Theory of Probability
Order Statistics
Let X_{1}, \ldots, X_{n} be cid continuing random variable,
Let $X_{(1)}=$ smallest X_{1}, \ldots, X_{n}
$X_{(2)}=$ mot smallest,
$X_{(n)}=$ largest of X_{1}, \ldots, X_{n}.

$$
\Rightarrow \quad X_{(1)} \leqslant X_{(2)} \leqslant \ldots \leq X_{(n)}
$$

The order statistics of X_{1}, \ldots, X_{n}
What is the pdf?
$X_{(1)} \leqslant X_{(2)} \leqslant \ldots \leqslant X_{(n)}$ take on the values
$x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ if and only if

$$
\begin{aligned}
x_{1} & =x_{i_{1}} \\
x_{2} & =x_{i_{2}} \\
& \vdots \\
x_{n} & =x_{i_{n}}
\end{aligned}
$$

for some permutation $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of $(1,2, \ldots, n)$.

So in terms of X_{1}, \ldots, X_{n}

$$
\begin{aligned}
P\left[x_{i_{1}}-\frac{\varepsilon}{2}\right. & \left.\leq x_{1} \leq x_{i_{1}}+\frac{\varepsilon}{2}, \ldots, x_{i_{n}}-\frac{\varepsilon}{2} \leq x_{n} \leq x_{i_{n}}+\frac{\varepsilon}{2}\right] \\
& \approx \varepsilon^{n} f_{x_{1} x_{n} \cdot x_{n}}\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \\
& =\varepsilon^{n} f_{x_{1}}\left(x_{i_{1}}\right) \cdots f_{x_{n}}\left(x_{i_{n}}\right)
\end{aligned}
$$

Now since then an n ! permutations of $(1,2, \ldots, n)$, we han that

$$
\begin{gathered}
P\left[x_{1}-\frac{\varepsilon}{2} \leq x_{(1)} \leq x_{1}+\frac{\varepsilon}{2}, \quad \cdots \quad, x_{n}-\frac{\varepsilon}{2} \leq x_{(n)} \leq x_{n}+\frac{\varepsilon}{2}\right] \\
\approx n!\varepsilon^{n} f\left(x_{1}\right) \cdots f\left(x_{n}\right) . \quad \text { since it dent }
\end{gathered}
$$

matter which $X_{i}=x_{1}$, etc.

$$
\begin{array}{r}
\Rightarrow \quad f_{(x) \ldots x_{(n)}}\left(x_{1}, \ldots, x_{n}\right)=n!f\left(x_{1}\right) \ldots f\left(x_{n}\right) \text { for } \\
x_{1} \leq x_{2} \leq \ldots \leq x_{n} .
\end{array}
$$

Joint distribution of functions of sever l random variable
Goal: Giun joint pdf $f=f\left(x_{1}, x_{2}\right)$ for X_{1}, X_{2}, and if $Y_{1}=g_{1}\left(X_{1}, X_{2}\right)$

$$
Y_{2}=g_{2}\left(X_{1}, X_{2}\right)
$$

what is the pdf of Y_{1}, Y_{2} ?

We nad two assumptions =
(1) The mapping $\binom{x_{1}}{x_{2}} \rightarrow\binom{g_{1}\left(x_{1}, x_{2}\right)}{g_{2}\left(x_{1}, x_{2}\right)}=\binom{y_{1}}{y_{2}}$
is uniquely invertible, with

$$
\begin{aligned}
& x_{1}=h_{1}\left(y_{1}, y_{2}\right) \\
& x_{2}=h_{2}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

(2) g_{1}, g_{2} an continuously differentiable, and that

$$
\begin{aligned}
J\left(x_{1}, x_{2}\right) & =\left|\begin{array}{ll}
\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} \\
\frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}}
\end{array}\right| \\
& =\frac{\partial g_{1}}{\partial x_{1}} \frac{\partial g_{2}}{\partial x_{2}}-\frac{\partial g_{1}}{\partial x_{2}} \frac{\partial g_{2}}{\partial x_{1}} \\
& \neq 0
\end{aligned}
$$

Under these two assumptions we have that

$$
\begin{aligned}
f_{Y_{1} Y_{2}}\left(y_{1, y_{2}}\right) & =f_{x_{1} x_{2}}\left(x_{1}, x_{2}\right) \frac{1}{\left|J\left(x_{1}, x_{2}\right)\right|} \\
& =f_{x_{1}, x_{2}}\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1} y_{2}\right)\right) \frac{1}{\left|J\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right)\right|}
\end{aligned}
$$

Idun:

$$
\begin{aligned}
P\left[Y_{1}\right. & \left.\leq y_{1}, Y_{2} \leq y_{2}\right] \\
& =P\left[g_{1}\left(x_{1}, x_{2}\right) \leq y_{1}, g_{2}\left(x_{1}, x_{2}\right) \leq y_{2}\right] \\
& =\iint_{\substack{g_{1}\left(x_{1}, x_{2}\right) \leq y_{1} \\
g_{2}\left(x_{1}, x_{2}\right) \leq y_{2}}} f_{x_{1} x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

Mas the following change of variably:

$$
\begin{aligned}
x_{1} & =h_{1}\left(y_{1}, y_{2}\right) \\
x_{2} & =h_{2}\left(y_{1}, y_{2}\right) \\
\Rightarrow f \rightarrow & f\left(h_{1}, h_{2}\right) \\
d x_{1} d x_{2}= & \left|\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right| d y_{1} d y_{2}
\end{aligned}
$$

\Rightarrow Insertion back into the integul, vo obtain that the integroud is:

$$
f_{x_{1} x_{2}}\left(h_{1}, h_{2}\right) \frac{1}{J\left(h_{1}, h_{2}\right)}=f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right) .
$$

