Randomized Linear Algebra:
Martinsson Ch 3,4

Nikola Janjusevi¢, Paul Beckman

Sept. 16, 2020

Table of Contents

CH3: Matrix Factorizations and Low-Rank Appx.
3.2: Low-Rank Approximation
3.3: SVD
3.4: QR Factorization

3.5: Interpolative Decomposition

3.1: Definitions and Notation

» Default vector-norm is Euclidean: ||x|| = [|x|l, = />, x?

» Default matrix-norm is Spectral: ||A|]| = sup [|Ax]|
l[x]I=1
> Def:
» Column-space of A = range(A)
> Row-space of A = range(Af)
> Kernel of A = null(A)
> rank(A) = dim(range(A))

>

nullity(A) = dim(null(A))

» Denote Conjugate-Transpose, A*

» Thm: (Dimension Theorem) Let A € R™*".
rank(A) + nullity(A) = min(m, n)

3.2: Low Rank Approximation

Definition: e-rank k
Let A€ R™" ¢ > 0. We say A has e-rank k if

(a) 3B e R™" st. rank(B) = k and ||A— B| <e.
(b) AB € R™<" st. rank(B) < k and ||A — B|| < «.

» Lazy definition: A has e-rank k if inf{||A — B|| : rank(B) = k} <e.

3.3: Singular Value Decomposition

For every m x n matrix A, there exists a unique! decomposition,

A=U D V*

mxn mxp pxXp pXn

where p = min(m, n), U, V are orthonormal and their columns ({u;, v;}7_;)
called the left and right singular-vectors of A respectively,

D = diag({o}"_;), and 01 > 02 > --- > 5, > 0 are called the singular
values of A.

Best Approximation (Eckart-Young)

For A with SVD A = UDV*, let A, = 3% oju;v;. Then,

|A — Ag|| = inf{||A — B| : rank(B) = k} = oys1

P
1A= Al = inf{||A = Bl : rank(B) = k} = (> o})"/2
j=k+1

Lup to complex constants

3.3: Computing SVD

» SVD is equivalent to eigen-value problem which is equivalent to
root-finding — it requires iterative solvers.

» In practice, algorithms are O(mnp).

» Not easily parallelizable, although 3 tricks

» Example for A€ R™" m >> n:

1. Compute QR Factorization, A = QR. R
2. Compute SVD of R € R"™" factor, R = UDV*.
3. A= QUDV* = UDV*

Off-load more expensive factorization to smaller matrix.

3.4: Column-Pivoted QR Decomposition (CPQR)

Let A€ R™*" p = min(m,n), then A admits a factorization,

A P =Q R

b
mxn nxn mxp PXn

where P is a permutation matrix, Q orthonormal, R upper-triangular (UT).
i.e. in MATLAB, AP = A(:,J), J, index vector.

» Same as normal QR except more numerically stable

» QR concept: Grahm-Schmidt the columns of A.

> CPQR concept: Grahm-Schmidt the columns of A choosing largest
norm col.? next.

2of projected matrix

3.4: Example CPQR Algorithm

Algorithm 1: CPQR

Input: A € R™*"

Initialize: Qy =[], Ro =[], Eo = A; p = min(m, n)
fork=1:p

Jk = argmax{||Ex_1(5,0)|| : £ =1,2,...,n}

q = Ex—1(:,Jx)
a=q/ |4l
r=q"Ex—1
Q= [Q-1 4]

Ri—
G

Ex = Ek_1—qr

end
P = I(Z, [jl,_jz, e 7.jp])
R =RP

Outputs: Q,R, P

% select
% normalize

% compute coeffs

% store

% project

Note: for-loop forms R = RP*, permuted UT matrix R.

3.4: Low-rank Approximation via QR

At each step k of above algorithm,

A=Q R« + E

mXxXn mxk kxn mxn

» Qi Ry has rank k.
» Stop at kth step for rank-k appx.
-or- evaluate ||E||, < e if seeking a certain precision.

Compute partial SVD via partial QR:

A=Q. R« +E.= Q.UDV*+E, = UDV* + E,
~~ N~~~

=0Dv~* =U

3.4: Aside on Blocking and Execution Speed

> Mat-Mat operations are better than looping Mat-Vec operations.

» For A square n x n, QR, CPQR, and SVD are all O(n?), however with
different constants.

Algorithm QR CPQR SVD
Speed Fast Slow Slowest
Ease of parallelization Fairly Easy Difficult | Difficult
Low-rank approximation? | No Yes Excellent
Partial factorization? Yes but useless | Yes Not easily

» CPQR and SVD are mostly Mat-Vec ops.
» Coming soon: random matricies to allow more Mat-Mat ops.

3.5: Interpolative Decomposition (ID)

Consider A € R™*" with rank(A) = k < min(m, n). Then A admits a
factorization,
A=C Z

)
mxn mxk kxn

with C subset of cols. of A, Z “well-conditioned” .

» (C preserves sparsity and definiteness of A.
» Requires k(m + n) words storage vs. mn or p(m + n).
» Often “physics preserving”.

3.5: ID Computation from QR
Consider CPQR for A,

A P=Q S.

mxn nxn mxp PXn

with

S S
Q=[Q Q] and sz{gl S;j

@ € Rka, Si1 € Rkxk, So,

AP = [(1]| Q2] [561 g;j = [Q1511]| @1 512 + @252]

= Q1[S511/512] + Q2[0|522]
= Q1511 [1k] 511 S12] + @2[0]Sx]
A = Q1511 [1k|S; S12]P* +@2[0|Sx] P
=C -7

A= CZ + Q[0|5x]P*

Note: for rank(A) = k, Sy = 0.

w N
— —

3.5: Column, Row, and Double-Sided ID

Given function for computing Column ID, [Js,Z] = ID_col(A,k) (where
A= A(:,Js)Z, rank k), we can easily form corresponding decompositions:

Row ID: [Is, Xt] = ID_col(At,k)

At AT 1) XE
A= XA(ls,:)

Double-Sided ID: [Js, Z] = ID_col(A,k),
[Is, X] = ID_row(A(:,Js),k)

Ar Al Js)Z ~ XA(ls, J5)Z.

» Clearly, only partial factorization needed in computing ID.
» Can augment to take tolerance € rather than rank k.

3.6: Moore-Penrose Pseudoinverse

Generalized notion of matrix inverse for non-square (non-singular) matrices
based on SVD. Let A € R™*" with rank(A) = k < min(m, n). Let
A = UDV"* be the SVD of A. Then,

k
A:ZUjUj\/j*: Uk Dk VI:(
Jj=1

mxk kxk kxn
Then the pseudoinverse of A is the n x m matrix,
. k-1
Al = VKD Uy,

and so,
AAT = U Uy, ATA =V, V)

» A square nonsingular — AT = A71.
» x = Afb is LLS solution to Ax = b.

Table of Contents

CH4: Randomized Methods for Low-Rank Approximation

4.2:
4.3:
4.4:
4.5:
4.6:
4.8:

Two-Stage Approach

The Range Finding Problem
SRFT Range Finder

Theoretical Performance Bounds
Power lteration Range Finder

Randomized ID and SVD

4.1: Introduction

Goal: Efficiently compute (good) rank-k approximations of A € R™*".
Should take into account complexity and blocking?.

Starting point:

Draw G € R™* G; ~ N(0,1)
Y = AG € R™*k
Ac=YYTA (Orthogonal Proj.)

> Above is provably close to optimal for rank-(k — 5) approximation
» Slightly more sophisticated approach with random matrix theory can
bring us:
> O(mnk) — O(mnlog k + k*(m + n)) appx. complexity
» Less communication for distributed computing
> single-pass factorization

3previously mentioned methods are O(n3) and not blocked

4.2: Two-Stage Approach (for SVD)

Algorithm 2: Prototype Rank-k SVD

Input: A € R™*" target rank k, oversampling parameter p
Output: Rank-(k + p) approximate SVD of A=~ UDV*
Stage A: Find approximate range.

Obtain Q € R™*(k+P) orthonormal s.t. A~ QQR*A

Stage B: Factorize.
Form the matrix B = Q*A ¢ R(k+p)xn
Form the SVD of B = UDV*
Form U = QU

» As k << min(m, n), Stage B is cheap.
> Stage B is exact (up to double precision).
> — all errors result from Stage A: ||A— UDV*|| = ||A — QQ*A|.

4.3: The Range Finding Problem

Algorithm 3: Range finding algorithm

Input: A € R™*", target rank k, oversampling parameter p
Output: Q orthonormal spanning range(A).

Form a Gaussian random matrix G € R"*(k+p)

Form the sample matrix Y = AG € R™*(k+p)
Orthonormalize the columns Q = orth(Y)

> If A has exact rank-k, above works with p = 0 and probability 1.

» Numerical rank deficiency causes problems — fix with oversampling
factor p.

P> Martinsson (paraphrase): “p=10 is nice” .

» Error analysis gives expected error, where singular-value decay is
important.

4.4: The randomized SVD

MATLAB RSVD code:

function [U,D,V] = rsvd(A,k,p)
[m,n] = size(A);
G = randn(n,k+p);

Y = AxG;

[Q,”1 = qr(Y,0);

B = Q’*A;

[Uhat,D,V] = svd(B,’econ’);
U = Q*Uhat;

end

» This algorithm can be faster than deterministic methods depending on
code optimization

> Has the same O(mnk) asymptotic complexity due to computing
Y = AG and B = Q*A

Numerical Example

SVD vs. RSVD algorithm presented.
Rank-5 approximation from A € R"*", with A numerically full rank but 5

dominant singular values.

108
10°
102
— 10!
S
il o)
g g 10
5 =
E}
§ 8 |
g %wo
[.
g Ve s 10 -
&
/o -
1072
10 104

5
102 10°
size (n)

104

10°
size (n)

104

4.4: Faster range finding using the FFT

To improve on O(mnk), we can use a non-Gaussian random matrix

Q=D F S

nx?{ nxn nxn px/t
where we define the following matrices:

» D is a diagonal matrix with entries drawn uniformly at random from the
unit circle in the complex plane

» F is the discrete Fourier transform
Foq = n~/2g=2mi(p—1)(a—1)/n p,g=1,2..n
» S is a random subset of £ columns of the identity matrix

This is the subsampled randomized Fourier transform (SRFT)
AQ can be evaluated in O(mnlog k) time complexity using the FFT

Q is sufficiently random that A accurately spans the range of A

4.5: Theoretical performance bounds

Since we have

A— U DVF=A-QUDV*=A—-Q B =A—-QQ*A
—QU =svd(B) =Q*A

we can study ||A — QQ*Al|| = ||A — UDV*|| as the approximation error.

4.5: Theoretical performance bounds

Theorem 4.1: (Theorem 10.6 from [HMT11])

Let A € R™*" have singular values {Jj};liq(m’n).

Take target rank k and oversampling parameter p with p > 2 and
k 4+ p < min(m, n).

Let G € R™<(k+P) pe 3 Gaussian random matrix, and define
Q = orth(AG) € R™<(¥*P)_ Then we have

min(m,n) 1/2
. k \1/2
E[A - QQ Al < (1+ =) () of)

Jj=k+1
K ek T min(m,n) 1/2
E[|A— QQ"Al] < (1 + ,/_1>ak+1 + V”(3 o,?>
P P Jj=k+1
k vk
< |1+ 1+e P min(m,n)k]o—kﬂ
p— P

4.6: Improved accuracy using power iteration

Recall the power iteration:
Xg+1 — AXqg

Xg converges to the dominant eigenvector of A

Dominant left singular vectors of A are dominant eigenvectors of AA*

Therefore by taking g power iterations, we can compute
Y = (AA*)IAG

in place of
Y = AG.

This works well because for A = UDV* we see that
(AA*)IA = UD?THL v+

i.e. (AA*)9A has the same left singular vectors as A but its singular values
decay much more quickly

4.6: Improved accuracy using power iteration

Algorithm 4: Power iteration range finder

Input: A € R™*", target rank k, oversampling parameter p, number of
power iterations g
Output: Q orthonormal spanning range(A).
Form Gaussian matrix G € R"*(k+p)
Y = AG
forj=1:q9do
Z =AY
Y =AZ
Return Q = orth(Y)

4.6: Theoretical performance bounds

Theorem 4.2: (Corollary 10.10 from [HMT11])

Let A€ R™*" have singular values {aj}?:iq(m’").

Take target rank k, oversampling parameter p with p > 2 and
k + p < min(m, n), and number of power iterations q.

Let G € R™%(k+P) be 3 Gaussian random matrix, and define
Q = orth ((AA*)qAG) € R™*(k+P) Then we have

k 2q+1
<1 + pl> i

i 1/291/(2g+1)
7 min(m,n)
+ev+l’< 3 e

E[A - QR™A|l] <

J
p j=k+1

Ok+1

1—|—1/pk1+e l;+p\/min(m,n)—k

‘| 1/(2g+1)

4.7: Adaptive rank determination

So far we assume k to be fixed in advance

We can instead iteratively increase the rank until a norm error tolerance
[A—QR*Al <e

is met.

See the text for details.

4.8: Randomized ID

» Our current RSVD algorithm relies on computing svd(Q*A)
> We would like to avoid the O(mnk) cost of forming Q*A

After computing Y = AG, if we compute the row ID
Y =~ XYl]
there exists some F € R**" such that
A= YF

because the columns of Y form an approximate basis for the columns of A.
Inserting the ID of Y, we obtain

A= XY, :]F.
Looking at rows /s and using the fact that X[ls,:] =/, we see that
Alls,:] = X[ls,:1Yls,:]F = Y[k, :]F

and thus
A= XAlls,],

i.e. we automatically obtain the ID of A from the ID of Y.

4.8: From ID to SVD

Algorithm 5: RSVD

Input: A € R™*", target rank k, oversampling parameter p
Output: Rank-(k + p) approximate SVD of A = UDV*

Form a SRFT random matrix Q € R"*(k+p)

Form the sample matrix Y = AQ e R™*(k+p)

Compute the ID of the sample matrix Y = XY[/;, ‘]

Compute the QR decomposition of the interpolation matrix X = QR
Form the matrix F = RA[l,:] € R{k+p)xn

Compute the SVD of the matrix F = Opv+

Form U = QU

> We now have a fully O(mnlog k) algorithm for the SVD!
» Summary: Obtain [Is,X] = rID_row(Y,k) s.t. A= XA(l,:). Then,

Ax X Alls,))=QRA(l,:)=Q _F = QUDV*=UDV
=QR =F =0pv~ U

Summary

» Two-stage approach:

A. Construct orthonormal Q s.t. A= QQ*A

B. Compute UDV™ = svd(Q*A) and U = QU
» The range finding problem

» Compute Q = orth(Y) for sample matrix Y

» Y = AG for G Gaussian = O(mnk)

> Y = AQ for Q SRFT = O(mnlog k)

> Y = (AA")IAG or (AA*)IAQ = improved accuracy
» Using the interpolative decomposition

» Evaluating Q*A is O(mnk)

» The ID of Y gives the ID of A for free

» Can compute the SVD from this ID = O(mnlog k)
» Advantages over deterministic methods

» Reduce communication as well as flop counts
» Can be adapted to use only a single pass over A

References

ﬁ Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, Finding
structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions, SIAM review 53 (2011), no. 2,
217-288.

	CH3: Matrix Factorizations and Low-Rank Appx.
	3.2: Low-Rank Approximation
	3.3: SVD
	3.4: QR Factorization
	3.5: Interpolative Decomposition

	CH4: Randomized Methods for Low-Rank Approximation
	4.2: Two-Stage Approach
	4.3: The Range Finding Problem
	4.4: SRFT Range Finder
	4.5: Theoretical Performance Bounds
	4.6: Power Iteration Range Finder
	4.8: Randomized ID and SVD

