Theory of Probability
$\operatorname{sep} 9,2020$
Counting
(1) Roll a die: Outcomes an 1,2,3,4,5,6
(2) Roll a die, choose a card from playing deck: Die: 6 possibilities

Cards: 52 distinct cards.
Total number of die-card pairs:

$$
6 \cdot 52=312 \text { possibilities }
$$

Ingeneral, if we have M experiments, each with n_{i} district outcomes, then we han
$n_{1} \cdot n_{2} \cdot n_{3} \cdot n_{4} \cdots n_{M}$ total possible artwmes.
Back to our example, $n_{1}=6$

$$
u_{2}=52 .
$$

Permutations Ordering district object.
Example: How many ways can I order 6 numbs:

$$
\begin{align*}
\text { Fill in the blanks: } \overline{6} \cdot & -\overline{5} \cdot \overline{4} \cdot \overline{3} \cdot \overline{2} \cdot \overline{1} \leqslant \text { possibilities } \\
& =6!=720
\end{align*}
$$

Factorial: $n!=n \cdot(n-1) \cdot(n-2) \cdots \underbrace{(n-(n-1)}_{1})$

$$
=\prod_{j=1}^{n} j
$$

Convention: $0!=1$
Example Il people on a soccer team, each person plays one positori.

$$
11 \cdot 10 \cdots 2 \cdot 1=11!=39,916,800
$$

Example Gin 4 textbook on math, 3 on English.
7 total textbooks $\Rightarrow 7!$ possible orderings of all 7 textbooks
Sub-example If all math textbooks come first, then English textbooks:

$$
\underbrace{\frac{M}{M}-M}_{4!=24} \underbrace{E \frac{E}{E}}_{3!=6} \Rightarrow 4!3!=24.6
$$

Example How many orderings of the letters in PEPPER are there?
If each letter is assumed to be district, then are $6!=720$ possibility.

If the Ers are not distinct, thin me must divide 720 by the number of permutation of there E's:

$$
\frac{720}{2!}=360=\frac{6!}{2!}
$$

Likewise, if the Pis are not distinct, then we must divide by the numis of permutation of this letter $\rightarrow 3$!.
So the number of distinct arrangements that can be made using the letters in PEPPER is:

$$
\frac{6!}{2!3!}=\frac{36 \cdot 5 \cdot 4 \cdot x \cdot x \cdot x}{x \cdot 1 \cdot x \cdot x \cdot x}=60
$$

In general, if we have n objects, of which n_{1} are alike, n_{2} are alike, $\ldots n_{r}$ are alike, thin the number of distinct permutation is

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

Combinations: How many distrait unordered groups can br formed from a set of objects.

Example: Talk the letters A, B, C, D, E.
How many groups of 3 letters an be form?

$$
\frac{5 \cdot 4 \cdot 3}{3!}=\frac{60}{6}=10
$$

In general, the number of unordered sets of r distinct objects that can be formed from n district elements is

$$
\begin{aligned}
\binom{n}{r} & =\frac{n \cdot(n-1) \cdot(n-2) \cdots(n-r+1)}{r!} \underbrace{(n-r) \cdots 1}_{(n-r)(n-r-1)-1} \\
& =\frac{n!}{(n-r)!} \frac{1}{(n-r)!} \\
& =\frac{n!}{(n-r)!r!} \quad " n \text { choose } r " .
\end{aligned}
$$

Application: Binomial Therm
Binominal The: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \quad(x)$

$$
\text { Ex: } \begin{array}{r}
(x+y)^{2}= \\
\hat{\imath} x^{2}+2 x y+y^{2} \\
\binom{2}{0}\binom{2}{1}\binom{2}{2}
\end{array}
$$

Proof (By induction)
(1) Pron for $n=0,1,2$ proved by calculation
(2) Assume ($*$) is true for $n=m$.
(3) Show that (*) also holds for $n=m+1$.

Show is that

$$
\begin{aligned}
& (x+y)^{m+1}=(x+y)(x+y)^{m}=\sum_{k=0}^{m+1}\binom{m+1}{k} x^{k} y^{m+1-k} \\
& =\left(\begin{array}{ll}
\text { by assumption }
\end{array}\right) \\
& =(x+y) \sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m-k} \\
& =\sum_{k=0}^{m}\binom{m}{k} x^{k+1} y^{m-k}+\sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m+l-k} \\
& =\sum_{k=1}^{m+1}\binom{m}{k-1} x^{k} \underbrace{m-(k-1)}_{y^{m+1-k}}+\sum_{k=0}^{m}\binom{m}{k} x^{k} y^{m+1-k} \\
& =x^{m+1}+\sum_{k=1}^{m}\binom{m}{k-1} x^{k} y^{m+1-k}+y^{m+1}+\sum_{k=1}^{m}\binom{m}{k} x_{y^{m+1}}^{k} \\
& =x^{m+1}+\sum_{k=1}^{m}\left(\binom{m}{k-1}+\binom{m}{k}\right) x^{k} y^{m+1-k}+y^{m+1} \\
& \frac{m!}{(m-(k-1))!} \frac{1}{(k-1)!}+\frac{m!}{(m-k)!k!} \\
& \frac{m!}{(m+1-k)!(k-1)!}+\frac{m!}{(m-k)!k!}=\frac{m!\cdot k}{(m+1-k)!k!} \\
& +\frac{m!(m+1-k)}{(m+1-k)!k!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{m!k+m!(m+1)-m!k}{(m+1-k)!k!} \\
& =\frac{(m+1)!}{(m+1-k)!k!}=\binom{m+1}{k}
\end{aligned}
$$

In the end m have:

$$
\begin{aligned}
& \Rightarrow \underbrace{x^{m+1}}_{\text {corripind) }}+\sum_{k=1}^{m}\binom{m+1}{k} x^{k} y^{m+1-k}+\frac{y^{m+1}}{\text { corraponds to }} \\
& \text { to }\binom{m+1}{m+1} x^{m+1} y^{0} \quad\binom{m+1}{0} x^{0} y^{m+1-0} \\
& =\sum_{k=0}^{m+1}\binom{m+1}{k} x^{k} y^{m+1-k} \cdot L
\end{aligned}
$$

