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Overview

• We want to solve a dense N ×N linear system

Aq = f

that comes from the discretization of an integral equation.

• We’ll use concepts familiar from the FMM, but this time we need to
both invert a matrix and apply it.

• To apply the inverse we’ll use discrete scattering matrices.
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Hierarchically block separable (HBS) matrices

Definition (HBS matrices)

• (Top level) For each pair of distinct leaf nodes τ and τ ′, let
Aτ,τ ′ = A(Iτ , Iτ ′). We require each such matrix has rank at
most k, and that there exist basis matrices {Uτ} and {Vτ}
such that for all pairs of distinct leaf nodes {τ, τ ′} we have

Aτ,τ ′ = Uτ Ãτ,τ ′V ∗τ ′ .

• (Level `) For any distinct nodes τ and τ ′ on level ` with chil-
dren α, β and α′, β′, respectively, define

Aτ,τ ′ =

[
Ãα,α′ Ãα,β′

Ãβ,α′ Ãβ,β′

]
.

We require each such matrix has rank at most k, and that
there exists basis matrices as above.
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Incoming and outgoing expansions

• Recall the recursive definitions

U long
τ =

[
U long
α 0

0 U long
β

]
Uτ , V long

τ =

[
V long
α 0

0 V long
β

]
Vτ .

• Define

Incoming expansion: c̃τ = (U long
τ )†A(Iτ , I

c
τ )q(Icτ )

Outgoing expansion: q̃τ = (V long
τ )∗q(Iτ ).

• Note that we can also express the incoming expansion in terms of
local variables,

c̃τ = (U long
τ )†(f(Iτ )−A(Iτ , Iτ )q(Iτ )).
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Relating the incoming and outgoing expansions

Lemma 18.1

Let τ be a node with children α and β. Then

q̃τ = V ∗τ

[
q̃α
q̃β

]
and

[
c̃α
c̃β

]
= Uτ c̃τ .

Moreover, [
c̃α
c̃β

]
=

[
0 Ãα,β

Ãα,β 0

] [
q̃α
q̃β

]
+ Uτ c̃τ .

• The first two equations follow from the recursive definition of U long
τ

and V long
τ .

• The second follows from the definition of the incoming expansion[
cα
cβ

]
=

[
0 Aα,β

Aα,β 0

] [
qα
qβ

]
+ U long

τ c̃τ .
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Outline of the direct solver

(1) Upwards pass (small→ large) in which we build load vectors that
encode information about f , and discrete scattering matrices
which encode information about the patch being compressed.

(2) Downwards pass (large→ small) in which we build compressed
representations of the solution q.

(3) One the downwards pass reaches the leaf node, we construct the
full solution.

An important feature of this algorithm is the matrices from the build
stage can be reused for multiple right hand sides f .
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Leaf box

• For a leaf node τ , the incoming expansion is

c̃τ = (Uτ )†(f(Iτ )−A(Iτ , Iτ )q(Iτ )).

Left multiplying by Uτ gives

Aτ,τqτ + Uτ c̃τ = fτ .

• Left multiplying again by V ∗A−1
τ,τ we get

q̃τ + Sτ c̃τ = ỹτ ,
Sτ := (V ∗τ A

−1
τ,τ )Uτ

ỹτ := (V ∗τ A
−1
τ,τ )fτ .

• The matrix Sτ is the discrete scattering matrix.
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Parent compression

• Let τ be a parent whose children α and β are leaves in the tree,[
q̃α
q̃β

]
+

[
Sα 0
0 Sβ

] [
c̃α
c̃β

]
=

[
ỹα
ỹβ

]
.

• Using Lemma 18.1 to replace (c̃α, c̃β)T , we can also show

q̃τ + Sτ c̃τ = ỹτ .

• This time

Sτ := V ∗τ Zτ

[
Sα 0
0 Sβ

]
Uτ and ỹτ := V ∗τ Zτ

[
ỹα
ỹβ

]
,

with

Zτ :=

[
I SαÃα,β

SβÃβ,α I

]−1

.

7/23



Top-level solve

• For the top level node τ = 1 with children α = 2 and β = 3, we have[
q̃2

q̃3

]
+

[
S2 0
0 S3

] [
c̃2

c̃3

]
=

[
ỹ2

ỹ3

]
.

• The incoming expansion is c̃1 = 0, so using Lemma 18.1 we get[
c̃2

c̃3

]
=

[
0 Ã2,3

Ã3,2 0

] [
I S2Ã2,3

S3Ã3,2 I

]−1 [
ỹ2

ỹ3

]
,

which completes the upwards pass.
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Summary

Build stage

for τ = Nboxes : (−1) : 2
if τ is a leaf

Zτ = A−1
τ,τ

Sτ = V ∗τ ZτUτ

else
Let α and β denote the children of τ .

Zτ =

[
I SαÃα,β

SβÃβ,α I

]−1

Sτ = V ∗τ Zτ

[
Sα 0
0 Sβ

]
Uτ

end if
end for

Z1 =

[
I S2Ã2,3

S3Ã3,2 I

]−1
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Summary

Solve stage

Upwards pass:
for τ = Nboxes : (−1) : 2

if τ is a leaf
ỹτ = V ∗τ Zτf(Iτ )

else
Let α and β denote the children of τ .

ỹτ = V ∗τ Zτ

[
ỹα
ỹβ

]
.

end if
end for

Top-level solve:[
c̃2

c̃3

]
=

[
0 Ã2,3

Ã3,2 0

]
Z1

[
ỹ2

ỹ3

]
.
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Parent solve

• Let τ denote a node that has not yet been processed, but whose
parent has been processed, and let α, β be its children.

• We need the outgoing expansions {q̃α, q̃β} and the incoming
expansions {c̃α, c̃β}. From the compressed parent representation,[
c̃α
c̃β

]
=

[
0 Ãα,β

Ãβ,α 0

]
Zτ

[
ỹα
ỹβ

]
+
(
I−
[

0 Ãα,β

Ãβ,α 0

]
Zτ

[
Sα 0
0 Sβ

])
Uτ c̃τ

• The load vectors ỹα and ỹβ were constructed in the upwards pass,
and the incoming expansion c̃τ is known from the previous stage
of the downwards pass.
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Leaf solve

• Once we get to the leaf τ , we know the incoming expansion c̃τ
and the load vector f , so the solution at the leaf node is

q(Iτ ) = A−1
τ,τ (f(Iτ )−Uτ c̃τ ),

which completes the downwards pass.
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Summary

Solve stage

Downwards pass:
for τ = 2 : Nboxes

if τ is a parent
Let α and β denote the children of τ .[
c̃α
c̃β

]
=

[
0 Ãα,β

Ãβ,α 0

]
Zτ

[
ỹα
ỹβ

]
+
(
I −

[
0 Ãα,β

Ãβ,α 0

]
Zτ

[
Sα 0
0 Sβ

])
Uτ c̃τ .

else
q(Iτ ) = Zτ (f(Iτ )−Uτ c̃τ ).

end if
end for
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Comparison with the original multilevel scheme
Build stage (Chapter 14)

loop over all levels, finest to coarsest, ` = L,L− 1, . . . , 1
loop over all boxes τ on level `,

if τ is a leaf node
D̃τ = Dτ .

else
Let α and β denote the children of τ .

D̃τ =

[
D̂α Ãα,β

Ãβ,α D̂β

]
.

end if
D̂τ = (V ∗τ D̃

−1
τ Uτ )−1.

Eτ = D̃−1
τ UτD̂τ .

F ∗τ = D̂τV
∗
τ D̃

−1
τ .

Gτ = D̃τ − D̃−1
τ UτD̂τV

∗
τ D̃

−1
τ .

end loop
end loop

G1 =

[
D̂2 Ã2,3

Ã3,2 D̂3

]−1

.
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Comparison with the original multilevel scheme

• For each build stage, we need an HBS matrix A stored in the
compressed form of its basis matrices {Uτ ,Vτ} and its sibling
interaction matrices {Ãα,β} such that

Aα,β = UαÃα,βV
∗
β .

• For the scattering direct solver, the outputs of the build stage are
the scattering matrices {Sτ} and the “dual operators” {Zτ}.

• The algorithm from Chapter 14 outputs four sets of matrices
{Eτ ,Fτ ,Gτ , D̂τ}.

• Moreover, the build stage for the scattering matrices only requires
one matrix inversion compared to two from the other scheme.
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More on scattering matrices

Lemma 18.2

Let A be an HBS matrix whose diagonal blocks are all invertible,
and let f ∈ RN be an arbitrary vector. Define for any node τ the
following objects:

Scattering matrix: Sτ = (V long
τ )∗(A(Iτ , Iτ ))−1(U long

τ ),

Effective charges: ỹτ = (V long
τ )∗(A(Iτ , Iτ ))−1f(Iτ ).

Then, for any parent node τ with children α and β, we have

Sτ = V ∗τ

[
I SαÃα,β

SβÃβ,α I

] [
Sα 0
0 Sβ

]
Uτ ,

ỹτ = V ∗τ

[
I SαÃα,β

SβÃβ,α I

] [
ỹα
ỹβ

]
.
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More on scattering matrices

• The point of Lemma 18.2 is that we can use the nonrecursive
definitions

Sτ = (V long
τ )∗(A(Iτ , Iτ ))−1(U long

τ ),

ỹτ = (V long
τ )∗(A(Iτ , Iτ ))−1f(Iτ )

to define the scattering matrices and load vectors.

• This form looks the same as that for the leaf nodes, just with Uτ ,Vτ
replaced by U long

τ ,V long
τ which makes analysis of the algorithm a

bit cleaner.
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Inversion of the diagonal blocks

Theorem 18.3

Let A be an invertible HBS matrix and let {D̂τ}τ be the com-
pressed diagonal blocks from the inversion algorithm of Chapter
14. As long as no singular matrices are encountered, we have

D̂τ = S−1
τ .

• This shows the inversion algorithm based on scattering matrices is
mathematically equivalent to the HBS scheme from Chapter 14.

• The main difference is the central object here is the discrete
scattering matrix Sτ rather than its inverse, which makes the solver
more stable.
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Interpretation of the scattering matrix

• Consider the interpolative decomposition:

A(Iτ , I
c
τ ) ≈ UτA(Iskel

τ , Icτ ) and A(Icτ , Iτ ) ≈ A(Icτ , I
skel
τ )V ∗τ .

• When evaluating the Schur complement, we need

A(Icτ , Iτ )(A(Iτ , Iτ ))−1A(Iτ , I
c
τ ) ≈ A(Icτ , I

skel
τ )V ∗τ (A(Iτ , Iτ ))−1UτA(Iskel

τ , Icτ )

= A(Icτ , I
skel
τ )SτA(Iskel

τ , Icτ )

• We can summarize th through the following diagram:
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Application: the Lippmann-Schwinger equation

• The Lippmann-Schwinger equation models acoustic wave
propogation in a medium with variable wave speed.

• The equation in integral form is

σ(x) + κ2b(x)

∫
Ω

Gκ(x,y)σ(y)dy = −κ2b(x)uin(x), x ∈ Ω.

where
Gκ(x,x′) =

i

4
H0(κ|x− y|).

• The coefficient matrix A takes the form

A = I + BG.

where B is diagonal and

Gi,j = Gκ(xi,xj) for i 6= j.
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Outline of the direct solver

• We represent G by its low-rank decomposition,

G(Iα, Iβ) = U long
τ G̃α,β(V long

τ )∗.

• The outgoing and incoming expansions are

Outgoing expansion: q̃τ = (V long
τ )∗q(Iτ ),

Incoming expansion: c̃τ = (U long
τ )†G(Iτ , I

c
τ )q(Icτ ).

• The sibling exchange relation is[
c̃α
c̃β

]
=

[
0 G̃α,β

G̃α,β 0

] [
q̃α
q̃β

]
+ Uτ c̃τ .
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Upward pass

Leaf node:

q̃τ + Sτ c̃τ = ỹτ ,
Zτ = (I + BτGτ )−1

Sτ = V ∗τ ZτBτUτ

ỹτ = V ∗τ Zτfτ .

Parent node:

q̃τ + Sτ c̃τ = ỹτ ,

Zτ :=

[
I SαG̃α,β

SβG̃β,αI

]−1

,

Sτ := V ∗τ Zτ

[
Sα 0
0 Sβ

]
Uτ ,

ỹτ := V ∗τ Zτ

[
ỹα
ỹβ

]
.

Top-level solve:[
q̃α
q̃β

]
= Zτ

[
ỹα
ỹβ

]
,

[
c̃α
c̃β

]
=

[
0 G̃α,β

G̃β,α 0

]
Zτ

[
ỹα
ỹβ

]
.
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Downwards pass

Parent solve:[
c̃α
c̃β

]
=

[
0 G̃α,β

G̃β,α 0

]
Zτ

[
ỹα
ỹβ

]
+
(
I −

[
0 G̃α,β

G̃β,α 0

]
Zτ

[
Sα 0
0 Sβ

])
Uτ c̃τ .

Leaf solve:
qτ = Zτ (fτ −BτUτcτ ).
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