Therm of Probability
Sep 21, 2020

Sample spaces with equally likely outcomes:

$$
S=\left\{O_{1}, O_{2}, O_{3}, \ldots, O_{N}\right\}
$$

Fy. $\quad S=\{1,2,3,4,5,6\}$
If exch outcome is equally likely, then

$$
P\left(O_{1}\right)=P\left(O_{2}\right)=P\left(O_{3}\right)=\ldots=P\left(O_{N}\right)
$$

$\Rightarrow P\left(O_{i}\right)=\frac{1}{N} \leftarrow$ this is the only such probability to assign to O_{i} such that the Axioms of Probability an satisfied.
Recall: $A_{x(00 \mathrm{~m})}$
(1) $0 \leq P\left(O_{i}\right) \leq 1$
(2) $P(s)=1$
(3) If $O_{1, \ldots}, O_{N}$ are mutually exclusive, then

$$
\begin{aligned}
P\left(O_{1} \cup \ldots \cup O_{N}\right) & =P(S)=1 \\
& =\sum_{i=1}^{N} P\left(O_{i}\right)
\end{aligned}
$$

Erg. Rolling a die, picking randomly for a deck of cards, etc.

Example From a group of 6 men and 9 women, a committee of 5 is to be formed. If the selection is random, what is the probability that the committer consists of 3 men and 2 women?

Fist: Assume each committer is equally likely to be formed.

Second: How many possible committees an there?
$N=\binom{15}{5} \quad \Rightarrow \quad$ each committee occurs with pubability $\frac{1}{N}$.

Thirds Cant how many committees consist of 3 men and 2 women.

$$
\begin{aligned}
& \binom{6}{3}\binom{9}{2} \\
\Rightarrow & P(M=3, W=2)= \\
\binom{15}{5} & \frac{(6 \cdot 5 \cdot 4}{3 x \cdot 1} \frac{9 \cdot 88^{4}}{x \cdot 1} \\
\frac{18 \cdot 14 \cdot 13 \cdot 1 x^{3} \cdot 11}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} & =\frac{240}{1001}
\end{aligned}
$$

A standard deck of cards has 52 distinct cards.

- Each card has a "suit": clubs G3
hearts P
diamonds \diamond
spades G
- Each curd gets a valu: $2,3, \ldots, 10$, Jack, Quean, King, Ace
- Some decks contain a "Jour" as a $53^{\text {rd }}$ card.
- Lastly, Ace can be "low" or "high", ic. $\angle 2$ or $>\mathbb{K}_{\text {ing }}$
- The numerical value of an Ace in Blackjack can bo 1 or II.
- The numerical value \& J, Q, K is 10 in blackjack.

Example A poker hand consists of 5 cards, distributed randomly. If the 5 cards are consecution, $3,4,5,6,7$ or $8,9,10, J, Q$, but hot all of the same suit, thin w say the hand is a straight.
Lastly $A, 2,3,4,5$ and $10, J, Q, K, A$ ar both Straights.
Question: What is the probability that you are dealt a straight?

Fist The total number of 5 card hands is $\binom{52}{5}$.
Next: Count the number of straight that begin with an Ace:

$$
\begin{aligned}
& \begin{array}{lllll}
\text { Val: } A & 2 & 3 & 4 & 5 \\
\text { Suit: } & C & C
\end{array} \\
& \text { with A. } \\
& 4 \text { of these } 4^{5} \text { straights } \\
& \text { are straight flush. }
\end{aligned}
$$

$\Rightarrow \quad 4^{5}-4$ straights beginning with A.
$\Rightarrow 10\left(4^{5}-4\right)$ possible straights.

$$
\Rightarrow P(\text { drawing a straight })=\frac{10\left(4^{5}-4\right)}{\binom{52}{5}} \approx 0.0039
$$

Example A recreation club has N members.
36 member play tennis 22 play tennis and squash
28 play squash
18 play badminton

12 play tennis and badminton 9 play squash and badminton 4 play all three spouts.

How many members play at least one sport?

$T \cup S \cup B$
Example $P(T)=\frac{36}{N}$
Calculate $P(\underbrace{T \cup S \cup B})$ using inclusion-exclusion.
the set is people who play at least one sport

$$
\left.\left.\begin{array}{rl}
P(T \cup S \cup B)= & P(T)+P(S)+P(B)
\end{array}\right) P(T S)-P(T B)-P(S B)\right)
$$

\Rightarrow Probability \& choosing someone at random that plays at least one sport is $43 / \mathrm{N}$
$\Rightarrow 43$ members play at least one sport.

