Theory of Probability
Fmagni we han N distinct objects:

$$
O_{1}, O_{2} \ldots O_{N}
$$

sort into M bins

$$
n_{2}
$$

$$
n_{M} \quad \Rightarrow \sum_{i=1}^{m} n_{i}=N .
$$

n_{i} objects go into bin i. Order within each bin does not matter.

$$
\begin{aligned}
& =\frac{N!}{n_{1}!\left(N-n_{1}\right)!n_{2}\left(N-n_{1}-n_{2}\right)!} \frac{\left(N-n_{1}\right)!}{n_{3}!\left(N-n_{1}+n_{2}-n_{3}\right)!} / \frac{n_{m}}{n_{m}!\cdot l!} \\
& =\left(\frac{N!}{n_{1}!n_{2}!n_{3}!\cdots n_{m}!}=\binom{N}{n_{1}, n_{2}, n_{2} \ldots, n_{m}}\right. \\
& \text { distinct } \\
& \begin{array}{l}
\text { Multinominl } \\
\text { coefficient }
\end{array}=\text { number of ways to sort } N^{\vee} \text { objectit } \\
& \text { into bins, each having } n_{i} \text { objects. }
\end{aligned}
$$

Extension to Multinomial Theonm

$$
\begin{aligned}
\left(x_{1}+x_{2}+\ldots+x_{r}\right)^{n}= & \sum_{\uparrow}\binom{n}{n_{1}, n_{2}, \ldots, n_{r}} x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{r}^{n_{r}} \\
& \text { Sum over } n_{1}, n_{2}, \ldots, n_{r} \\
& \text { such that } n_{1}+n_{2}+\ldots+n_{r}=n .
\end{aligned}
$$

Sample Spaces and Events
Sample space S is the set of possible outcomes of an experiment.
Ex: Roll two dire

$$
S=\{(1,1), \underbrace{(2,1)},(3,1), \ldots\}
$$

outcome
A collection of outcomes is called an event.
An event is a subset of S.
Let E \& F be two events defined on the sample space S.

Define a new eruct $G=E \cup F=$ all outcomes that union ar contained in E or F.

$$
\begin{aligned}
& E=\{(2,1),(2,2) \ldots(2,6)\} \\
& F=\{(\cdot, 1),(\cdot, 2)\} \\
& E \cup F=\{(2,1),(2,2), \ldots,(2,6), \\
& (1,2),(3,2),(4,1),(4,1),(5,1),(6,))
\end{aligned}
$$

$$
H=E \cap F=\text { outcouss in } E \cap F
$$

intersect

$$
=\{(2,1),(2,2)\}
$$

We say E and F an mutually exclusion if $E \cap F=\{ \}$ the empty set

$$
=\phi \text { the null set }
$$

$=$ Other properties of set theory useful for probability Multiple eur: $G=\bigcup_{i=1}^{N} E_{i}$

Complement: $E^{C}=$ all outcomes that an not in E

$$
=S \backslash E
$$

$$
\begin{aligned}
& E \cap G= \\
& E \cup F= \\
& F \cap G=\phi
\end{aligned}
$$

Set operations obey the following laws:
Commutation Law: $\quad E \cup F=F \cup E \quad \underbrace{E \cap F}_{E F}=F \cap E$
Association Law: $(E \cup F) \cup G=E \cup(F \cup G)$

$$
(E \cap F) \cap G=E \cap(F \cap G)
$$

Distribution Law: $(E \cup F) \cap G=(E \cap G) \cup(F \cap G)$

$$
\text { ie. }(x+y) z=x z+y z \text {. }
$$

Combining the laws with complements, we get DeMorganis Laws:
(1) $\left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\bigcap_{i=1}^{n} E_{i}^{c}$
(2) $\left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\bigcup_{i=1}^{n} E_{i}^{c}$

$$
F^{c}\left(\hat{F}=E^{c} \cap F^{c}=E\right.
$$

SF

