Simple/multi-level fast direct solver for IE

Ondrej Maxian, Anqi Mao

October 28, 2020

① CH13: A simple direct solver for integral equations Introduction

Block separable matrices

Background

Formulate a physical problem in the form of an integral equation such as

$$lpha q(oldsymbol{x}) + \int_{\Gamma} k(oldsymbol{x},oldsymbol{y}) \, ds(oldsymbol{y}) = f(oldsymbol{x}), \qquad oldsymbol{x} \in \Gamma,$$

and then discretize it to obtain a linear system

$$\mathbf{A}\mathbf{q} = \mathbf{f} \tag{1}$$

Question: how to solve the linear system efficiently?

Solvers for discretized IE

Usually, the coefficient matrix **A** is dense.

Gaussian elimination: cubic complexity iterative solver: $T_{solve} \simeq N_{iter} \times T_{matvec}$ T_{matvec} : linear complexity (FMM, H-matrix)

N_{iter}: preconditioner

fast direct solvers: linear complexity

build stage: build approximate inverse **B** of **A** solve stage: compute approximate solution $\mathbf{q}_{approx} = \mathbf{B}\mathbf{f}$ compelling in solving a sequence of linear systems simple single-level scheme \rightarrow multi-level scheme

Block separable matrices

A : $N \times N$. Tessellate it into $p \times p$ blocks. Each block: $n \times n$.

$$\mathbf{A} = \begin{bmatrix} \mathbf{D}_{1} & \mathbf{A}_{1,2} & \mathbf{A}_{1,3} & \cdots & \mathbf{A}_{1,p} \\ \mathbf{A}_{2,1} & \mathbf{D}_{2} & \mathbf{A}_{2,3} & \cdots & \mathbf{A}_{2,p} \\ \vdots & \vdots & \vdots & & \vdots \\ \mathbf{A}_{p,1} & \mathbf{A}_{p,2} & \mathbf{A}_{p,3} & \cdots & \mathbf{D}_{p} \end{bmatrix}$$

Assume

- upper bound k for ranks of all off-diagonal blocks
- ▶ basis matrices $\{\mathbf{U}_k\}_{k=1}^p$ and $\{\mathbf{V}_k\}_{k=1}^p$ such that

$$\begin{array}{lll} \mathbf{A}_{\sigma,\tau} & = & \mathbf{U}_{\sigma} & \tilde{\mathbf{A}}_{\sigma,\tau} & \mathbf{V}_{\tau}^*, & \sigma,\tau \in \{1,\,2,\,\ldots,\,p\}, & \sigma \neq \tau. \\ n \times n & n \times k & k \times k & k \times n \end{array}$$

Block separable matrices

Therefore, **A** admits a block factorization:

where $\mathbf{U} = \operatorname{diag}(\mathbf{U}_1, \mathbf{U}_2, \ldots, \mathbf{U}_n),$ $\mathbf{V} = \operatorname{diag}(\mathbf{V}_1, \, \mathbf{V}_2, \, \ldots, \, \mathbf{V}_p),$ $\mathbf{D} = \operatorname{diag}(\mathbf{D}_1, \, \mathbf{D}_2, \, \ldots, \, \mathbf{D}_p),$ and $\tilde{\textbf{A}} = \left[\begin{array}{cccc} 0 & \tilde{\textbf{A}}_{12} & \textbf{A}_{13} & \cdots \\ \tilde{\textbf{A}}_{21} & 0 & \tilde{\textbf{A}}_{23} & \cdots \\ \tilde{\textbf{A}}_{31} & \tilde{\textbf{A}}_{32} & 0 & \cdots \\ \cdot & \cdot & \cdot \end{array} \right] .$

For p = 4,

Variation of the Woodbury formula

Lemma (variation of the Woodbury formula)

Suppose that **A** is an invertible $N \times N$ matrix, K is a positive integer smaller than N, and **A** admits the factorization:

Then

where

$$\begin{split} \hat{\mathbf{D}} &= (\mathbf{V}^*\mathbf{D}^{-1}\mathbf{U})^{-1},\\ \mathbf{E} &= \mathbf{D}^{-1}\mathbf{U}\hat{\mathbf{D}},\\ \mathbf{F} &= (\hat{\mathbf{D}}\mathbf{V}^*\mathbf{D}^{-1})^*,\\ \mathbf{G} &= \mathbf{D}^{-1} - \mathbf{D}^{-1}\mathbf{U}\hat{\mathbf{D}}\mathbf{V}^*\mathbf{D}^{-1} \end{split}$$

provided all inverses that appear exist. Moreover, rank(\mathbf{G}) = N - K.

Proof

Fix an **f**. Set $\mathbf{q} = \mathbf{A}^{-1}\mathbf{f}$. Then $\mathbf{A}\mathbf{q} = \mathbf{f}$. Set $\tilde{\mathbf{q}} = \mathbf{V}^*\mathbf{q}$. We get a linear system

$$\left[\begin{array}{cc} D & U\tilde{A} \\ -V^* & I \end{array} \right] \left[\begin{array}{c} q \\ \tilde{q} \end{array} \right] = \left[\begin{array}{c} f \\ 0 \end{array} \right]$$

From the first row, $\mathbf{q} = \mathbf{D}^{-1}\mathbf{f} - \mathbf{D}^{-1}\mathbf{U}\tilde{\mathbf{A}}\tilde{\mathbf{q}}$. Substituting into the second row yields

 $(\mathbf{I} + \mathbf{V}^* \mathbf{D}^{-1} \mathbf{U} \tilde{\mathbf{A}}) \, \tilde{\mathbf{q}} = \mathbf{V}^* \mathbf{D}^{-1} \mathbf{f}$

Multiply both sides by $\hat{\mathbf{D}} = (\mathbf{V}^* \mathbf{D}^{-1} \mathbf{U})^{-1}$ to get

$$\left(\hat{\mathbf{D}} + \tilde{\mathbf{A}}\right)\tilde{\mathbf{q}} = \hat{\mathbf{D}}\mathbf{V}^{*}\mathbf{D}^{-1}\mathbf{f}$$

Therefore, we can express q as

$$\begin{split} \mathbf{q} &= \mathbf{D}^{-1} \mathbf{f} - \mathbf{D}^{-1} \mathbf{U} \tilde{\mathbf{A}} \tilde{\mathbf{q}} \\ &= \mathbf{D}^{-1} \mathbf{f} - \mathbf{D}^{-1} \mathbf{U} (\hat{\mathbf{D}} \mathbf{V}^* \mathbf{D}^{-1} \mathbf{f} - \hat{\mathbf{D}} \tilde{\mathbf{q}}) \\ &= \underbrace{\left(\mathbf{D}^{-1} - \mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}} \mathbf{V}^* \mathbf{D}^{-1} \right)}_{=\mathbf{G}} \mathbf{f} + \underbrace{\mathbf{D}^{-1} \mathbf{U} \hat{\mathbf{D}}}_{=\mathbf{E}} (\hat{\mathbf{D}} + \tilde{\mathbf{A}})^{-1} \underbrace{\hat{\mathbf{D}} \mathbf{V}^* \mathbf{D}^{-1}}_{=\mathbf{F}^*} \mathbf{f} \end{split}$$

Proof: rank(G) = N - K

Observe that

$$\mathbf{V}^*\mathbf{G} = \mathbf{V}^*\mathbf{D}^{-1} - \mathbf{V}^*\mathbf{D}^{-1}\mathbf{U}\hat{\mathbf{D}}\mathbf{V}^*\mathbf{D}^{-1} = \mathbf{V}^*\mathbf{D}^{-1} - \hat{\mathbf{D}}^{-1}\hat{\mathbf{D}}\mathbf{V}^*\mathbf{D}^{-1}$$

 $= \mathbf{V}^*\mathbf{D}^{-1} - \mathbf{V}^*\mathbf{D}^{-1} = \mathbf{0}$

Thus,

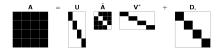
$$\mathsf{rank}(\mathbf{V}^*) + \mathsf{rank}(\mathbf{G}) - N \leq 0 \Rightarrow \mathsf{rank}(\mathbf{G}) \leq N - K$$

Also,

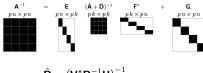
$$\mathsf{rank}(\mathbf{A}^{-1}) \leq \mathsf{rank}(\mathbf{E}(\tilde{\mathbf{A}} + \hat{\mathbf{D}})^{-1}\mathbf{F}^*) + \mathsf{rank}(\mathbf{G}) \Rightarrow \mathsf{rank}(\mathbf{G}) \geq \mathit{N} - \mathit{K}$$

Apply the lemma

Recall the block structure of **A**, for p = 4



Compute A^{-1} by the lemma



$$\begin{split} \mathbf{D} &= (\mathbf{V}^{T}\mathbf{D}^{-1}\mathbf{U})^{T}, \\ \mathbf{E} &= \mathbf{D}^{-1}\mathbf{U}\hat{\mathbf{D}}, \\ \mathbf{F} &= (\hat{\mathbf{D}}\mathbf{V}^{*}\mathbf{D}^{-1})^{*}, \\ \mathbf{G} &= \mathbf{D}^{-1} - \mathbf{D}^{-1}\mathbf{U}\hat{\mathbf{D}}\mathbf{V}^{*}\mathbf{D}^{-1} \end{split}$$

 \triangleright \hat{D} , E, F, G are cheap to form (block diagonal)

▶ invert $pn \times pn$ matrix $\mathbf{A} \Rightarrow$ invert small $pk \times pk$ matrix $\mathbf{\tilde{A}} + \mathbf{\hat{D}}$

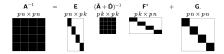
Remark

A more common version of the Woodbury formula

$$\left(\boldsymbol{\mathsf{D}}+\boldsymbol{\mathsf{U}}\tilde{\boldsymbol{\mathsf{A}}}\boldsymbol{\mathsf{V}}^*\right)^{-1}=\boldsymbol{\mathsf{D}}^{-1}-\boldsymbol{\mathsf{D}}^{-1}\boldsymbol{\mathsf{U}}\left(\tilde{\boldsymbol{\mathsf{A}}}^{-1}+\boldsymbol{\mathsf{V}}^*\boldsymbol{\mathsf{D}}^{-1}\boldsymbol{\mathsf{U}}\right)^{-1}\boldsymbol{\mathsf{V}}^*\boldsymbol{\mathsf{D}}^{-1}$$

- ► If both à and V*D⁻¹U are invertible, then the two versions are equivalent
- à is not block diagonal, often not invertible

Asymptotic complexity



Suppose we are given the factors in a block separable factorization.

► compute
$$\hat{D}$$
, E , F , G : pn^3

▶ invert $\tilde{\mathbf{A}} + \hat{\mathbf{D}}$: $(pk)^3$

Suppose that k is fixed. What is the optimal choice of p?

$$T \sim p \, (N/p)^3 + (pk)^3 \sim p^{-2} N^3 + p^3 k^3$$

Optimal choice $p \sim (N/k)^{3/5}$, which leads to

 $T \sim N^3 p^{-2} + k^3 p^3 \sim N^3 (N/k)^{-6/5} + k^3 (N/k)^{9/5} \sim N^{9/5} k^{6/5}$

Compute a block separable representation

Definition

Let **A** be an $N \times N$ matrix, let I = 1 : N be its index vector, and let $I = I_1 \cup I_2 \cup \ldots \cup I_p$ be a disjoint partition of I. Then **A** has block rank k w.r.t this partition if there exist matrices $\{\mathbf{U}_{\tau}\}_{\tau=1}^{p}$ and $\{\mathbf{V}_{\tau}\}_{\tau=1}^{p}$ such that each off-diagonal block of **A** admits a factorization

where n_{τ} is the length of I_{τ} .

block separable: block rank k is small block separable (to precision ϵ): block rank k is small (within preset tolerance ϵ) Compute a block separable representation

For any given τ , the columns of \mathbf{U}_{τ} span the columns of every block $\mathbf{A}_{\tau,\sigma}$ for $\sigma \neq \tau$.

In other words, the columns of \boldsymbol{U}_{τ} span all the columns in the matrix

$$oldsymbol{\mathsf{A}}(I_{ au},I_{ au}^{ ext{c}})=ig[oldsymbol{\mathsf{A}}_{ au,1},\,oldsymbol{\mathsf{A}}_{ au,2},\,\ldots,\,oldsymbol{\mathsf{A}}_{ au, au-1},\,oldsymbol{\mathsf{A}}_{ au, au+1},\,\ldots,\,oldsymbol{\mathsf{A}}_{ au,p}ig]$$

where $I_{\tau}^{c} = I \setminus I_{\tau}$. Solve the task using SVD.

When a block separable matrix arises from the discretization of a boundary integral operator, there exist compression techniques of linear complexity.