
Randomized Linear Algebra:
Martinsson Ch 3,4

Nikola Janjušević, Paul Beckman

Sept. 16, 2020

Table of Contents

CH3: Matrix Factorizations and Low-Rank Appx.

3.2: Low-Rank Approximation

3.3: SVD

3.4: QR Factorization

3.5: Interpolative Decomposition

CH4: Randomized Methods for Low-Rank Approximation

4.2: Two-Stage Approach

4.3: The Range Finding Problem

4.4: SRFT Range Finder

4.5: Theoretical Performance Bounds

4.6: Power Iteration Range Finder

4.8: Randomized ID and SVD

3.1: Definitions and Notation

I Default vector-norm is Euclidean: ‖x‖ = ‖x‖2 =
√∑

i x
2
i

I Default matrix-norm is Spectral: ‖A‖ = sup
‖x‖=1

‖Ax‖

I Def:
I Column-space of A = range(A)
I Row-space of A = range(At)
I Kernel of A = null(A)
I rank(A) = dim(range(A))
I nullity(A) = dim(null(A))

I Denote Conjugate-Transpose, A∗

I Thm: (Dimension Theorem) Let A ∈ Rm×n.
rank(A) + nullity(A) = min(m, n)

3.2: Low Rank Approximation

Definition: ε-rank k
Let A ∈ Rm×n, ε > 0. We say A has ε-rank k if

(a) ∃B ∈ Rm×n s.t. rank(B) = k and ‖A− B‖ ≤ ε.
(b) @B ∈ Rm×n s.t. rank(B) < k and ‖A− B‖ ≤ ε.

I Lazy definition: A has ε-rank k if inf{‖A− B‖ : rank(B) = k} ≤ ε.

3.3: Singular Value Decomposition

For every m × n matrix A, there exists a unique1 decomposition,

A
m×n

= U
m×p

D
p×p

V
p×n
∗,

where p = min(m, n), U,V are orthonormal and their columns ({uj , vj}pj=1)
called the left and right singular-vectors of A respectively,
D = diag({σi}pi=1), and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 are called the singular
values of A.

Best Approximation (Eckart-Young)
For A with SVD A = UDV ∗, let Ak =

∑k
j=1 σjujv

∗
j . Then,

‖A− Ak‖ = inf{‖A− B‖ : rank(B) = k} = σk+1

‖A− Ak‖F = inf{‖A− B‖F : rank(B) = k} = (

p∑
j=k+1

σ2
j)1/2

1up to complex constants

3.3: Computing SVD

I SVD is equivalent to eigen-value problem which is equivalent to
root-finding – it requires iterative solvers.

I In practice, algorithms are O(mnp).

I Not easily parallelizable, although ∃ tricks

I Example for A ∈ Rm×n, m >> n:

1. Compute QR Factorization, A = QR.
2. Compute SVD of R ∈ Rn×n factor, R = ÛDV ∗.
3. A = QÛDV ∗ = UDV ∗

Off-load more expensive factorization to smaller matrix.

3.4: Column-Pivoted QR Decomposition (CPQR)

Let A ∈ Rm×n, p = min(m, n), then A admits a factorization,

A
m×n

P
n×n

= Q
m×p

R
p×n

,

where P is a permutation matrix, Q orthonormal, R upper-triangular (UT).
i.e. in matlab, AP = A(:, J), J, index vector.

I Same as normal QR except more numerically stable

I QR concept: Grahm-Schmidt the columns of A.

I CPQR concept: Grahm-Schmidt the columns of A choosing largest
norm col.2 next.

2of projected matrix

3.4: Example CPQR Algorithm
Algorithm 1: CPQR

Input: A ∈ Rm×n

Initialize: Q0 = [], R0 = [], E0 = A; p = min(m, n)
for k = 1 : p

jk = argmax{‖Ek−1(:, `)‖ : ` = 1, 2, . . . , n} % select

q = Ek−1(:, jk)

q = q/ ‖q‖ % normalize

r = q∗Ek−1 % compute coeffs

Qk =
[
Qk−1 q

]
% store

Rk =

[
Rk−1
r

]
Ek = Ek−1 − qr % project

end
P = I(:, [j1, j2, . . . , jp])
R = RP
Outputs: Q,R,P

Note: for-loop forms R̂ = RP∗, permuted UT matrix R.

3.4: Low-rank Approximation via QR

At each step k of above algorithm,

A
m×n

= Qk
m×k

Rk
k×n

+ Ek
m×n

I QkRk has rank k .

I Stop at kth step for rank-k appx.

-or- evaluate ‖E‖k ≤ ε if seeking a certain precision.

Compute partial SVD via partial QR:

A = Qk Rk︸︷︷︸
=ÛDV ∗

+Ek = Qk Û︸︷︷︸
=U

DV ∗ + Ek = UDV ∗ + Ek

3.4: Aside on Blocking and Execution Speed

I Mat-Mat operations are better than looping Mat-Vec operations.

I For A square n × n, QR, CPQR, and SVD are all O(n3), however with
different constants.

Algorithm QR CPQR SVD
Speed Fast Slow Slowest
Ease of parallelization Fairly Easy Difficult Difficult
Low-rank approximation? No Yes Excellent
Partial factorization? Yes but useless Yes Not easily

I CPQR and SVD are mostly Mat-Vec ops.

I Coming soon: random matricies to allow more Mat-Mat ops.

3.5: Interpolative Decomposition (ID)

Consider A ∈ Rm×n with rank(A) = k < min(m, n). Then A admits a
factorization,

A
m×n

= C
m×k

Z
k×n

,

with C subset of cols. of A, Z “well-conditioned”.

I C preserves sparsity and definiteness of A.

I Requires k(m + n) words storage vs. mn or p(m + n).

I Often “physics preserving”.

3.5: ID Computation from QR
Consider CPQR for A,

A
m×n

P
n×n

= Q
m×p

S
p×n

.

with

Q =
[
Q1 Q2

]
and S =

[
S11 S12
0 S22

]
Q1 ∈ Rm×k , S11 ∈ Rk×k . So,

AP = [Q1|Q2]

[
S11 S12
0 S22

]
= [Q1S11|Q1S12 + Q2S22] (1)

= Q1[S11|S12] + Q2[0|S22] (2)

= Q1S11[Ik |S−111 S12] + Q2[0|S22] (3)

A = Q1S11︸ ︷︷ ︸
=C

[Ik |S−111 S12]P∗︸ ︷︷ ︸
=Z

+Q2[0|S22]P∗ (4)

A = CZ + Q2[0|S22]P∗ (5)

Note: for rank(A) = k , S22 = 0.

3.5: Column, Row, and Double-Sided ID

Given function for computing Column ID, [Js,Z] = ID col(A,k) (where
A ≈ A(:, Js)Z , rank k), we can easily form corresponding decompositions:

Row ID: [Is, Xt] = ID col(At,k)

At ≈ At(:, Is)X t

A ≈ XA(Is , :)

Double-Sided ID: [Js, Z] = ID col(A,k),
[Is, X] = ID row(A(:,Js),k)

A ≈ A(:, Js)Z ≈ XA(Is , Js)Z .

I Clearly, only partial factorization needed in computing ID.

I Can augment to take tolerance ε rather than rank k.

3.6: Moore-Penrose Pseudoinverse

Generalized notion of matrix inverse for non-square (non-singular) matrices
based on SVD. Let A ∈ Rm×n with rank(A) = k ≤ min(m, n). Let
A = UDV ∗ be the SVD of A. Then,

A =
k∑

j=1

σjujv
∗
j = Uk

m×k
Dk
k×k

V ∗k
k×n

Then the pseudoinverse of A is the n ×m matrix,

A† := V kD−1k U∗k ,

and so,
AA† = UkU

∗
k , A†A = VkV

∗
k

I A square nonsingular → A† = A−1.

I x = A†b is LLS solution to Ax = b.

Table of Contents

CH3: Matrix Factorizations and Low-Rank Appx.

3.2: Low-Rank Approximation

3.3: SVD

3.4: QR Factorization

3.5: Interpolative Decomposition

CH4: Randomized Methods for Low-Rank Approximation

4.2: Two-Stage Approach

4.3: The Range Finding Problem

4.4: SRFT Range Finder

4.5: Theoretical Performance Bounds

4.6: Power Iteration Range Finder

4.8: Randomized ID and SVD

4.1: Introduction

Goal: Efficiently compute (good) rank-k approximations of A ∈ Rm×n.
Should take into account complexity and blocking3.

Starting point:

Draw G ∈ Rn×k ,Gij ∼ N (0, 1)

Y = AG ∈ Rm×k

Ak = YY †A (Orthogonal Proj.)

I Above is provably close to optimal for rank-(k − 5) approximation

I Slightly more sophisticated approach with random matrix theory can
bring us:
I O(mnk)→ O(mn log k + k2(m + n)) appx. complexity
I Less communication for distributed computing
I single-pass factorization

3previously mentioned methods are O(n3) and not blocked

4.2: Two-Stage Approach (for SVD)

Algorithm 2: Prototype Rank-k SVD

Input: A ∈ Rm×n, target rank k , oversampling parameter p
Output: Rank-(k + p) approximate SVD of A ≈ UDV ∗

Stage A: Find approximate range.
Obtain Q ∈ Rm×(k+p) orthonormal s.t. A ≈ QQ∗A

Stage B: Factorize.

Form the matrix B = Q∗A ∈ R(k+p)×n

Form the SVD of B = ÛDV ∗

Form U = QÛ

I As k << min(m, n), Stage B is cheap.

I Stage B is exact (up to double precision).

I → all errors result from Stage A: ‖A− UDV ∗‖ = ‖A− QQ∗A‖.

4.3: The Range Finding Problem

Algorithm 3: Range finding algorithm

Input: A ∈ Rm×n, target rank k , oversampling parameter p
Output: Q orthonormal spanning range(A).
Form a Gaussian random matrix G ∈ Rn×(k+p)

Form the sample matrix Y = AG ∈ Rm×(k+p)

Orthonormalize the columns Q = orth(Y)

I If A has exact rank-k , above works with p = 0 and probability 1.

I Numerical rank deficiency causes problems → fix with oversampling
factor p.

I Martinsson (paraphrase): “p=10 is nice”.

I Error analysis gives expected error, where singular-value decay is
important.

4.4: The randomized SVD

matlab RSVD code:

function [U,D,V] = rsvd(A,k,p)

[m,n] = size(A);

G = randn(n,k+p);

Y = A*G;

[Q,~] = qr(Y,0);

B = Q’*A;

[Uhat,D,V] = svd(B,’econ’);

U = Q*Uhat;

end

I This algorithm can be faster than deterministic methods depending on
code optimization

I Has the same O(mnk) asymptotic complexity due to computing
Y = AG and B = Q∗A

Numerical Example

SVD vs. RSVD algorithm presented.
Rank-5 approximation from A ∈ Rn×n, with A numerically full rank but 5
dominant singular values.

10 2 10 3 10 4

size (n)

10 -6

10 -5

a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r
(F

ro
)

SVD

RSVD

10 2 10 3 10 4

size (n)

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

a
v
e

ra
g

e
 c

p
u

 t
im

e
 (

s
)

SVD

RSVD

4.4: Faster range finding using the FFT

To improve on O(mnk), we can use a non-Gaussian random matrix

Ω
n×`

= D
n×n

F
n×n

S
n×`

where we define the following matrices:

I D is a diagonal matrix with entries drawn uniformly at random from the
unit circle in the complex plane

I F is the discrete Fourier transform

Fpq = n−1/2e−2πi(p−1)(q−1)/n p, q = 1, 2, ..., n

I S is a random subset of ` columns of the identity matrix

This is the subsampled randomized Fourier transform (SRFT)

AΩ can be evaluated in O(mn log k) time complexity using the FFT

Ω is sufficiently random that AΩ accurately spans the range of A

4.5: Theoretical performance bounds

Since we have

A− U︸︷︷︸
=QÛ

DV ∗ = A− Q ÛDV ∗︸ ︷︷ ︸
=svd(B)

= A− Q B︸︷︷︸
=Q∗A

= A− QQ∗A

we can study ‖A− QQ∗A‖ = ‖A− UDV ∗‖ as the approximation error.

4.5: Theoretical performance bounds

Theorem 4.1: (Theorem 10.6 from [HMT11])

Let A ∈ Rm×n have singular values {σj}min(m,n)
j=1 .

Take target rank k and oversampling parameter p with p ≥ 2 and
k + p ≤ min(m, n).

Let G ∈ Rm×(k+p) be a Gaussian random matrix, and define
Q = orth(AG) ∈ Rm×(k+p). Then we have

E[‖A− QQ∗A‖F] ≤
(

1 +
k

p − 1

)1/2(min(m,n)∑
j=k+1

σ2
j

)1/2

E[‖A− QQ∗A‖] ≤

(
1 +

√
k

p − 1

)
σk+1 +

e
√
k + p

p

(
min(m,n)∑
j=k+1

σ2
j

)1/2

≤

[
1 +

√
k

p − 1
+

e
√
k + p

p

√
min(m, n)− k

]
σk+1

4.6: Improved accuracy using power iteration

Recall the power iteration:
xq+1 ← Axq

xq converges to the dominant eigenvector of A

Dominant left singular vectors of A are dominant eigenvectors of AA∗

Therefore by taking q power iterations, we can compute

Y = (AA∗)qAG

in place of
Y = AG .

This works well because for A = UDV ∗ we see that

(AA∗)qA = UD2q+1V ∗

i.e. (AA∗)qA has the same left singular vectors as A but its singular values
decay much more quickly

4.6: Improved accuracy using power iteration

Algorithm 4: Power iteration range finder

Input: A ∈ Rm×n, target rank k , oversampling parameter p, number of
power iterations q
Output: Q orthonormal spanning range(A).
Form Gaussian matrix G ∈ Rn×(k+p)

Y = AG
for j = 1 : q do

Z = A∗Y
Y = AZ

Return Q = orth(Y)

4.6: Theoretical performance bounds

Theorem 4.2: (Corollary 10.10 from [HMT11])

Let A ∈ Rm×n have singular values {σj}min(m,n)
j=1 .

Take target rank k, oversampling parameter p with p ≥ 2 and
k + p ≤ min(m, n), and number of power iterations q.

Let G ∈ Rm×(k+p) be a Gaussian random matrix, and define

Q = orth
(

(AA∗)qAG
)
∈ Rm×(k+p). Then we have

E[‖A− QQ∗A‖] ≤

[(
1 +

√
k

p − 1

)
σ2q+1
k+1

+
e
√
k + p

p

(
min(m,n)∑
j=k+1

σ
2(2q+1)
j

)1/2]1/(2q+1)

≤

[
1 +

√
k

p − 1
+

e
√
k + p

p

√
min(m, n)− k

]1/(2q+1)

σk+1

4.7: Adaptive rank determination

So far we assume k to be fixed in advance

We can instead iteratively increase the rank until a norm error tolerance

‖A− QQ∗A‖ ≤ ε

is met.

See the text for details.

4.8: Randomized ID
I Our current RSVD algorithm relies on computing svd(Q∗A)

I We would like to avoid the O(mnk) cost of forming Q∗A

After computing Y = AG , if we compute the row ID

Y ≈ XY [Is , :]

there exists some F ∈ Rk×n such that

A ≈ YF

because the columns of Y form an approximate basis for the columns of A.
Inserting the ID of Y , we obtain

A ≈ XY [Is , :]F .

Looking at rows Is and using the fact that X [Is , :] = I , we see that

A[Is , :] ≈ X [Is , :]Y [Is , :]F = Y [Is , :]F

and thus
A ≈ XA[Is , :],

i.e. we automatically obtain the ID of A from the ID of Y .

4.8: From ID to SVD

Algorithm 5: RSVD

Input: A ∈ Rm×n, target rank k , oversampling parameter p
Output: Rank-(k + p) approximate SVD of A ≈ UDV ∗

Form a SRFT random matrix Ω ∈ Rn×(k+p)

Form the sample matrix Y = AΩ ∈ Rm×(k+p)

Compute the ID of the sample matrix Y = XY [Is , :]
Compute the QR decomposition of the interpolation matrix X = QR
Form the matrix F = RA[Is , :] ∈ R(k+p)×n

Compute the SVD of the matrix F = ÛDV ∗

Form U = QÛ

I We now have a fully O(mn log k) algorithm for the SVD!

I Summary: Obtain [Is,X] = rID row(Y,k) s.t. A ≈ XA(Is , :). Then,

A ≈ X︸︷︷︸
=QR

A(Is , :) = Q RA(Is , :)︸ ︷︷ ︸
=F

= Q F︸︷︷︸
=ÛDV ∗

= QÛ︸︷︷︸
U

DV ∗ = UDV ∗

Summary

I Two-stage approach:

A. Construct orthonormal Q s.t. A ≈ QQ∗A
B. Compute ÛDV ∗ = svd(Q∗A) and U = QÛ

I The range finding problem
I Compute Q = orth(Y) for sample matrix Y
I Y = AG for G Gaussian =⇒ O(mnk)
I Y = AΩ for Ω SRFT =⇒ O(mn log k)
I Y = (AA∗)qAG or (AA∗)qAΩ =⇒ improved accuracy

I Using the interpolative decomposition
I Evaluating Q∗A is O(mnk)
I The ID of Y gives the ID of A for free
I Can compute the SVD from this ID =⇒ O(mn log k)

I Advantages over deterministic methods
I Reduce communication as well as flop counts
I Can be adapted to use only a single pass over A

References

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, Finding
structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions, SIAM review 53 (2011), no. 2,
217–288.

	CH3: Matrix Factorizations and Low-Rank Appx.
	3.2: Low-Rank Approximation
	3.3: SVD
	3.4: QR Factorization
	3.5: Interpolative Decomposition

	CH4: Randomized Methods for Low-Rank Approximation
	4.2: Two-Stage Approach
	4.3: The Range Finding Problem
	4.4: SRFT Range Finder
	4.5: Theoretical Performance Bounds
	4.6: Power Iteration Range Finder
	4.8: Randomized ID and SVD

