Theory of Probability
Oct 12,2020

Expectation of $X$

$$
E[X]=\sum_{i} x_{i} p\left(x_{i}\right) \quad \text { when } \quad p\left[X=x_{i}\right]=p\left(x_{i}\right)
$$

Consider this example:
Roll 1, get ${ }^{\text {l }}$
Roll 2, get \$4
$Y=X^{2}$, when $X=$ roll of a die.

$$
\begin{gathered}
P[Y=1]=P[X=1]=1 / 6 \\
P[Y=4]=P[X=2]=1 / 6 \\
\vdots \\
E[Y]=\sum_{i} y_{i} p_{Y}\left(y_{i}\right) \\
=\sum_{i} x_{i}^{2} P_{X}\left(x_{i}\right)
\end{gathered}
$$

expected value of $Y=X^{2}$.
In general, one can show that if $Y=g(X)$, then

$$
E[Y]=E[g(x)]=\sum_{i} g\left(x_{i}\right) p\left(x_{i}\right) .
$$

Note: $\quad E\left[x^{2}\right] *(E[x])^{2}$

$$
(E[x])^{2}=\left(\sum_{i} x_{i} p\left(x_{i}\right)\right)^{2}=\sum_{i} \sum_{j} x_{i} x_{j} p\left(x_{i}\right) p\left(x_{j}\right) \neq \sum_{i} x_{i}^{2} p\left(x_{i}\right)
$$

Corollary: Expectation is a limier operator:

$$
\begin{aligned}
& E[a x+b]=\sum_{i}\left(a x_{i}+b\right) p\left(x_{i}\right) \\
&=a \underbrace{\sum_{i} x_{i} p\left(x_{i}\right)}_{E[x]}+b \underbrace{\sum_{i} p\left(x_{i}\right)}_{1} \\
&=a E[x]+b \Rightarrow E \text { is a livens } \\
& \text { transformation. }
\end{aligned}
$$

Remark: $E[x]$ is also known as the $1^{\text {st }}$ moment of $x$.
Frithermon $E\left[X^{n}\right]$ is known as the $n^{\text {th }}$ moment of $X$ :

$$
E\left[x^{n}\right]=\sum_{i} x_{i}^{n} p\left(x_{i}\right) .
$$

Variance
Its useful to talk about characteristics of random variable:

- Expected value $\Leftrightarrow$ mean
- min value, max value
- "moot likely value" $\rightarrow$ mode
- "spread" of a random variate.

Conside the following thane R,V.s:

$$
\begin{array}{lll}
P[w=0]=1 & P[Y=-1]=1 / 2 & P[z=-100]=1 / 2 \\
E[w]=0 & P[Y=1]=1 / 2 & P[Z=100]=1 / 2 \\
& E[Y]=0 & E[Z]=0 .
\end{array}
$$

Let $\mu=E[X]$.
Want to characterize $E[|x-\mu|]$, but it turns out to be better mathematically to examine $E\left[(x-\mu)^{2}\right]$.

$$
\begin{aligned}
& \operatorname{Varcance} \text { of } X=\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right] \\
& =E\left[(X-E[x])^{2}\right] \text {. } \\
& E\left[(X-\mu)^{2}\right]=\sum\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right) \\
& =\sum\left(x_{i}^{2}-2 \mu x_{i}+\mu^{2}\right) p\left(x_{i}\right) \\
& =\underbrace{\sum x_{i}^{2} p\left(x_{i}\right)}_{E\left[X^{2}\right]}-2 \mu \underbrace{\sum x_{i} p\left(x_{i}\right)}_{E[X]=\mu}+\mu^{2} \underbrace{\sum p\left(x_{i}\right)}_{1} . \\
& =E\left[X^{2}\right]-2 \mu^{2}+\mu^{2} \\
& =E\left[x^{2}\right]-\mu^{2} \\
& =\underbrace{E\left[X^{2}\right]}_{2^{\text {nd moment }}}-(\underbrace{E[X]}_{1^{\text {st moment }}})^{2}
\end{aligned}
$$

Variance is not a linear transformation e.

$$
\begin{aligned}
\operatorname{Var}[a x+b] & =E\left[(a x+b)^{2}\right]-(E[a x+b])^{2} \\
& =E\left[a^{2} x^{2}+2 a b x+b^{2}\right]-(a \mu+b)^{2} \\
& =a^{2} E\left[x^{2}\right]+2 a b \mu+b^{2}-a^{2} \mu^{2}-2 a b \mu \\
& =a^{2}\left(E\left[x^{2}\right]-(E[x])^{2}\right)=a^{2} \operatorname{Var}[x]
\end{aligned}
$$

Another useful (common) quantity is the standard deviation:

$$
\begin{aligned}
\operatorname{Std}[x] & =\sqrt{\operatorname{Var}[x]} \\
\operatorname{Std}[a x+b] & =\sqrt{\operatorname{Var}[a x+b]} \\
& =\sqrt{a^{2} \operatorname{Var}[x]} \\
& =a \operatorname{Std}[x] .
\end{aligned}
$$

