Throng d Pobability
Poisson vandom variable:

$$X \sim Poisson (\lambda)$$

 $P[X = k] = e^{\lambda} \frac{\lambda^{k}}{k!}$
 $I(ry approximation : Poisson(\lambda) is approximately the same
as binomial (n,p) when n is lage
and p is sumally and $\lambda = np$ is $O(1)$.
If $X \sim binomial (n, p)$ -then
 $P[X = lk] = {n \choose k} p^{k} (1-p)^{n-k}$
 $= \frac{n!}{k! (n-k)!} (\frac{\lambda}{n})^{k} (1-\frac{\lambda}{n})^{n-k}$
 $= \frac{n!}{(n-k)!} (\frac{\lambda}{n})^{k} (1-\frac{\lambda}{n})^{n}$
 $= \frac{n!}{(n-k)!} (\frac{\lambda^{k}}{n!} (1-\frac{\lambda}{n})^{n}$
 $= \frac{n!(n-1)(n-2)\cdots(n-k+1)}{n!(n-k-1)!} \frac{\lambda^{k}}{k!} (1-\frac{\lambda}{n})^{k}$
 $\approx e^{-\lambda} \frac{\lambda^{k}}{k!}$ Poisson probability mass
further.$

If
$$X \sim Binomicl(n,p)$$

 $E(X) = np$
 $Var[X] = np(1-p)$
Conjectur: If n is large, p is small, $X = np \sim O(1)$,
then if $Y \sim Poisson(X)$, then
 $E[Y] \approx E[X] = X$
 $Var[Y] \approx Var[X] = np(1-p) = \chi(1-p) \approx \lambda$.

$$Calculate:$$

$$E[Y] = \sum_{k=0}^{\infty} k e^{\lambda} \frac{(\lambda)^{k}}{k!}$$

$$= e^{\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!}$$

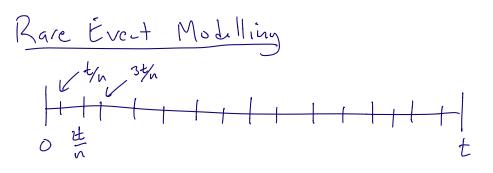
$$= e^{\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= e^{\lambda} \lambda \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}$$

$$= e^{\lambda} \lambda e^{\lambda} = [\lambda]$$

If P[E|F] = P[E] then E, F as indpundent If $P[E|F] \approx P(E)$, then we say E, F an only "weakly dependent".

Poisson Paradijn
Consider n trials, with
$$P[E_c] = p_i$$
. If
n is large, and all the p_i are small, and
either the E_i are independent or "weakly dependent",
then the sum $E = E_i + E_2 + \cdots + E_n$ is approximately
Poisson with parameter $\lambda = \sum_{i=1}^{n} p_i$.



Next, assume that the probability of an event
occurring in a subinterval is
$$\lambda h = \lambda t = p$$
.
=> $P[any subinterval] = 1-p = 1-\lambda h.$
having D events $J = 1-p = 1-\lambda h.$

Assumption 2: Independe between subintervals.
=>
$$N \sim \text{binomial}(n,p)$$
.
=> $N \sim \text{Poisson}(np) \sim \text{Poisson}(\lambda t)$.