Theory of Probability
$\operatorname{Sep} 28,2020$
Recall that

$$
P(E \mid F)=\frac{P(E F)}{P(F)} .
$$

If F dost affect $E[F$, then

$$
P(E \mid F)=P(E) \text { and we say that } E, F
$$

are independent events.
This means that $P(E \mid F)=P \mid E)=\frac{P(E F)}{P(F)}$.

$$
\Rightarrow P(E F)=P(E) P(F) .
$$

Indipendince.
Definition: E and F are independent events if $P(E F)=P(E) P(F)$.
If $P(E F) \neq P(E) P(F)$ thin E, F are dependent events.
Example Roll 2 dice:

$$
\begin{aligned}
& E=\operatorname{sum} \text { is } 6 \\
& F=\operatorname{dic} 1 \text { is } 4 .
\end{aligned}
$$

$$
\begin{array}{ll}
P(E)=5 / 36 & P(E F)=P\binom{\text { die }=4}{\text { die }=2}=\frac{1}{36} \\
P(F)=1 / 6 & P(E F)=1 / 36 .
\end{array}
$$

$\Rightarrow E, F$ ar not independent. (they an dependent.)

Example $G=$ sum $=7$
$F=\operatorname{die} l$ is 4

$$
\begin{array}{ll}
P(F)=1 / 6 & P(F G)=P\left(\begin{array}{ll}
\text { die } & 1=4 \\
\text { die } 2=3
\end{array}\right)=1 / 36 \\
P(G)=6 / 36=1 / 6 \\
P(F) P(G)=1 / 36 \\
\Rightarrow P(F G)=P(F) P(G) \Rightarrow F, G \text { an indipundint. }
\end{array}
$$

We can also say:
Proposition 4.1: If E, F an indjundent, then so an E and F^{c}.

$$
\begin{aligned}
P(E) & =P(E F)+P\left(E F^{c}\right) \\
& =P(E) P(F)+P\left(E F^{c}\right) \\
\Rightarrow P\left(E F^{c}\right) & =P(E)-P(E) P(F) \\
& =P(E)(1-P(F)) \\
& =P(E) P\left(F^{c}\right) \quad V \quad E, F^{c} \text { un independent. }
\end{aligned}
$$

Question: If E, F ar independent, and E, G are independent, is E independent of the event FG?

Example: Roll 2 diu

$$
E=\text { sum is } 7
$$

$F=$ first die is 4
$G=$ second die is 3 .

From the previous example,

$$
\begin{aligned}
& P(E F)=P(E) P(F) \\
& P(E G)=P(E) P(G) .
\end{aligned}
$$

$$
P(E \mid F G)=1 \not \equiv P(E)=1 / 6 .
$$

Definition The events E, F, G ar indipundunt if

$$
\begin{aligned}
& P(E F G)=P(E) P(F) P(G) \\
& P(E F)=P(E) P(F) \\
& P(E G)=P(E) P(G) \\
& P(F G)=P(F) P(G) .
\end{aligned}
$$

If these conditions hold, then E is independent of any function of F, G. (IF, E and $F G$ an indipendurt.)
Example: Toss a coin N tines, the art come of each toss is H,T and independent of all other tosser. Each tor in this example is known as a "trial".

Example
 are thes indipendunt? Dowt know...

