Theory of Probability

Sep 16, 2020

P(E) = probability of

exnt E

Old interpretation of probability:
"long form frequency of events"

If E is an event, then

P(E) = probability that = lim n(E) in n trials.

E occurs

Axioms of Probability

tion 1 0 & P(E) & 1

Axiom 2 P(S) = 1 2 sample space.

Axion For any sequence of mutually exclusive events E_1 , E_2 , ..., E_{∞} /(i.e., E_i , E_j), when $i \neq j$), we have that $P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$.

Some simple Propositions

[Prop] P(E°) = 1 - P(E)

Pf: $S = E \cup E^{c}$, and $E \cap E^{c} = \emptyset$ $\Rightarrow P(S) = I = P(E \cup E^{c}) = P(E) + P(E^{c})$ Prop2 If ECF, (Each outrome in E is also then P(E) & P(F). an outrome in F).

Proof Since ECF, we can write $F = E \cup (E^c F)$ mutually exclusion since E & EC are mutually exclusive. $= P(F) = P(E) + P(E^{c}F)$

=> P(F) >> P(E) since P(ECF) >> 0.

 $|P_{np}3|$ $P(E \cup F) = P(E) + P(F) - P(EF)$ (also known as the principle of inclusion - exclusion)



Prop 4 General inclusion exclusion

P(E, U E2 U E3 ... En) $= \underbrace{P(E_i)}_{i=1} - \underbrace{P(E_i E_j)}_{i \neq j} + \underbrace{P(E_i E_j E_k)}_{i \neq j \neq k}$ $= \sum_{i=1}^{n} (-1)^{r+1} \leq P(E_{i_1} E_{i_2} - E_{i_r}).$

When n=3

