Randomized Linear Algebra: Martinsson Ch 3,4

Nikola Janjušević, Paul Beckman

Sept. 16, 2020

Table of Contents

CH3: Matrix Factorizations and Low-Rank Appx.
3.2: Low-Rank Approximation
3.3: SVD
3.4: QR Factorization
3.5: Interpolative Decomposition

CH4: Randomized Methods for Low-Rank Approximation
4.2: Two-Stage Approach
4.3: The Range Finding Problem
4.4: SRFT Range Finder
4.5: Theoretical Performance Bounds
4.6: Power Iteration Range Finder
4.8: Randomized ID and SVD

3.1: Definitions and Notation

- Default vector-norm is Euclidean: $\|x\|=\|x\|_{2}=\sqrt{\sum_{i} x_{i}^{2}}$
- Default matrix-norm is Spectral: $\|A\|=\sup _{\|x\|=1}\|A x\|$
- Def:
- Column-space of $\mathrm{A}=\operatorname{range}(A)$
- Row-space of $\mathrm{A}=\operatorname{range}\left(A^{t}\right)$
- Kernel of $A=\operatorname{null}(A)$
- $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{range}(A))$
- $\operatorname{nullity}(A)=\operatorname{dim}(\operatorname{null}(A))$
- Denote Conjugate-Transpose, A^{*}
- Thm: (Dimension Theorem) Let $A \in \mathbb{R}^{m \times n}$. $\operatorname{rank}(A)+\operatorname{nullity}(A)=\min (m, n)$

3.2: Low Rank Approximation

Definition: ϵ-rank k
Let $A \in \mathbb{R}^{m \times n}, \epsilon>0$. We say A has ϵ-rank k if
(a) $\exists B \in \mathbb{R}^{m \times n}$ s.t. $\operatorname{rank}(B)=k$ and $\|A-B\| \leq \epsilon$.
(b) $\exists B \in \mathbb{R}^{m \times n}$ s.t. $\operatorname{rank}(B)<k$ and $\|A-B\| \leq \epsilon$.

- Lazy definition: A has ϵ-rank k if $\inf \{\|A-B\|: \operatorname{rank}(B)=k\} \leq \epsilon$.

3.3: Singular Value Decomposition

For every $m \times n$ matrix A, there exists a unique ${ }^{1}$ decomposition,

$$
\underset{m \times n}{A}=\underset{m \times p}{U} \underset{p \times p}{\underset{D}{D}} \underset{p \times n}{V^{*}},
$$

where $p=\min (m, n), U, V$ are orthonormal and their columns $\left(\left\{u_{j}, v_{j}\right\}_{j=1}^{p}\right)$ called the left and right singular-vectors of A respectively,
$D=\operatorname{diag}\left(\left\{\sigma_{i}\right\}_{i=1}^{p}\right)$, and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0$ are called the singular values of A.

Best Approximation (Eckart-Young)

For A with SVD $A=U D V^{*}$, let $A_{k}=\sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{*}$. Then,

$$
\begin{aligned}
\left\|A-A_{k}\right\| & =\inf \{\|A-B\|: \operatorname{rank}(B)=k\}=\sigma_{k+1} \\
\left\|A-A_{k}\right\|_{F} & =\inf \left\{\|A-B\|_{F}: \operatorname{rank}(B)=k\right\}=\left(\sum_{j=k+1}^{p} \sigma_{j}^{2}\right)^{1 / 2}
\end{aligned}
$$

3.3: Computing SVD

- SVD is equivalent to eigen-value problem which is equivalent to root-finding - it requires iterative solvers.
- In practice, algorithms are O (mnp).
- Not easily parallelizable, although \exists tricks
- Example for $A \in \mathbb{R}^{m \times n}, m \gg n$:

1. Compute $Q R$ Factorization, $A=Q R$.
2. Compute SVD of $R \in \mathbb{R}^{n \times n}$ factor, $R=\hat{U} D V^{*}$.
3. $A=Q \hat{U} D V^{*}=U D V^{*}$

Off-load more expensive factorization to smaller matrix.

3.4: Column-Pivoted QR Decomposition (CPQR)

Let $A \in \mathbb{R}^{m \times n}, p=\min (m, n)$, then A admits a factorization,

$$
\underset{m \times n}{A} \underset{n \times n}{P}=\underset{m \times p}{Q} \underset{p \times n}{R},
$$

where P is a permutation matrix, Q orthonormal, R upper-triangular (UT). i.e. in matlab, $A P=A(:, J)$, J, index vector.

- Same as normal QR except more numerically stable
- QR concept: Grahm-Schmidt the columns of A.
- CPQR concept: Grahm-Schmidt the columns of A choosing largest norm col. ${ }^{2}$ next.

3.4: Example CPQR Algorithm

Algorithm 1: CPQR
Input: $A \in \mathbb{R}^{m \times n}$
Initialize: $Q_{0}=[], R_{0}=[], E_{0}=A ; p=\min (m, n)$
for $k=1$: p

$$
\begin{array}{rr}
j_{k}=\operatorname{argmax}\left\{\left\|E_{k-1}(:, \ell)\right\|: \ell=1,2, \ldots, n\right\} & \% \text { select } \\
q=E_{k-1}\left(:, j_{k}\right) & \\
q=q /\|q\| & \% \text { normalize } \\
r=q^{*} E_{k-1} & \% \text { compute coeffs } \\
Q_{k}=\left[\begin{array}{ll}
Q_{k-1} & q
\end{array}\right] & \% \text { store } \\
R_{k}=\left[\begin{array}{c}
R_{k-1} \\
r
\end{array}\right] & \\
E_{k}=E_{k-1}-q r & \% \text { project }
\end{array}
$$

end
$P=\mathcal{I}\left(:,\left[j_{1}, j_{2}, \ldots, j_{p}\right]\right)$
$R=R P$
Outputs: Q, R, P
Note: for-loop forms $\hat{R}=R P^{*}$, permuted UT matrix R.

3.4: Low-rank Approximation via QR

At each step k of above algorithm,

$$
\underset{m \times n}{A}=\underset{m \times k}{Q_{k}} \underset{k \times n}{R_{k}}+\underset{m \times n}{E_{k}}
$$

- $Q_{k} R_{k}$ has rank k.
- Stop at k th step for rank- k appx.
-or- evaluate $\|E\|_{k} \leq \epsilon$ if seeking a certain precision.
Compute partial SVD via partial QR:

$$
A=Q_{k} \underbrace{R_{k}}_{=\hat{U} D V^{*}}+E_{k}=\underbrace{Q_{k} \hat{U}}_{=U} D V^{*}+E_{k}=U D V^{*}+E_{k}
$$

3.4: Aside on Blocking and Execution Speed

- Mat-Mat operations are better than looping Mat-Vec operations.
- For A square $n \times n, \mathrm{QR}, \mathrm{CPQR}$, and SVD are all $O\left(n^{3}\right)$, however with different constants.

Algorithm	QR	CPQR	SVD
Speed	Fast	Slow	Slowest
Ease of parallelization	Fairly Easy	Difficult	Difficult
Low-rank approximation?	No	Yes	Excellent
Partial factorization?	Yes but useless	Yes	Not easily

- CPQR and SVD are mostly Mat-Vec ops.
- Coming soon: random matricies to allow more Mat-Mat ops.

3.5: Interpolative Decomposition (ID)

Consider $A \in \mathbb{R}^{m \times n}$ with $\boldsymbol{\operatorname { r a n k }}(A)=k<\min (m, n)$. Then A admits a factorization,

$$
\underset{m \times n}{A}=\underset{m \times k}{C} \underset{k \times n}{Z},
$$

with C subset of cols. of A, Z "well-conditioned".

- C preserves sparsity and definiteness of A.
- Requires $k(m+n)$ words storage vs. $m n$ or $p(m+n)$.
- Often "physics preserving".

3.5: ID Computation from QR

Consider CPQR for A,

$$
\underset{m \times n}{A} \underset{n \times n}{P}=\underset{m \times p}{Q} \underset{p \times n}{S} .
$$

with

$$
Q=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right] \quad \text { and } \quad S=\left[\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right]
$$

$Q_{1} \in \mathbb{R}^{m \times k}, S_{11} \in \mathbb{R}^{k \times k}$. So,

$$
\begin{align*}
A P & =\left[Q_{1} \mid Q_{2}\right]\left[\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right]=\left[Q_{1} S_{11} \mid Q_{1} S_{12}+Q_{2} S_{22}\right] \tag{1}\\
& =Q_{1}\left[S_{11} \mid S_{12}\right]+Q_{2}\left[0 \mid S_{22}\right] \tag{2}\\
& =Q_{1} S_{11}\left[I_{k} \mid S_{11}^{-1} S 12\right]+Q_{2}\left[0 \mid S_{22}\right] \tag{3}\\
A & =\underbrace{Q_{1} S_{11}}_{=C} \underbrace{\left[\boldsymbol{I}_{k} \mid S_{11}^{-1} S 12\right] P^{*}}_{=Z}+Q_{2}\left[0 \mid S_{22}\right] P^{*} \tag{4}\\
A & =C Z+Q_{2}\left[0 \mid S_{22}\right] P^{*} \tag{5}
\end{align*}
$$

Note: for $\operatorname{rank}(A)=k, S_{22}=0$.

3.5: Column, Row, and Double-Sided ID

Given function for computing Column ID, [Js , Z] = ID_col (A , k) (where $A \approx A\left(:, J_{s}\right) Z$, rank k), we can easily form corresponding decompositions:

Row ID: [Is, Xt] = ID_col(At, k)

$$
\begin{gathered}
A^{t} \approx A^{t}\left(:, I_{s}\right) X^{t} \\
A \approx X A\left(I_{s},:\right)
\end{gathered}
$$

Double-Sided ID: [Js, Z] = ID_col(A,k),
[Is, X] = ID_row(A(:, Js),k)

$$
A \approx A\left(:, J_{s}\right) Z \approx X A\left(I_{s}, J_{s}\right) Z
$$

- Clearly, only partial factorization needed in computing ID.
- Can augment to take tolerance ϵ rather than rank k.

3.6: Moore-Penrose Pseudoinverse

Generalized notion of matrix inverse for non-square (non-singular) matrices based on SVD. Let $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=k \leq \min (m, n)$. Let $A=U D V^{*}$ be the SVD of A. Then,

$$
A=\sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{*}={\underset{m \times k}{U_{k}}}_{\underset{m \times k}{D_{k}}}^{\substack{V_{k}}} \underset{k \times n}{V_{k}^{*}}
$$

Then the pseudoinverse of A is the $n \times m$ matrix,

$$
A^{\dagger}:=V^{k} D_{k}^{-1} U_{k}^{*},
$$

and so,

$$
A A^{\dagger}=U_{k} U_{k}^{*}, \quad A^{\dagger} A=V_{k} V_{k}^{*}
$$

- A square nonsingular $\rightarrow A^{\dagger}=A^{-1}$.
- $x=A^{\dagger} b$ is LLS solution to $A x=b$.

Table of Contents

CH3: Matrix Factorizations and Low-Rank Appx.
3.2: Low-Rank Approximation
3.3: SVD
3.4: QR Factorization
3.5: Interpolative Decomposition

CH4: Randomized Methods for Low-Rank Approximation
4.2: Two-Stage Approach
4.3: The Range Finding Problem
4.4: SRFT Range Finder
4.5: Theoretical Performance Bounds
4.6: Power Iteration Range Finder
4.8: Randomized ID and SVD

4.1: Introduction

Goal: Efficiently compute (good) rank- k approximations of $A \in \mathbb{R}^{m \times n}$. Should take into account complexity and blocking ${ }^{3}$.

Starting point:

$$
\begin{aligned}
\text { Draw } G & \in \mathbb{R}^{n \times k}, G_{i j} \sim \mathcal{N}(0,1) \\
Y & =A G \in \mathbb{R}^{m \times k} \\
A_{k} & =Y Y^{\dagger} A
\end{aligned}
$$

(Orthogonal Proj.)

- Above is provably close to optimal for rank- $(k-5)$ approximation
- Slightly more sophisticated approach with random matrix theory can bring us:
- $O(m n k) \rightarrow O\left(m n \log k+k^{2}(m+n)\right)$ appx. complexity
- Less communication for distributed computing
- single-pass factorization

[^0]
4.2: Two-Stage Approach (for SVD)

Algorithm 2: Prototype Rank-k SVD
Input: $A \in \mathbb{R}^{m \times n}$, target rank k, oversampling parameter p
Output: Rank- $(k+p)$ approximate SVD of $A \approx U D V^{*}$
Stage A: Find approximate range.
Obtain $Q \in \mathbb{R}^{m \times(k+p)}$ orthonormal s.t. $A \approx Q Q^{*} A$
Stage B: Factorize.
Form the matrix $B=Q^{*} A \in \mathbb{R}^{(k+p) \times n}$
Form the SVD of $B=\hat{U} D V^{*}$
Form $U=Q \hat{U}$

- As $k \ll \min (m, n)$, Stage B is cheap.
- Stage B is exact (up to double precision).
- \rightarrow all errors result from Stage $A:\left\|A-U D V^{*}\right\|=\left\|A-Q Q^{*} A\right\|$.

4.3: The Range Finding Problem

> Algorithm 3: Range finding algorithm
> Input: $A \in \mathbb{R}^{m \times n}$, target rank k, oversampling parameter p
> Output: Q orthonormal spanning range (A).
> Form a Gaussian random matrix $G \in \mathbb{R}^{n \times(k+p)}$
> Form the sample matrix $Y=A G \in \mathbb{R}^{m \times(k+p)}$
> Orthonormalize the columns $Q=\operatorname{orth}(Y)$

- If A has exact rank- k, above works with $p=0$ and probability 1 .
- Numerical rank deficiency causes problems \rightarrow fix with oversampling factor p.
- Martinsson (paraphrase): "p=10 is nice".
- Error analysis gives expected error, where singular-value decay is important.

4.4: The randomized SVD

MATLAB RSVD code:

```
function \([\mathrm{U}, \mathrm{D}, \mathrm{V}]=\operatorname{rsvd}(\mathrm{A}, \mathrm{k}, \mathrm{p})\)
    \([\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})\);
    \(\mathrm{G}=\operatorname{randn}(\mathrm{n}, \mathrm{k}+\mathrm{p})\);
    \(Y=A * G\);
    \(\left[\mathrm{Q},{ }^{\sim}\right]=\operatorname{qr}(\mathrm{Y}, 0) ;\)
    \(\mathrm{B}=\mathrm{Q}\) '*A;
    [Uhat, D, V] \(=\operatorname{svd}(B, ' e c o n ')\);
    \(\mathrm{U}=\mathrm{Q} *\) Uhat ;
end
```

- This algorithm can be faster than deterministic methods depending on code optimization
- Has the same \mathcal{O} (mnk) asymptotic complexity due to computing $Y=A G$ and $B=Q^{*} A$

Numerical Example

SVD vs. RSVD algorithm presented.
Rank-5 approximation from $A \in \mathbb{R}^{n \times n}$, with A numerically full rank but 5 dominant singular values.

4.4: Faster range finding using the FFT

To improve on $\mathcal{O}(m n k)$, we can use a non-Gaussian random matrix

$$
\underset{n \times \ell}{\Omega}=\underset{n \times n}{D} \underset{n \times n}{F} \underset{n \times \ell}{S}
$$

where we define the following matrices:

- D is a diagonal matrix with entries drawn uniformly at random from the unit circle in the complex plane
- F is the discrete Fourier transform

$$
F_{p q}=n^{-1 / 2} e^{-2 \pi i(p-1)(q-1) / n} \quad p, q=1,2, \ldots, n
$$

- S is a random subset of ℓ columns of the identity matrix

This is the subsampled randomized Fourier transform (SRFT)
$A \Omega$ can be evaluated in $\mathcal{O}(m n \log k)$ time complexity using the FFT
Ω is sufficiently random that $A \Omega$ accurately spans the range of A

4.5: Theoretical performance bounds

Since we have

$$
A-\underbrace{U}_{=Q \hat{U}} D V^{*}=A-Q \underbrace{\hat{U} D V^{*}}_{=\operatorname{svd}(B)}=A-Q \underbrace{B}_{=Q^{*} A}=A-Q Q^{*} A
$$

we can study $\left\|A-Q Q^{*} A\right\|=\left\|A-U D V^{*}\right\|$ as the approximation error.

4.5: Theoretical performance bounds

Theorem 4.1: (Theorem 10.6 from [HMT11])
Let $A \in \mathbb{R}^{m \times n}$ have singular values $\left\{\sigma_{j}\right\}_{j=1}^{\min (m, n)}$.
Take target rank k and oversampling parameter p with $p \geq 2$ and $k+p \leq \min (m, n)$.
Let $G \in \mathbb{R}^{m \times(k+p)}$ be a Gaussian random matrix, and define $Q=\operatorname{orth}(A G) \in \mathbb{R}^{m \times(k+p)}$. Then we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|A-Q Q^{*} A\right\|_{F}\right] & \leq\left(1+\frac{k}{p-1}\right)^{1 / 2}\left(\sum_{j=k+1}^{\min (m, n)} \sigma_{j}^{2}\right)^{1 / 2} \\
\mathbb{E}\left[\left\|A-Q Q^{*} A\right\|\right] & \leq\left(1+\sqrt{\frac{k}{p-1}}\right) \sigma_{k+1}+\frac{e \sqrt{k+p}}{p}\left(\sum_{j=k+1}^{\min (m, n)} \sigma_{j}^{2}\right)^{1 / 2} \\
& \leq\left[1+\sqrt{\frac{k}{p-1}}+\frac{e \sqrt{k+p}}{p} \sqrt{\min (m, n)-k}\right] \sigma_{k+1}
\end{aligned}
$$

4.6: Improved accuracy using power iteration

Recall the power iteration:

$$
x_{q+1} \leftarrow A x_{q}
$$

x_{q} converges to the dominant eigenvector of A
Dominant left singular vectors of A are dominant eigenvectors of $A A^{*}$
Therefore by taking q power iterations, we can compute

$$
Y=\left(A A^{*}\right)^{q} A G
$$

in place of

$$
Y=A G .
$$

This works well because for $A=U D V^{*}$ we see that

$$
\left(A A^{*}\right)^{q} A=U D^{2 q+1} V^{*}
$$

i.e. $\left(A A^{*}\right)^{q} A$ has the same left singular vectors as A but its singular values decay much more quickly

4.6: Improved accuracy using power iteration

```
Algorithm 4: Power iteration range finder
Input: \(A \in \mathbb{R}^{m \times n}\), target rank \(k\), oversampling parameter \(p\), number of
    power iterations \(q\)
Output: \(Q\) orthonormal spanning range \((A)\).
Form Gaussian matrix \(G \in \mathbb{R}^{n \times(k+p)}\)
\(Y=A G\)
for \(j=1: q\) do
    \(Z=A^{*} Y\)
    \(Y=A Z\)
Return \(Q=\operatorname{orth}(Y)\)
```


4.6: Theoretical performance bounds

Theorem 4.2: (Corollary 10.10 from [HMT11])
Let $A \in \mathbb{R}^{m \times n}$ have singular values $\left\{\sigma_{j}\right\}_{j=1}^{\min (m, n)}$.
Take target rank k, oversampling parameter p with $p \geq 2$ and $k+p \leq \min (m, n)$, and number of power iterations q.

Let $G \in \mathbb{R}^{m \times(k+p)}$ be a Gaussian random matrix, and define $Q=\operatorname{orth}\left(\left(A A^{*}\right)^{q} A G\right) \in \mathbb{R}^{m \times(k+p)}$. Then we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|A-Q Q^{*} A\right\|\right] \leq & {\left[\left(1+\sqrt{\frac{k}{p-1}}\right) \sigma_{k+1}^{2 q+1}\right.} \\
& \left.+\frac{e \sqrt{k+p}}{p}\left(\sum_{j=k+1}^{\min (m, n)} \sigma_{j}^{2(2 q+1)}\right)^{1 / 2}\right]^{1 /(2 q+1)} \\
\leq & {\left[1+\sqrt{\frac{k}{p-1}}+\frac{e \sqrt{k+p}}{p} \sqrt{\min (m, n)-k}\right]^{1 /(2 q+1)} \sigma_{k+1} }
\end{aligned}
$$

4.7: Adaptive rank determination

So far we assume k to be fixed in advance
We can instead iteratively increase the rank until a norm error tolerance

$$
\left\|A-Q Q^{*} A\right\| \leq \varepsilon
$$

is met.
See the text for details.

4.8: Randomized ID

- Our current RSVD algorithm relies on computing $\operatorname{svd}\left(Q^{*} A\right)$
- We would like to avoid the $\mathcal{O}(m n k)$ cost of forming $Q^{*} A$

After computing $Y=A G$, if we compute the row ID

$$
Y \approx X Y\left[I_{s},:\right]
$$

there exists some $F \in \mathbb{R}^{k \times n}$ such that

$$
A \approx Y F
$$

because the columns of Y form an approximate basis for the columns of A. Inserting the ID of Y, we obtain

$$
A \approx X Y\left[I_{s},:\right] F
$$

Looking at rows I_{s} and using the fact that $X\left[I_{s},:\right]=I$, we see that

$$
A\left[I_{s},:\right] \approx X\left[I_{s},:\right] Y\left[I_{s},:\right] F=Y\left[I_{s},:\right] F
$$

and thus

$$
A \approx X A\left[I_{s},:\right]
$$

i.e. we automatically obtain the ID of A from the ID of Y.

4.8: From ID to SVD

Algorithm 5: RSVD

Input: $A \in \mathbb{R}^{m \times n}$, target rank k, oversampling parameter p
Output: Rank- $(k+p)$ approximate SVD of $A \approx U D V^{*}$
Form a SRFT random matrix $\Omega \in \mathbb{R}^{n \times(k+p)}$
Form the sample matrix $Y=A \Omega \in \mathbb{R}^{m \times(k+p)}$
Compute the ID of the sample matrix $Y=X Y\left[I_{s},:\right]$
Compute the QR decomposition of the interpolation matrix $X=Q R$
Form the matrix $F=R A\left[I_{s},:\right] \in \mathbb{R}^{(k+p) \times n}$
Compute the SVD of the matrix $F=\hat{U} D V^{*}$
Form $U=Q \hat{U}$

- We now have a fully $\mathcal{O}(m n \log k)$ algorithm for the SVD!
- Summary: Obtain [Is, X] = rID_row(Y,k) s.t. $A \approx X A\left(I_{s},:\right)$. Then,

$$
A \approx \underbrace{X}_{=Q R} A\left(I_{s},:\right)=Q \underbrace{R A\left(I_{s},:\right)}_{=F}=Q \underbrace{F}_{=\hat{U} D V^{*}}=\underbrace{Q \hat{U}}_{U} D V^{*}=U D V^{*}
$$

Summary

- Two-stage approach:
A. Construct orthonormal Q s.t. $A \approx Q Q^{*} A$
B. Compute $\hat{U} D V^{*}=\operatorname{svd}\left(Q^{*} A\right)$ and $U=Q \hat{U}$
- The range finding problem
- Compute $Q=\operatorname{orth}(Y)$ for sample matrix Y
- $Y=A G$ for G Gaussian $\Longrightarrow \mathcal{O}(m n k)$
- $Y=A \Omega$ for Ω SRFT $\Longrightarrow \mathcal{O}(m n \log k)$
- $Y=\left(A A^{*}\right)^{q} A G$ or $\left(A A^{*}\right)^{q} A \Omega \Longrightarrow$ improved accuracy
- Using the interpolative decomposition
- Evaluating $Q^{*} A$ is \mathcal{O} (mnk)
- The ID of Y gives the ID of A for free
- Can compute the SVD from this ID $\Longrightarrow \mathcal{O}(m n \log k)$
- Advantages over deterministic methods
- Reduce communication as well as flop counts
- Can be adapted to use only a single pass over A

References

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM review 53 (2011), no. 2, 217-288.

[^0]: ${ }^{3}$ previously mentioned methods are $O\left(n^{3}\right)$ and not blocked

