Randomized Linear Algebra: Martinsson Ch 3,4

Nikola Janjušević, Paul Beckman

Sept. 16, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Table of Contents

CH3: Matrix Factorizations and Low-Rank Appx.

- 3.2: Low-Rank Approximation
- 3.3: SVD
- 3.4: QR Factorization
- 3.5: Interpolative Decomposition

CH4: Randomized Methods for Low-Rank Approximation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4.2: Two-Stage Approach
- 4.3: The Range Finding Problem
- 4.4: SRFT Range Finder
- 4.5: Theoretical Performance Bounds
- 4.6: Power Iteration Range Finder
- 4.8: Randomized ID and SVD

3.1: Definitions and Notation

• Default vector-norm is Euclidean: $||x|| = ||x||_2 = \sqrt{\sum_i x_i^2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Default matrix-norm is Spectral: $||A|| = \sup_{||x||=1} ||Ax||$

Def:

- Column-space of A = range(A)
- Row-space of A = range(A^t)
- Kernel of A = null(A)
- rank(A) = dim(range(A))
- $\operatorname{nullity}(A) = \operatorname{dim}(\operatorname{null}(A))$
- Denote Conjugate-Transpose, A*
- ▶ **Thm:** (Dimension Theorem) Let $A \in \mathbb{R}^{m \times n}$. rank(A) + nullity(A) = min(m, n)

3.2: Low Rank Approximation

Definition: ϵ -rank kLet $A \in \mathbb{R}^{m \times n}, \epsilon > 0$. We say A has ϵ -rank k if (a) $\exists B \in \mathbb{R}^{m \times n}$ s.t. rank(B) = k and $||A - B|| \le \epsilon$. (b) $\nexists B \in \mathbb{R}^{m \times n}$ s.t. rank(B) < k and $||A - B|| \le \epsilon$.

▶ Lazy definition: A has ϵ -rank k if $\inf\{\|A - B\| : \operatorname{rank}(B) = k\} \le \epsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3.3: Singular Value Decomposition

For every $m \times n$ matrix A, there exists a unique¹ decomposition,

$$A_{m \times n} = \bigcup_{m \times p} \quad D_{p \times p} \quad V^*,$$

where $p = \min(m, n)$, U, V are orthonormal and their columns $(\{u_j, v_j\}_{j=1}^p)$ called the left and right singular-vectors of A respectively, $D = \operatorname{diag}(\{\sigma_i\}_{i=1}^p)$, and $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p \ge 0$ are called the singular values of A.

Best Approximation (Eckart-Young) For A with SVD $A = UDV^*$, let $A_k = \sum_{j=1}^k \sigma_j u_j v_j^*$. Then,

$$\|A - A_k\| = \inf\{\|A - B\| : \operatorname{rank}(B) = k\} = \sigma_{k+1}$$
$$\|A - A_k\|_F = \inf\{\|A - B\|_F : \operatorname{rank}(B) = k\} = (\sum_{j=k+1}^p \sigma_j^2)^{1/2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

¹up to complex constants

3.3: Computing SVD

- SVD is equivalent to eigen-value problem which is equivalent to root-finding – it requires iterative solvers.
- ln practice, algorithms are O(mnp).
- ▶ Not easily parallelizable, although ∃ tricks
- Example for $A \in \mathbb{R}^{m \times n}$, m >> n:
 - 1. Compute QR Factorization, A = QR.
 - 2. Compute SVD of $R \in \mathbb{R}^{n \times n}$ factor, $R = \hat{U}DV^*$.
 - 3. $A = Q\hat{U}DV^* = UDV^*$

Off-load more expensive factorization to smaller matrix.

3.4: Column-Pivoted QR Decomposition (CPQR)

Let $A \in \mathbb{R}^{m \times n}$, $p = \min(m, n)$, then A admits a factorization,

$$\begin{array}{cc} A & P \\ m \times n & n \times n \end{array} = \begin{array}{c} Q & R \\ m \times p & p \times n \end{array},$$

where *P* is a permutation matrix, *Q* orthonormal, *R* upper-triangular (UT). i.e. in MATLAB, AP = A(:, J), *J*, index vector.

- Same as normal QR except more numerically stable
- QR concept: Grahm-Schmidt the columns of A.
- CPQR concept: Grahm-Schmidt the columns of A choosing largest norm col.² next.

(日)<

²of projected matrix

3.4: Example CPQR Algorithm

Algorithm 1: CPQR

Input:
$$A \in \mathbb{R}^{m \times n}$$

Initialize: $Q_0 = [], R_0 = [], E_0 = A; p = \min(m, n)$
for $k = 1 : p$
 $j_k = \arg\max\{||E_{k-1}(:, \ell)|| : \ell = 1, 2, ..., n\}$ % select
 $q = E_{k-1}(:, j_k)$
 $q = q/||q||$ % normalize
 $r = q^*E_{k-1}$ % compute coeffs
 $Q_k = [Q_{k-1} \quad q]$ % store
 $R_k = \begin{bmatrix} R_{k-1} \\ r \end{bmatrix}$
 $E_k = E_{k-1} - qr$ % project
end
 $P = \mathcal{I}(:, [j_1, j_2, ..., j_p])$
 $R = RP$
Outputs: Q, R, P

Note: for-loop forms $\hat{R} = RP^*$, permuted UT matrix R_{-2} , R_{-2}

3.4: Low-rank Approximation via QR

At each step k of above algorithm,

$$A_{m \times n} = Q_k \quad R_k \quad + \quad E_k \\ m \times k \quad k \times n \quad + \quad m \times n$$

 \triangleright $Q_k R_k$ has rank k.

Stop at kth step for rank-k appx.

-or- evaluate $||E||_k \leq \epsilon$ if seeking a certain precision.

Compute partial SVD via partial QR:

$$A = Q_k \underbrace{R_k}_{=\hat{U}DV^*} + E_k = \underbrace{Q_k\hat{U}}_{=U}DV^* + E_k = UDV^* + E_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3.4: Aside on Blocking and Execution Speed

- Mat-Mat operations are better than looping Mat-Vec operations.
- For A square $n \times n$, QR, CPQR, and SVD are all $O(n^3)$, however with different constants.

Algorithm	QR	CPQR	SVD
Speed	Fast	Slow	Slowest
Ease of parallelization	Fairly Easy	Difficult	Difficult
Low-rank approximation?	No	Yes	Excellent
Partial factorization?	Yes but useless	Yes	Not easily

- ロ ト - 4 回 ト - 4 □ - 4

- CPQR and SVD are mostly Mat-Vec ops.
- Coming soon: random matricies to allow more Mat-Mat ops.

3.5: Interpolative Decomposition (ID)

Consider $A \in \mathbb{R}^{m \times n}$ with rank(A) = k < min(m, n). Then A admits a factorization,

$$A_{m \times n} = C_{m \times k} \quad Z_{k \times n},$$

with C subset of cols. of A, Z "well-conditioned".

- C preserves sparsity and definiteness of A.
- Requires k(m + n) words storage vs. mn or p(m + n).
- Often "physics preserving".

3.5: ID Computation from QR

Consider CPQR for A,

$$\begin{array}{cc} A & P \\ m \times n & n \times n \end{array} = \begin{array}{c} Q & S \\ m \times p & p \times n \end{array}$$

with

$$Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}$$
 and $S = \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix}$

 $Q_1 \in \mathbb{R}^{m imes k}$, $S_{11} \in \mathbb{R}^{k imes k}$. So,

$$AP = \begin{bmatrix} Q_1 | Q_2 \end{bmatrix} \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} = \begin{bmatrix} Q_1 S_{11} | Q_1 S_{12} + Q_2 S_{22} \end{bmatrix}$$
(1)

$$= Q_1[S_{11}|S_{12}] + Q_2[0|S_{22}]$$
(2)

$$= Q_1 S_{11} [\mathbf{I}_k | S_{11}^{-1} S_{12}] + Q_2 [0|S_{22}]$$
(3)

$$A = \underbrace{Q_1 S_{11}}_{=C} \underbrace{[\mathbf{I}_k | S_{11}^{-1} S_{12}] P^*}_{=Z} + Q_2 [0|S_{22}] P^*$$
(4)

$$A = CZ + Q_2[0|S_{22}]P^*$$
(5)

Note: for rank(A) = k, $S_{22} = 0$.

3.5: Column, Row, and Double-Sided ID

Given function for computing Column ID, $[Js,Z] = ID_{col}(A,k)$ (where $A \approx A(:, J_s)Z$, rank k), we can easily form corresponding decompositions:

Row ID: [Is, Xt] = ID_col(At,k) $A^t \approx A^t(:, I_s)X^t$ $A \approx XA(I_s,:)$

Double-Sided ID: [Js, Z] = ID_col(A,k), [Is, X] = ID_row(A(:,Js),k)

 $A \approx A(:, J_s)Z \approx XA(I_s, J_s)Z.$

Clearly, only partial factorization needed in computing ID.

• Can augment to take tolerance ϵ rather than rank k.

3.6: Moore-Penrose Pseudoinverse

Generalized notion of matrix inverse for non-square (non-singular) matrices based on SVD. Let $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A) = k \leq \min(m, n)$. Let $A = UDV^*$ be the SVD of A. Then,

$$A = \sum_{j=1}^{k} \sigma_j u_j v_j^* = \bigcup_{\substack{m \times k}} \bigcup_{\substack{k \times k \\ k \times n}} V_k^*$$

Then the **pseudoinverse** of A is the $n \times m$ matrix,

$$A^{\dagger} \coloneqq V^k D_k^{-1} U_k^*,$$

and so,

$$AA^{\dagger} = U_k U_k^*, \quad A^{\dagger}A = V_k V_k^*$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Table of Contents

CH3: Matrix Factorizations and Low-Rank Appx.

- 3.2: Low-Rank Approximation
- 3.3: SVD
- 3.4: QR Factorization
- 3.5: Interpolative Decomposition

CH4: Randomized Methods for Low-Rank Approximation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4.2: Two-Stage Approach
- 4.3: The Range Finding Problem
- 4.4: SRFT Range Finder
- 4.5: Theoretical Performance Bounds
- 4.6: Power Iteration Range Finder
- 4.8: Randomized ID and SVD

4.1: Introduction

Goal: Efficiently compute (good) rank-*k* approximations of $A \in \mathbb{R}^{m \times n}$. Should take into account complexity and blocking³.

Starting point:

$$\begin{array}{l} \text{Draw } G \in \mathbb{R}^{n \times k}, G_{ij} \sim \mathcal{N}(0,1) \\ Y = AG \in \mathbb{R}^{m \times k} \\ A_k = YY^{\dagger}A \end{array} \qquad (\text{Orthogonal Proj.}) \end{array}$$

- Above is provably close to optimal for rank-(k-5) approximation
- Slightly more sophisticated approach with random matrix theory can bring us:
 - $O(mnk) \rightarrow O(mn \log k + k^2(m+n))$ appx. complexity
 - Less communication for distributed computing
 - single-pass factorization

4.2: Two-Stage Approach (for SVD)

Algorithm 2: Prototype Rank-k SVD

Input: $A \in \mathbb{R}^{m \times n}$, target rank k, oversampling parameter p**Output:** Rank-(k + p) approximate SVD of $A \approx UDV^*$ **Stage A:** Find approximate range. Obtain $Q \in \mathbb{R}^{m \times (k+p)}$ orthonormal s.t. $A \approx QQ^*A$

Stage B: Factorize.

Form the matrix $B = Q^*A \in \mathbb{R}^{(k+p) \times n}$ Form the SVD of $B = \hat{U}DV^*$ Form $U = Q\hat{U}$

- As $k \ll \min(m, n)$, Stage B is cheap.
- Stage B is exact (up to double precision).
- ▶ → all errors result from Stage A: $||A UDV^*|| = ||A QQ^*A||$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4.3: The Range Finding Problem

Algorithm 3: Range finding algorithm Input: $A \in \mathbb{R}^{m \times n}$, target rank k, oversampling parameter pOutput: Q orthonormal spanning range(A). Form a Gaussian random matrix $G \in \mathbb{R}^{n \times (k+p)}$ Form the sample matrix $Y = AG \in \mathbb{R}^{m \times (k+p)}$ Orthonormalize the columns $Q = \operatorname{orth}(Y)$

- If A has exact rank-k, above works with p = 0 and probability 1.
- Numerical rank deficiency causes problems → fix with oversampling factor p.
- ► Martinsson (paraphrase): "p=10 is nice".
- Error analysis gives expected error, where singular-value decay is important.

4.4: The randomized SVD

MATLAB RSVD code:

```
function [U,D,V] = rsvd(A,k,p)
  [m,n] = size(A);
  G = randn(n,k+p);
  Y = A*G;
  [Q,~] = qr(Y,0);
  B = Q'*A;
  [Uhat,D,V] = svd(B,'econ');
  U = Q*Uhat;
  and
```

end

- This algorithm can be faster than deterministic methods depending on code optimization
- Has the same O(mnk) asymptotic complexity due to computing Y = AG and B = Q*A

Numerical Example

SVD vs. RSVD algorithm presented. Rank-5 approximation from $A \in \mathbb{R}^{n \times n}$, with A numerically full rank but 5 dominant singular values.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

4.4: Faster range finding using the FFT

To improve on $\mathcal{O}(mnk)$, we can use a non-Gaussian random matrix

$$\Omega_{n \times \ell} = D_{n \times n} \quad F_{n \times n} \quad S_{n \times \ell}$$

where we define the following matrices:

- D is a diagonal matrix with entries drawn uniformly at random from the unit circle in the complex plane
- F is the discrete Fourier transform

$$F_{pq} = n^{-1/2} e^{-2\pi i (p-1)(q-1)/n}$$
 $p, q = 1, 2, ..., n$

• S is a random subset of ℓ columns of the identity matrix

This is the subsampled randomized Fourier transform (SRFT) $A\Omega$ can be evaluated in $\mathcal{O}(mn \log k)$ time complexity using the FFT Ω is sufficiently random that $A\Omega$ accurately spans the range of A

4.5: Theoretical performance bounds

Since we have

$$A - \underbrace{U}_{=Q\hat{U}}DV^* = A - Q\underbrace{\hat{U}DV^*}_{=\operatorname{svd}(B)} = A - Q\underbrace{B}_{=Q^*A} = A - QQ^*A$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

we can study $\|A - QQ^*A\| = \|A - UDV^*\|$ as the approximation error.

4.5: Theoretical performance bounds

Theorem 4.1: (Theorem 10.6 from [HMT11])

Let $A \in \mathbb{R}^{m \times n}$ have singular values $\{\sigma_j\}_{j=1}^{\min(m,n)}$.

Take target rank k and oversampling parameter p with $p \ge 2$ and $k + p \le \min(m, n)$.

Let $G \in \mathbb{R}^{m \times (k+p)}$ be a Gaussian random matrix, and define $Q = \operatorname{orth}(AG) \in \mathbb{R}^{m \times (k+p)}$. Then we have

$$\mathbb{E}[\|A - QQ^*A\|_F] \le \left(1 + \frac{k}{p-1}\right)^{1/2} \left(\sum_{j=k+1}^{\min(m,n)} \sigma_j^2\right)^{1/2} \\ \mathbb{E}[\|A - QQ^*A\|] \le \left(1 + \sqrt{\frac{k}{p-1}}\right) \sigma_{k+1} + \frac{e\sqrt{k+p}}{p} \left(\sum_{j=k+1}^{\min(m,n)} \sigma_j^2\right)^{1/2} \\ \le \left[1 + \sqrt{\frac{k}{p-1}} + \frac{e\sqrt{k+p}}{p} \sqrt{\min(m,n) - k}\right] \sigma_{k+1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4.6: Improved accuracy using power iteration

Recall the power iteration:

$$x_{q+1} \leftarrow A x_q$$

 x_q converges to the dominant eigenvector of A

Dominant left singular vectors of A are dominant eigenvectors of AA^* Therefore by taking q power iterations, we can compute

 $Y = (AA^*)^q AG$

in place of

$$Y = AG.$$

This works well because for $A = UDV^*$ we see that

$$(AA^*)^q A = UD^{2q+1}V^*$$

i.e. $(AA^*)^qA$ has the same left singular vectors as A but its singular values decay much more quickly

- ロ ト - 4 回 ト - 4 □

4.6: Improved accuracy using power iteration

Algorithm 4: Power iteration range finder

Input: $A \in \mathbb{R}^{m \times n}$, target rank k, oversampling parameter p, number of power iterations q **Output:** Q orthonormal spanning range(A). Form Gaussian matrix $G \in \mathbb{R}^{n \times (k+p)}$ Y = AG **for** j = 1 : q **do** $\begin{bmatrix} Z = A^*Y \\ Y = AZ \end{bmatrix}$ Return $Q = \operatorname{orth}(Y)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4.6: Theoretical performance bounds

Theorem 4.2: (Corollary 10.10 from [HMT11])

Let $A \in \mathbb{R}^{m \times n}$ have singular values $\{\sigma_j\}_{j=1}^{\min(m,n)}$.

Take target rank k, oversampling parameter p with $p \ge 2$ and $k + p \le \min(m, n)$, and number of power iterations q.

Let $G \in \mathbb{R}^{m \times (k+p)}$ be a Gaussian random matrix, and define $Q = \operatorname{orth} ((AA^*)^q AG) \in \mathbb{R}^{m \times (k+p)}$. Then we have

$$\mathbb{E}[\|A - QQ^*A\|] \leq \left[\left(1 + \sqrt{\frac{k}{p-1}} \right) \sigma_{k+1}^{2q+1} + \frac{e\sqrt{k+p}}{p} \left(\sum_{j=k+1}^{\min(m,n)} \sigma_j^{2(2q+1)} \right)^{1/2} \right]^{1/(2q+1)} \\ \leq \left[1 + \sqrt{\frac{k}{p-1}} + \frac{e\sqrt{k+p}}{p} \sqrt{\min(m,n)-k} \right]^{1/(2q+1)} \sigma_{k+1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4.7: Adaptive rank determination

So far we assume k to be fixed in advance

We can instead iteratively increase the rank until a norm error tolerance

$$\|A - QQ^*A\| \leq \varepsilon$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is met.

See the text for details.

4.8: Randomized ID

- Our current RSVD algorithm relies on computing svd(Q*A)
- We would like to avoid the $\mathcal{O}(mnk)$ cost of forming Q^*A

After computing Y = AG, if we compute the row ID

 $Y \approx XY[I_s,:]$

there exists some $F \in \mathbb{R}^{k \times n}$ such that

 $A \approx YF$

because the columns of Y form an approximate basis for the columns of A. Inserting the ID of Y, we obtain

 $A \approx XY[I_s, :]F.$

Looking at rows I_s and using the fact that $X[I_s, :] = I$, we see that

$$A[I_s,:] \approx X[I_s,:]Y[I_s,:]F = Y[I_s,:]F$$

and thus

$$A \approx XA[I_s, :],$$

i.e. we automatically obtain the ID of A from the ID of Y_{-} , z_{-} ,

4.8: From ID to SVD

Algorithm 5: RSVD

Input: $A \in \mathbb{R}^{m \times n}$, target rank k, oversampling parameter p**Output:** Rank-(k + p) approximate SVD of $A \approx UDV^*$ Form a SRFT random matrix $\Omega \in \mathbb{R}^{n \times (k+p)}$ Form the sample matrix $Y = A\Omega \in \mathbb{R}^{m \times (k+p)}$ Compute the ID of the sample matrix $Y = XY[I_s, :]$ Compute the QR decomposition of the interpolation matrix X = QRForm the matrix $F = RA[I_s, :] \in \mathbb{R}^{(k+p) \times n}$ Compute the SVD of the matrix $F = \hat{U}DV^*$ Form $U = Q\hat{U}$

- ▶ We now have a fully O(mn log k) algorithm for the SVD!
- Summary: Obtain [Is,X] = rID_row(Y,k) s.t. $A \approx XA(I_s,:)$. Then,

$$A \approx \underbrace{X}_{=QR} A(I_s, :) = Q \underbrace{RA(I_s, :)}_{=F} = Q \underbrace{F}_{=\hat{U}DV^*} = \underbrace{Q\hat{U}}_{U} DV^* = UDV^*$$

Summary

Two-stage approach:

- A. Construct orthonormal Q s.t. $A \approx QQ^*A$
- B. Compute $\hat{U}DV^* = svd(Q^*A)$ and $U = Q\hat{U}$
- The range finding problem
 - Compute Q = orth(Y) for sample matrix Y
 - Y = AG for G Gaussian $\implies O(mnk)$
 - $Y = A\Omega$ for Ω SRFT $\implies \mathcal{O}(mn \log k)$
 - $Y = (AA^*)^q AG$ or $(AA^*)^q A\Omega \implies$ improved accuracy

Using the interpolative decomposition

- Evaluating Q*A is O(mnk)
- The ID of Y gives the ID of A for free
- Can compute the SVD from this ID $\implies \mathcal{O}(mn \log k)$

- Advantages over deterministic methods
 - Reduce communication as well as flop counts
 - Can be adapted to use only a single pass over A

References

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, *Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions*, SIAM review **53** (2011), no. 2, 217–288.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00