}_{\tau=1}^{p}$ such that each off-diagonal block of \mathbf{A} admits a factorization

$$
\left.\begin{array}{llll}
\mathbf{A}\left(I_{\sigma}, I_{\tau}\right) \\
n_{\sigma} \times n
\end{array}\right) \quad \begin{array}{ccc}
\mathbf{U}_{\sigma} & \tilde{\mathbf{A}}_{\sigma, \tau} & \mathbf{V}_{\tau}^{*},
\end{array} \quad \sigma, \tau \in\{1,2, \ldots, p\}, \quad \sigma \neq \tau,
$$

where n_{τ} is the length of I_{τ}.
block separable: block rank k is small
block separable (to precision ϵ): block rank k is small (within preset tolerance ϵ)

Compute a block separable representation

For any given τ, the columns of \mathbf{U}_{τ} span the columns of every block $\mathbf{A}_{\tau, \sigma}$ for $\sigma \neq \tau$.
In other words, the columns of \mathbf{U}_{τ} span all the columns in the matrix

$$
\mathbf{A}\left(I_{\tau}, I_{\tau}^{\mathrm{c}}\right)=\left[\mathbf{A}_{\tau, 1}, \mathbf{A}_{\tau, 2}, \ldots, \mathbf{A}_{\tau, \tau-1}, \mathbf{A}_{\tau, \tau+1}, \ldots, \mathbf{A}_{\tau, p}\right]
$$

where $I_{\tau}^{\mathcal{C}}=I \backslash I_{\tau}$.
Solve the task using SVD.
When a block separable matrix arises from the discretization of a boundary integral operator, there exist compression techniques of linear complexity.

