Theory of Probability
(1) $X \sim$ Geometric (p) if

$$
P[X=k]=(1-p)^{k-1} p \quad \text { for } \quad k=1,2, \ldots
$$

" k-1 filum, before a success on the $k^{\text {th }}$ friml"

$$
E[x]=\frac{1}{p} \quad \operatorname{Var}[x]=\frac{1-p}{p^{2}} .
$$

(2) $X \sim \operatorname{Negatin} \operatorname{Binomial}(r, p)$
IIIHII..HII..H
n flips
r heads

$$
\begin{aligned}
& P(X=n)=\binom{n-1}{n-1} p^{r}(1-p)^{n-r} \\
& E[X]=\frac{r}{p} \quad \operatorname{Var}[X]=\frac{r(1-p)}{p^{2}} .
\end{aligned}
$$

(3) $X \sim$ Hypergeometric (N, m, n)

Imaging an urn with N balls, m an white, $N-m$ an blue, randomly choose n of them.

$$
\begin{aligned}
& P[W=k]=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}} \\
& E[W]=\frac{m n}{N}, \operatorname{Var}[W]=\frac{m n}{N}\left(\frac{(m-1)(n-1)}{N-1}+\frac{N-m n}{N}\right)
\end{aligned}
$$

Sums of Random Variables $(\xi 4,9)$

Consider two random variable X, Y. Then $Z=X+Y$ is also a random variable.

Let $s \in S$ be an individual atcome in the sample space,
$X(s)=$ the value that X tans when s occurs.

$$
Y(s)=\cdots
$$

$$
\Rightarrow Z(s)=X(s)+Y(s) .
$$

$E[X]=\sum_{i} x_{i} P\left[X=x_{i}\right] \quad$ For each i, let

$$
\begin{aligned}
& =\sum_{i} x_{i} P\left[S_{i}\right] \\
& =\sum_{i} x_{i} \sum_{s \in S_{i}} p(s) \\
& =\sum_{i} \sum_{s \in S_{i}} x_{i} p(s) \\
& =\sum_{i} \sum_{S \in S_{i}} X(s) p(s)
\end{aligned}
$$

$=\sum_{s \in S} X(s) p(s)$ since one cold show that S_{i} an mutually exclusion.

Next consider computig $E[X+Y]=E[Z]$
By the previas culculction,

$$
\begin{aligned}
E[Z] & =\sum_{s \in S} Z(s) p(s) \\
& =\sum_{s \in S}(X(s)+Y(s)) p(s) \\
& =\sum_{s \in S} X(s) p(s)+\sum_{s \in S} Y(s) p(s) \\
& =E[X]+E[Y] .
\end{aligned}
$$

Cumulatir Distribution Function

$$
F(x)=P[X \leq x] .
$$

(1) F is non-decrasing \Rightarrow if $a \leq b$, then $F(a) \leq F(b)$.
(2) $\lim _{b \rightarrow \infty} F(b)=\lim _{b \rightarrow \infty} P[X \leq b]=1$
(3) $\lim _{a \rightarrow-\infty} F(a)=0$
(4) F is right continios.

If $b_{n} \rightarrow b$, with $b_{n+1} \leq b_{n}$, then $\lim _{n \rightarrow \infty} F\left(b_{n}\right)=F(b)$.

$$
\begin{aligned}
& P[x=0]=\frac{1}{2} \\
& P[x=1]=\frac{1}{2}
\end{aligned}
$$

