Theory of Probability

$$
P(\text { die comes up }=3)=1 / 6
$$

Now imagine that you know that the die comes up odd:

$$
P\left(\operatorname{die}=3 \left\lvert\, \begin{array}{lll}
\text { die came up } & \operatorname{dod} \\
\text { od }
\end{array}\right.\right)=1 / 3 .
$$

Definition "The conditional probability of E given $F^{\prime \prime} \quad($ assuming $P(F)>0)$ is:

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)} .
$$

Example: (Forthis Venn diajinm)

$$
\begin{aligned}
& P(F)=.5 \\
& P(E)=.25 \quad \mid P(E \cap F)=?=P(E)=.25
\end{aligned}
$$ since $E \subset F$.

$$
P(E \mid F)=\frac{.25}{.5}=.5
$$

Slightly Surprising:
Likewise $P(F \mid E)=\frac{P\left(E_{\cap} F\right)}{P(E)}$

Rearrange this

$$
\begin{aligned}
P(E \cap F) & =P(E \mid F) P(F) \\
& =P(F \mid E) P(E)
\end{aligned}
$$

Set them equal to each other:

$$
\begin{aligned}
& P(E \mid F) P(F)=P(F \mid E) P(E) \\
\Rightarrow & P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)}
\end{aligned}
$$

Bayes Rule.

Multiplication Rule:

$$
\begin{aligned}
P(E F) & =P(F \mid E) P(E) \\
& =P(E \mid F) P(F)
\end{aligned}
$$

More generally:

$$
P\left(E_{1} E_{2} E_{3} \cdots E_{n}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1} E_{2}\right) \cdots P\left(E_{n} \mid E_{1}-E_{n-1}\right)
$$

Furthermon, m how the Law of Total Probability:

The sample space can be split into two mutually exclusion event: $S=E \cup E^{C}$ $E_{\cap} E^{c}=\phi$
$\Rightarrow F=(E \cap F) \cup\left(E_{n}^{c} F\right)$

$$
\Rightarrow P(F)=P(E F)+P\left(E^{c} F\right)
$$

Mon generally, if E_{1}, \ldots, E_{n} an mutually exclusion events and $E_{1} \cup E_{2} \cup \ldots \cup E_{n}=S_{\text {, }}$ then for any event F_{1}

$$
\begin{aligned}
& F=\bigcup_{i=1}^{n}\left(F \cap E_{i}\right) \\
\Rightarrow & P(F)=\sum_{i=1}^{n} P\left(F E_{i}\right) .
\end{aligned}
$$

Often very useful in Bayes Rule:

$$
\begin{aligned}
& P(E \mid F)=\frac{P(F \mid E) P(E)}{P(F)} \\
&=\frac{P(F \mid E) P(E)}{P(E F)+P\left(E^{c} F\right)} \\
&=\frac{P(F \mid E) P(E)}{} \\
& P(E \mid F) P(F)+P\left(E^{c} \mid F\right) P(F)
\end{aligned}
$$

\longleftarrow expand then terms sing conditional probubillij.

Bayes Rule and the law of total probubility.
Since $P(E F)=P(E \mid F) P(F)$

$$
\begin{gathered}
=P(F \mid E) P(E) \\
=\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{c}\right) P\left(E^{c}\right)}
\end{gathered}
$$

Example Let $E=$ event you we actully covid position $F=$ event you test positir.

$$
\begin{aligned}
P(E \mid F) & =\frac{P(F \mid E) P(E)}{P(F)} \\
& =\frac{P(F \mid E) P(E)}{P(F E)+P\left(F E^{c}\right)} \\
& =\frac{P(F \mid E) P(E)}{P(F \mid E) P(E)+P\left(F \mid E^{c}\right) P\left(E^{c}\right)}
\end{aligned}
$$

Lets consider then probabilities:
E (actually positi)

$$
\begin{aligned}
& =\frac{.99 \times .0001}{.99 \times .0001+.05 \times .9999} \\
& =\frac{.000099}{.000099+.049955}=\frac{.000099}{.050094}=\widetilde{\pi 002}
\end{aligned}
$$

