Theory of Public 11 Sep 21, 2020
Sample spaces with equally likely atomis:

$$S = \{0, 0, 2, 0, ..., 0, N\}$$

Eq. $S = \{1, 2, 3, 4, 5, 6\}$
If each autions is equally likely, then
 $P(0_1) = P(0_2) = P(0_3) = ... = P(0_N)$
 $= P(0_1) = \frac{1}{N} \leftarrow \text{this is the only such publicity}$
to assign to 0_1 such that
the Axisms of Publicity an
Satisfiel.
Recalls Axisms
 $O = 0 \le P(0_1) \le 1$
 $(3) P(S) = 1$
 $(3) If O_{1,...,} O_N are mutually exclusive, then
 $P(0_1 \cup ... \cup O_N) = P(S) = 1$
 $= \sum_{i=1}^{N} P(0_i)$
E.g. Rolling a die, picking randomly from a deck
of carlos, etc.$

Evanple From a grap of 6 men and 9 nomen.
a committee of S is to be firmed. If the
selection is random, what is the probability. That
the committee consists of 3 men and 2 nomen?
Fist: Assume each committee is equily likely to be
firmed.
Second: How many possible committees are these?

$$N = \binom{15}{5} = 2$$
 each committee occus with
pubsibility N.
Thirds Cant how many committees consist of I
men and 2 nomen.
 $\binom{6}{3}\binom{9}{2} = \frac{\binom{15}{5}}{\binom{15}{5}} = \frac{\binom{15}{2}\binom{9}{2}}{\binom{15}{5}} = \frac{240}{1621+13.062111} = \frac{240}{1001}$
A standard deck of cards has 52 district cards.
• Each card has a "suit" : clubs $\frac{9}{21}$
• Each card gets a value : 2,3,...,10, Jack, Queen, Kiny Ace
• Some decks contain a "Saler" as a 53rd and.
• Lastly, here can be "low" or "high", ice 22 or 3 King [2]

Example A power hand consists of 5 ands, distributed
randomly. If the 5 rands are consective, es.
3.4,5,6,7 or 8,9,10, J, Q, but not all
of the same suit, then we say the hand
is a straight.
Lastly A, 2, 3, 4,5 and 10, J, Q, K, A are both
straight?
Question: What is the probability that you are dealt
a straight?
Frist The total number of 5 rand hands is
$$\binom{52}{5}$$
.
Next: Count the number of straights that begin with
an Ace:
Value: A 2 3 4 5 = 4⁵ possible straights beginning
Suit: $\binom{5}{5}$ with A.
 $\binom{1}{9}$ A there 4⁵ straights
= 10 (4⁵-4) possible straights.
= $\binom{10}{5}$ (4⁵-4)
= $\binom{10}{5}$ (4⁵-4) = $\binom{10}{5}$ (4⁵-4)
= $\binom{10}{5}$ (4⁵-4) = $\binom{10}{5}$ (4⁵-4)

Example A recretion club has N members.
36 members play tennis 22 play tennis and speak
28 play squark 12 play tennis and badminkan
18 play badminkan 9 play squark and badminkan
4 play all three sport.
How many members play at least one sport?
TUSUB
Example
$$P(T) = \frac{36}{N}$$

Calculate $P(T \cup S \cup B)$ using inclusion exclusion.
Are set of people
who play at least one sport.
 $P(T \cup S \cup B) = P(T) + P(S) + P(B) - P(TS) - P(TB) - P(SB)$
 $+ P(TSB)$.
 $= \frac{1}{N} (36 + 28 + 18 - 22 - 12 - 9 + 4)$
 $= \frac{43}{N}$
Probability of choosing someone at random that plays at least
 $= 43$ members play at least one sport.