Theory of Probability
Sep 16, 2020

Old interpretation of probability:
"long term frequency of events"
If E is an event, then

$$
\begin{aligned}
& E \text { is an event, then } \\
& P(E)=\lim _{E \text { occurs }} \frac{n(E)}{n} \text { times } E \text { occurs } \\
& \text { in } n \text { thinks. }
\end{aligned}
$$

Axioms of Probability
Axiom 1

$$
\begin{aligned}
P(E)= & \text { probability of } \\
& \text { event } E
\end{aligned}
$$

$$
0 \leq P(E) \leq 1
$$

Axiom 2

$$
P(s)=1
$$

Trample space.
Axiom For any sequence of mutually exclusive events $E_{1}, E_{2}, \ldots, E_{\infty} \quad\left(l e, E_{i} E_{j}=\phi\right.$ when $\left.i \neq j\right)$, me han that $P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$.

Some simple Propositions
Prop $1 \quad P\left(E^{c}\right)=1-P(E)$
Pf: $S=E \cup E^{c}$, and $E \cap E^{c}=\phi$

$$
\Rightarrow P(S)=1=P\left(E \cup E^{c}\right)=P(E)+P\left(E^{c}\right)
$$

Prop 2 If $E \subset F$, (Each outcome in E is also then $P(E) \leq P(F)$. an ortione in $F)$.

Proof Since $E \subset F$, we can write

$$
F=\begin{gathered}
E \cup\left(E^{c} F\right) \\
\uparrow \uparrow
\end{gathered}
$$

mutually exclusion since $E \& E^{c}$ ar mutually exclusion.

$$
\begin{aligned}
\Rightarrow & P(F)=P(E)+P\left(E^{c} F\right) \\
\Rightarrow & P(F) \geqslant P(E) \text { since } P\left(E^{C} F\right) \geqslant 0 .
\end{aligned}
$$

Prop 3 . $P(E \cup F)=P(E)+P(F)-P(E F)$
(also known as the principle of inclusion-exclusion)

$$
P(E \cup F)=\left\{E+S F-\sum_{E \cap F}\right.
$$

Prop 4 Genes inclusion exclusion

$$
\begin{aligned}
& P\left(E_{1} \cup E_{2} \cup E_{3} \ldots E_{n}\right) \\
&= \sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i<j} P\left(E_{i} E_{j}\right)+\sum_{i<j L k} P\left(E_{i} E_{j} E_{l}\right) \\
&-\ldots . \\
&= \sum_{r=1}^{n}(-1)^{r+1} \sum_{i_{1}, i_{i} L i, L n t s} P\left(E_{i_{1}} E_{i_{2}} \cdots E_{i_{r}}\right) .
\end{aligned}
$$

When $n=3$

