Strong Law of Large Numbers (SLLN)
Let
$$X_i, X_i, ...$$
 be a sequence of IID random
variables with $E[X_i] = \mu < \infty$. Then
 $P[\lim_{n \to \infty} \pm \hat{\Sigma}_i X_i = \mu] = 1.$

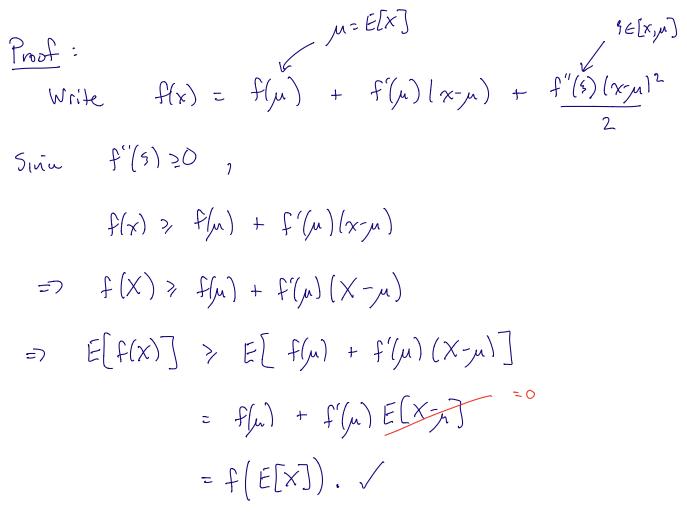
$$\begin{array}{rcl} D_{i}fferences: & Additional assumptions in the proof in \\ the text: \\ & WLLN : & Var[X_{i}] = 5^{2} < \infty \\ & SLLN : & E[X_{i}^{4}] < \infty \end{array}$$

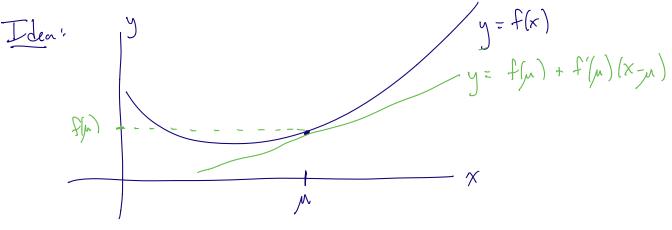
Furthermon :

Additional Inequalities
We we may be interested in estimation

$$P[X-\mu \forall a]$$
, when only $E[X] = \mu$
and $Var[X] = 5^{2}$ are known, (for and)

Trivially, since
$$X - \mu = a = \sum |X - \mu| \geq a$$
,
we can immudiately apply Chebyshevis Inequality:
 $P[X - \mu \geq a] \leq P[|X - \mu| \geq a] \leq \int_{az}^{t}$ for and.
Proposition One-sided Chebyshev Inequality:
If $E[X] = 0$, $P[X \geq a] \leq \int_{az}^{t} = \int_{az}^{t}$.
Proof: Let boo and mate that
 $X \geq a$ is equivalent to $X + b \geq a + b$,
 $= P[(X + b)^{2} \geq (a + b)^{2}]$
 $\leq P[(X + b)^{2} \geq (a + b)^{2}]$
 $\leq E[((X + b)^{2}] \equiv \int_{(a + b)^{2}}^{t} \int_{t}^{t} \int_$





The line
$$y = f(x) + f'(x)(x-x)$$
 is alway below
the corn $y = f(x)$
 $= 7 \quad f(x) \ge f(x) + f'(x)(x-x)$.